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This paper considers a new risk-control and management approach for a bottleneck spanning
tree problem under the situation where edge costs in a given network include randomness and
reliability. Particularly, this paper focuses on the case that only mean value and variance of edge
costs are calculated without assuming a specific random distribution. In order to develop the
risk control approach, a confidence interval-based formulation is introduced. Using this interval,
as well as minimizing the maximum value of worse edge costs, maximizing the minimum
value of robust parameters to edge costs is introduced as objective functions in the risk-control.
Furthermore, in order to maintain the constructing spanning tree network entirely, the reliability
for each edge is introduced, and maximizing the total reliability of spanning tree is assumed
as the third objective function. The proposed model is a multiobjective programming problem,
and hence, it is difficult to solve it directly without setting some optimal criterion. Therefore,
satisfaction functions for each object and the integrated function are introduced, and the exact
solution algorithm is developed by performing deterministic equivalent transformations. A
numerical example is provided by comparing our proposedmodel with previous standardmodels.

1. Introduction

Minimum spanning tree (MST) problem is one of most important combinatorial optimization
nodes. In the real world, MST problems to find a least cost spanning tree in an edge
weighted graph connecting all are usually seen in real-world network optimization problems
(most recently, Chen [1] and Ferreira et al. [2]). In more detail, when designing a layout
for telecommunication and power networks or constructing a large-scale gas pipeline, if
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a decision maker wishes to minimize the cost for connection between cities, the situation
is formulated as an MST problem. Then, another object is to minimize the working hours
for construction or to maximize the reliability to the whole of constructing network. In fact,
European Commission [3] today presented its energy infrastructure priorities for the next
two decades, aimed at making networks fit for the 21st century. Then, the commission defines
EU priority corridors for the transport and networks of electricity, gas, and oil. Thus, it is
important to construct several types of networks actually enhancing the importance and the
reliability of backbone lines as well as minimizing the cost and constructing time.

In MST problems, there are two main problems whose objects are different from
each other. The ordinary object of MST problem is minimizing the total cost of spanning
tree, and another is minimizing the maximum value of edge costs in a spanning tree. The
latter model is particularly called bottleneck spanning tree (BST) problem, and it is more
efficient for the construction of information and communications networks under delivery
deadline or capacity constraints of edges. For instance, in the case of constructing new power
lines or internet networks among all houses in a town, builders generally construct all lines
concurrently, and hence, it is important to construct all lines safely by the delivery deadline.
As a mathematical formulation of this case, the BST problem may be appropriate. Therefore,
in this paper, we focus on a BST problem.

Previous researches of MST problems including BST problems deal with constant edge
costs, and it is possible to applymany exact and polynomial time solution algorithms directly,
developed by Cheriton and Tarjan [4], Gabow et al. [5], Geetha and Nair [6], Kruskal [7], and
Prim [8]. However, more practically, it is necessary to consider the situation that one makes
an optimal decision on the basis of data involving various uncertainties. For instance, the cost
to connect between two nodes often depends on the economical environment which varies
randomly. In risk-control and management approaches in order to avoid adverse impacts
derived from uncertainty, it is recently important to minimize a downside risk which can
denote the risk of edge cost going up to some target level set by the decision maker. As a
recent study, note the design of a communication network where routing delays on links are
not known with certainty due to the time varying nature of the traffic load on the network. In
this application, it is desirable to construct a network configuration that hedges against the
worst possible contingency in routing delays (Kouvelis and Yu [9]).

If all random distributions to edge costs are certainly determined such as normal
distributions, the decision maker may directly use some downside risk measures such as
value at risk (VaR) and conditional value at risk (cVaR) (Rockafellar and Uryasev [10]).
However, in practice, it is difficult to determine a certain random distribution to each edge
cost even if there are a lot of received data. Instead, it is usually possible to calculate
mean value and variance derived from received data, and hence, a confidence interval-
based approach may be also obtained using only mean value and variance. In general, if the
decision maker assumes many practical situations from better to worse cases, this situation
mathematically means that the range of confidence interval becomes wide. Therefore, the
problem with the confidence interval is regarded as one of robust programming problems.
As an extension of the previous confidence interval, Watada et al. [11] recently proposed d-
confidence interval where parameter d represents an adjustment parameter to the confidence
region in robustness. For instance, in a normal distribution with mean value m and variance
σ2, the d-confidence interval is represented as [m − dσ,m + dσ]. In this paper, we propose an
MST problem using the d-confidence interval.

On the other hand, it is also important to consider how we ensure the reliability of
trunk and backbone line in the network. For instance, we consider that the decision maker
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constructs a fast Internet network among cities with some important metropolises. In this
situation, even if it happens that the only connection between two cites is disrupted by
destroying the connection line derived from natural disasters or breakdown of machines, a
city loses contact with the other cities andmetropolises and this wreaks enormous damages in
the whole network. Therefore, it is often important and necessary to construct more reliable
lines connecting these metropolises even if the total cost is high. Thus, we need to set the
reliability of each edge and to decide the minimum spanning tree maximizing the total
reliability to the whole of spanning tree as well as minimizing the total cost.

In mathematical programming under uncertainty, some researchers proposed a
stochastic, fuzzy, or uncertain network optimization. As studies of BST problems under
uncertainty, Ishii and Nishida [12] and Katagiri et al. [13] investigated BST problems
where edge costs are assumed to be random or fuzzy random variables and developed
a polynomial-time algorithm. However, risk-control and management models for BST
problems with multiobjective functions have not been studied deeply since it is usually
formulated as a constrained spanning tree problem which is more difficult to deal with. In
this paper, we assume the situation where the decision maker has satisfaction levels for all
objects, and hence, we introduce satisfaction functions to objective functions, which are often
called fuzzy goals. Furthermore, as an integrated function of multiobjective functions, we
focus on the Bellman-Zadehminimum operator (Bellman and Zadeh [14])which is one of the
standard appropriate aggregation functions and is dealt with in many studies. Using these
mathematical formulations, we transform main problems into the deterministic equivalent
problems and obtain the exact solution algorithm.

This paper is organized as follows. In Section 2, we introduce a standard BST problem
and three objects of our proposed model. Then, we formulate our proposed multiobjective
BST problem. In Section 3, in order to solve the proposed BST problem directly in
mathematical programming, we introduce satisfaction functions for all objects and Bellman-
Zadeh’s minimum operator as an integrated function. In Section 4, performing deterministic
equivalent transformations of the initial problem, we develop the polynomial-time solution
algorithm based on a standardMST problem and the bisectionmethod. Furthermore, in order
to represent some features of our proposed BST problem by comparing with the standard BST
problem and probability maximization-based BST problem not including the total reliability,
Section 5 provides a simple numerical example. Finally, Section 6 concludes this paper.

2. Mathematical Formulation of Proposed Multiobjective BST Problem

In this section, we introduce a formulation of standardMST problem and our proposed robust
MST problem with the reliability to the whole of spanning tree under uncertainty.

We assume a connected undirected graph G = (V, E) where V = {v1, v2, . . . , vn} is
a finite set of n vertices representing terminals or telecommunication stations and so forth.
E = {e1, e2, . . . , em} is a finite set of edges representing connections between these terminals
or stations, and T = {T1, T2, . . . , Tk} is a finite set of spanning trees in given undirected graph
G = (V, E). Let undirected graph x = (x1, x2, . . . , xm)

t be a vector defined by

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S � {1, 2, . . . , m}, (2.1)

where S is the index set of edges.
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2.1. Formulation of Standard BST Problem

First, we introduce a standard BST problem. The ordinary MST problem is to find the
spanning tree minimizing the total cost. On the other hand, a BST problem is formulated
as follows:

Minimize max
j∈S

{
cjxj

}

subject to xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(2.2)

where cj(j ∈ S) are edge costs in the given undirected graph. The above problem is easily
transformed into a minimum spanning tree problem if all edge costs are constant in this
problem. Therefore, the efficient solution algorithms are applied to the problem, and it is not
difficult to obtain the optimal spanning tree in a polynomial time.

However, we should consider that all edge costs are uncertain values rather than
constant in real-world practical situations. In this paper, we assume the case to calculate the
mean value and variance of each edge cost using some data but cannot determine a specific
random distribution. From mean value cj and variance σ2

j of each edge cost, we define a d-
confidence interval of each edge cost based on the study (Watada et al. [11]) using parameter
dj as [cj − djσj , cj + djσj] where mean values cj and robust parameters dj are positive. If
the random distribution occurs according to a general ellipsoidal distribution such as the
normal, Student t, Pareto’s distributions, this formulation denotes the value at risk satisfying
with some risk factors. Furthermore, if the random distribution occurs according to the stable
distribution such as the normal, Cauchy’s, and Levy’s distributions, this formulation denotes
the conditional value at risk (for instance, Rachev et al. [15]). Therefore, we focus on cj +djσj

of d-confidence interval and regard parameter dj as the downside risk in robustness.

2.2. Objects for the Proposed Model

(i) Minimizing the maximum value of downside edge cost cj + djσj .

In practical network optimization and previous standard BST problem (2.2), it is
natural for the decision maker to minimize the maximum value of downside edge costs
cj + djσj . Therefore, minimizing the maximum value of cj + djσj is also formulated as the
following problem:

Minimize max
j∈S

{(
cj + djσj

)
xj

}

subject to xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(2.3)
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Introducing parameter f as an acceptable target edge cost, the above problem is equivalently
transformed into the following problem:

Minimize f

subject to max
j∈S

{(
cj + djσj

)
xj

} ≥ f

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(2.4)

(ii) Maximizing the minimum value of robust parameters dj .

In robustness, if parameter dj is constant and of larger value, interval [cj−djσj , cj+djσj]
is also wide. It urges the decision maker to deal with more robust cases than the small value
of dj . In risk control and management, it is also important to maximize the minimum value
of parameter dj , and hence, the following robust BST problem is formulated:

Maximize max
j∈S

{
djxj

}

subject to xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(2.5)

In a way similar to the transformation from problems (2.3) to (2.4), problem (2.5) is also
equivalently transformed into the following problem introducing parameter d as a target
value of robustness:

Maximize d

subject to min
j∈S

{
djxj

} ≥ d

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(2.6)

(iii) Maximizing the total reliability to the whole of spanning tree.

It is also often necessary to construct the network connecting nodes keeping the higher
reliability even if the worst value of edge cost is large. This means that we need to set the
reliability of each edge and to decide a spanning tree maximizing the total reliability as well
as minimizing the maximum value of downside edge costs and maximizing the minimum
value of robust parameters. In this paper, we assume that the decision maker gives a constant
value of reliability βj to each edge as a constant value from 0 to 1 according to edge costs that
is, βj ∈ [0, 1].

In this paper, we focus on the concept that the whole of spanning tree is nonfunctional
as a normal communication network even if only one edge in the spanning tree is broken
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down. Therefore, the problem maximizing the total reliability of spanning tree is formulated
as the following problem:

Maximize
∏
ej∈T

βjxj

subject to xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(2.7)

The objective function of problem is often used in the mathematical formulation maximizing
the total reliability in communication networks.

2.3. Main Formulation of Our Proposed BST Model

By integrating these three objects, our proposed BST model is formulated as the following
multiobjective programming problem:

Minimize f

Maximize d

Maximize
∏
ej∈T

βjxj

subject to max
j∈S

{(
cj + djσj

)
xj

} ≥ f,

min
j∈S

{
djxj

} ≥ d,

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(2.8)

This problem is a multiobjective programming problem, and hence, it is hard to solve it
directly inmathematical programming problemwithout some optimal criterion. Therefore, in
the following sections, we discuss a solution approach to solve problem (2.8) in mathematical
programming.

3. Introduction of Fuzzy Goals and
Bellman-Zadeh’s Minimum Operator

In multiobjective programming problem (2.8), it is difficult to deal with a tradeoff between
the total cost f and robustness parameter d directly, because these attributes are completely
opposite. Furthermore, taking account of satisfaction of decisionmaker and robustness for the
execution of network, the decision maker often has satisfaction functions for target values of
the total cost f , the robust parameter d, and the total reliability β =

∏
ej∈Tβjxj , which is often

called fuzzy goals.
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In this paper, we define the following satisfaction function characterized by linear
membership functions:

μfG(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(
ω ≤ fL

)
,

fU −ω
fU − fL

(
fL < ω ≤ fU

)
,

0
(
fU < ω

)
,

μdG(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 (dU ≤ ω),
ω − dL

dU − dL
(dL ≤ ω < dU)

0 (ω < dL),

,

μβG(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(
βU ≤ ω

)
,

ω − βL
βU − βL

(
βL ≤ ω < βU

)
,

0
(
ω < βU

)
,

(3.1)

where fL, fU, dL, dU, βL, and βU are constant positive values determined by the decision
maker. Introducing these satisfaction functions into problem (2.8), we reformulate the
proposed BST problem as follows:

Maximize μfG

(
f
)

Maximize μdG

(
d
)

Maximize μβG

⎛
⎝∏

ej∈T
βjxj

⎞
⎠

subject to max
j∈S

{(
cj + djσj

)
xj

} ≥ f,

min
j∈S

{
djxj

} ≥ d

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S

(3.2)

Problem (3.2) is also a multiobjective programming problem, and hence, it remains
the difficulty of solving this problem directly since a complete optimal solution that
simultaneously optimizes all of the multiobjective functions does not always exist. Therefore,
instead of a complete optimal solution, a Pareto optimal solution may be reasonable for a
multiobjective case.

As a reasonable solution concept for the fuzzy multiobjective decision-making
problem, a Pareto optimal solution is defined as follows in the ordinary multiobjective
programming problem proposed by Sakawa et al. (Sakawa [16], Sakawa et al. [17]):
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Definition 3.1. Let x and X be a decision variable column vector and a set of feasible
solutions, respectively. Then, x∗ ∈ X is said to be an M-Pareto optimal solution if and
only if there does not exist another x ∈ X such that μfG(f) ≥ μfG(f

∗), μdG(d) ≥ μdG(d
∗
)

and μβG(
∏

ej∈Tβjxj) ≥ μβG(
∏

ej∈Tβjx
∗
j ), and either μfG(f) > μfG(f

∗), μdG(d) > μdG(d
∗
) or

μβG(
∏

ej∈Tβjxj) > μβG(
∏

ej∈Tβjx
∗
j ).

Introducing an aggregation function μD(x) for three membership functions
μfG(f), μdG(d) and μβG(

∏
ej∈Tβjxj), the problem can be rewritten as follows:

Maximize μD(x)

subject to max
j∈S

{(
cj + djσj

)
xj

} ≥ f,

min
j∈S

{
djxj

} ≥ d,

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(3.3)

The aggregation function μD(x) represents the integrated satisfaction or preference degree of
the decision maker for the whole of satisfaction functions. Some researchers have proposed
aggregation functions: the minimum operator (Bellman and Zadeh [14]), the product
operator (Zimmermann [18]), and so forth. Particularly, the following Bellman-Zadeh’s
minimum operator ZG is one of the standard appropriate aggregation functions and is dealt
with in many studies, and the mathematical formulation is to minimize the aspiration value
in all satisfaction functions:

ZG = min
{
μfG

(
f
)
, μdG

(
d
)
, μβG

(∏
ej∈Tβjxj

)}
. (3.4)

Therefore, setting satisfaction functions for the multiobjective and introducing the Bellman-
Zadeh minimum operator, we transform problem (3.2) into the following single objective
programming problem:

Maximize ZG

subject to max
j∈S

{(
cj + djσj

)
xj

} ≥ f,

min
j∈S

{
djxj

} ≥ d,

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(3.5)
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In mathematical programming, the optimal solution of problem (3.5) is also the same as
that of the following problem introducing parameter h which means the common target
satisfaction level:

Maximize h

subject to ZG ≥ h,

max
j∈S

{(
cj + djσj

)
xj

} ≥ f,

min
j∈S

{
djxj

} ≥ d,

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(3.6)

4. Development of Polynomial-Time Solution Algorithm for
the Proposed BST Problem

In problem (3.6), the first, second, and third constraints are equivalently transformed into the
following inequalities without the loss of optimality.

First constraint:

ZG ≥ h

⇐⇒ μfG

(
f
) ≥ h, μdG

(
d
)
≥ h, μβG

⎛
⎝∏

ej∈T
βjxj

⎞
⎠ ≥ h

⇐⇒ fU − f
fU − fL ≥ h,

d − dL

dU − dL
≥ h,

(∏
ej∈Tβjxj

)
− βL

βU − βL ≥ h

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f ≤ fU − h

(
fU − fL

)
d ≥ dL + h(dU − dL)∏
ej∈T

βjxj ≥ βL + h
(
βU − βL

)
.

(4.1)

Second constraint:

max
{(

cj + djσj

)
xj

∣∣j ∈ S
} ≤ f ⇐⇒ (

cj + djσj

)
xj ≤ f. (4.2)

Third constraint:

min
{
djxj

∣∣j ∈ S
} ≥ d ⇐⇒ dj ≥ dxj . (4.3)
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Furthermore, these constraints (4.1), (4.2), and (4.3) are reduced as follows:

f ≤ fU − h
(
fU − fL

)(
cj + djσj

)
xj ≤ f

⇐⇒ (
cj + djσj

)
xj ≤ fU − h

(
fU − fL

)
,

d ≥ dL + h(dU − dL)
dj ≥ dxj

⇐⇒ dj ≥ {dL + h(dU − dL)}xj .

(4.4)

Consequently, problem (3.6) is equivalently transformed into the following problem:

Maximize h

subject to
(
cj + djσj

)
xj ≤ fU − h

(
fU − fL

)
,

dj ≥ {dL + h(dU − dL)}xj ,∏
ej∈T

βjxj ≥ βL + h
(
βU − βL

)
,

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(4.5)

We focus on third constraint
∏

ej∈Tβjxj ≥ βL + h(βU − βL) in the above problem. In problem
(4.5), decision variables xj , (j ∈ S) become only 0 or 1, respectively. Therefore,

∏
ej∈Tβjxj =∏

ej∈Tβj holds. Using this formula, since
∏

ej∈Tβjxj and βL + h(βU − βL) are positive, this
constraint is equivalently transformed into the following logarithmic constraint without the
loss of optimality:

∏
ej∈T

βjxj ≥ βL + h
(
βU − βL

)

⇐⇒
∏
ej∈T

βj ≥ βL + h
(
βU − βL

)

⇐⇒ log

⎛
⎝∏

ej∈T
βj

⎞
⎠ ≥ log

(
βL + h

(
βU − βL

))

⇐⇒
∑
ej∈T

log βj ≥ log
(
βL + h

(
βU − βL

))

⇐⇒
∑
j∈S

(
log βj

)
xj ≥ log

(
βL + h

(
βU − βL

))
.

(4.6)
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Therefore, the optimal solution of problem (4.5) is the same as that of the following problem:

Maximize h

subject to
(
cj + djσj

)
xj ≤ fU − h

(
fU − fL

)
,

dj ≥ {dL + h(dU − dL)}xj ,∑
j∈S

(
log βj

)
xj ≥ log

(
βL + h

(
βU − βL

))
,

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(4.7)

Furthermore, by reducing the first and second constraints in problem (4.7) as follow:

(
cj + djσj

)
xj ≤ fU − h

(
fU − fL

)
dj ≥ {dL + h(dU − dL)}xj

⇐⇒

⎧⎪⎨
⎪⎩
djxj ≤

f(h) − cjxj

σj
,
(
f(h) = fU − h

(
fU − fL

))
djxj ≥ d(h)x2

j , (d(h) = dL + h(dU − dL))

⇐⇒ d(h)x2
j ≤

f(h) − cjxj

σj

⇐⇒ d(h)xj ≤
f(h) − cjxj

σj

⇐⇒ xj ≤
f(h)

d(h)σj + cj
,

(4.8)

problem (4.7) is also equivalently transformed into the following problem introducing β(h) =
βL + h(βU − βL):

Maximize h

subject to xj ≤
f(h)

d(h)σj + cj
,

∑
j∈S

(
log βj

)
xj ≥ log β(h),

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(4.9)

This problem is a constrained spanning tree problem. In general, it is difficult to solve
constrained network optimization problems in the polynomial time. However, since
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problem (4.9) fulfills the following theorem, we will show that the solution algorithm of
problem (4.9) in the polynomial-time.

Theorem 4.1. Fix parameter h = h, and set Rj(h) = f(h)/(d(h)σj + cj). If Rj(h) < 1, then xj = 0,
that is, edge ej is not included in the optimal spanning tree.

Proof. Since Rj(h) < 1 and xj ≤ R(h), xj < 1 is obtained. Furthermore, since xj is a 0-1 decision
variable, xj = 0 is also obtained.

From Theorem 4.1, we can narrow feasible spanning trees in the given network.
Furthermore, in the case of fixed parameter h, we introduce an auxiliary problem of problem
(4.9) as follows:

Maximize
∑
j∈S

(
log βj

)
xj

subject to xj = 0, j = 1, . . . , i,

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j = i + 1, . . . , m,

(4.10)

where i is the maximum number of index j satisfying Rj(h) < 1. Since we assume 0 < βj ≤ 1,
log βj is a negative value. Therefore, the above problem is equivalently transformed into the
following minimizing problem:

Minimize
m∑

j=i+1

(− log βj)xj

subject to xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j = i + 1, . . . , m.

(4.11)

This auxiliary problem is the same as a standard MST problem, and hence, it is possible to
obtain the optimal spanning tree in the polynomial time using the Kruskal algorithm [7]
or the Prim algorithm [8]. Furthermore, as an optimality condition between this auxiliary
problem and problem (4.9), the following theorem holds.

Theorem 4.2. Let x∗j (h), (j = 1, 2, . . . ,m) be the optimal solution of auxiliary problem (4.11), and
let h∗ be the optimal value of problem (4.9). Then, the following rules hold:

∑
j∈S

(
log βj

)
x∗j
(
h
)
> log β

(
h
)
−→ h < h∗,

∑
j∈S

(
log βj

)
x∗j
(
h
)
= log β

(
h
)
−→ h = h∗,

∑
j∈S

(
log βj

)
x∗j
(
h
)
< log β

(
h
)
−→ h > h∗.

(4.12)
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Proof. log β(h) is an increasing function on h due to setting membership function (3.1).
Then, since Rj(h) = f(h)/(d(h)σj + cj) is a decreasing function on h from decreasing
function f(h) and increasing function d(h), the number of indexes satisfying xj(h) < 1
is increasing. Therefore, in the case of h ≤ h, the feasible region of problem (4.11) of n
the case of h is narrower than h, and

∑
j∈S(− log βj)x∗j (h) ≤

∑
j∈S(− log βj)x∗j (h); that is,∑

j∈S(log βj)x
∗
j (h) ≥

∑
j∈S(log βj)x

∗
j (h) holds. Consequently, from increasing function log β(h)

and decreasing function
∑

j∈S(log βj)xj(h), this theorem is obtained.
Consequently, from Theorems 4.1 and 4.2 and auxiliary problem (4.9), we develop the

following solution algorithm for our proposed BST problem (3.6).

4.1. Solution Algorithm

Step 1. Elicit the satisfaction functions μfG(ω), μdG(ω), and μβG(ω) by the decision maker, and
go to Step 2.

Step 2. Set hL ← 0, hU ← 1, k ← 1, and go to Step 3.

Step 3. In the case h1 = 1, solve problem (4.11). If the optimal spanning tree x∗j (1) is obtained,
then x∗j (1) is also the optimal spanning tree of our proposed model (3.6), and terminate this
algorithm. If not, go to Step 4.

Step 4. In the case h1 = 0, solve problem (4.11). If there are no feasible solutions, return to
Step 1 and reset parameters of satisfaction functions μfG(ω), μdG(ω), and μβG(ω). If not, go to
Step 5.

Step 5. Set hk ← (hL + hU)/2, and go to Step 6.

Step 6. Calculate Rj(hk) of each edge ej , and check Rj(hk) ≥ 1 or not. If Rj(hk) < 1, then
x∗j (hk) = 0, and go to Step 7.

Step 7. Solve auxiliary problem (4.11) of the proposed model, and obtain the optimal
spanning tree x∗j (hk). Then, calculate

∑
j∈S(log βj)x

∗
j (hk), and go to Step 8.

Step 8. From Theorem 4.2, if
∑

j∈S(log βj)x
∗
j (hk) = log β(hk), then h is also the optimal solution

of our proposed BST problem (3.6), and hence, x∗j (hk) is the optimal spanning tree. Therefore,
terminate the algorithm. Then, in the case k ≥ 2, if x∗j (hk−1) = x∗j (hk), j = 1, 2, . . . , m, and the
following conditions holds:

∑
j∈S

(
log βj

)
x∗j (hk−1) > log β(hk−1),

∑
j∈S

(
log βj

)
x∗j (hk) < log β(hk), (4.13)

x∗j (hk) is the optimal spanning tree of the proposed problem (3.6), and terminate this
algorithm. If not, go to Step 9.

Step 9. If
∑

j∈S(log βj)x
∗
j (hk) > log β(hk), then hL ← hk, k ← k + 1 and return to Step 3. If∑

j∈S(log βj)x
∗
j (h) < log β(h), then hU ← hk, k ← k + 1 and return to Step 5.
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Consequently, solving problem (4.11) on each parameter hk using this solution
algorithm, we obtain an exact bottleneck spanning tree for our proposed BST problem
(3.6) according to decision maker’s satisfaction. The main steps of this solution algorithm
is to solve auxiliary problem (4.11) and to do the bisection method on parameter h. The
computational complexity to solve auxiliary problem (4.11) are polynomial time due to
Kruskal’s or Prim’s polynomial time algorithm. Then, the computational complexity of
bisection method is also polynomial time. Therefore, the total computational complexity of
this solution algorithm from Steps 1 to 9 is the polynomial-time.

5. Numerical Example

In this section, we provide a simple numerical example. Let G be a graph with 6 vertices that
is, n = 6. Figure 1 illustrates the given graph G, and parameters in this example are given
in Table 1. In the real world applications such as construction of telecommunication stations
networks between cities, some uncertain factors may intervene in the decision making of the
construction cost. Furthermore, in the case to ensure the reliability of trunk and backbone
networks, we also need to enhance the reliability of spanning tree as well as robustness
of edge costs. Therefore, using the numerical example in this section, we compare our
proposed BST problem with the standard BST problem and probability maximization-based
BST problem not including the reliability.

First, we solve a standard BST problem using data of constant edge costs not including
the reliability. As constant edge costs, we deal with mean values in Table 1. Using the mean
values, we solve the standard BST problem, and obtain the optimal spanning tree as Figure 2.

Next, we consider the case where each edge cost is a random variable not including
the reliability of spanning tree that is, we solve the following probability maximization-based
BST problem:

Maximize d

subject to max
j∈S

{(
cj + djσj

)
xj

} ≥ f,

min
j∈S

{
djxj

} ≥ d,

xj =

{
1

(
ej ∈ T

)
0

(
ej /∈ T

) , j ∈ S.

(5.1)

We use data of parameters in Table 1, and set parameter f = 5. We solve problem (5.1)
and obtain the optimal spanning tree as Figure 3.

Comparing Figure 3 with Figure 2, edges e5 and e10 selected in Figure 2 are changed
into edges e7 and e11. Numerical data in Table 1 shows that mean values of edges e5 and
e10 are similar to those of edges e7 and e11, respectively. However, variances of edges e5 and
e10 are much higher than those of edges e7 and e11, and hence, probability maximization-
based BST problem, which is a subproblem of our proposed BST problem, tends to avoid the
uncertain risk derived from variances.

Finally, we solve our proposed BST problem with maximizing the reliability of the
whole of spanning tree. We set parameters of satisfaction functions μfG(ω), μdG(ω), and
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Table 1: Parameter values of random edge costs with the reliability.

Edge Mean value Variance Reliability
e1 3.0 1.0 0.99
e2 4.0 0.5 0.99
e3 2.0 0.5 0.98
e4 7.0 1.0 0.99
e5 3.5 2.0 0.97
e6 8.0 4.0 1.00
e7 4.0 0.2 0.97
e8 3.0 1.0 0.98
e9 6.0 2.0 0.98
e10 4.0 2.5 0.99
e11 4.5 0.1 0.99
e12 5.0 1.5 0.98
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Figure 1: Given graph G.
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Figure 2: Optimal spanning tree of standard BST problem.

μβG(ω) as fL = 4, fU = 6, dL = 0.5, dU = 2.0, βL = 0.90, βU = 0.95, respectively. Using data of
random edge costs in Table 1, we solve our proposed BST problem according to the solution
algorithm in Section 4 and obtain the optimal spanning tree represented in Figure 4.

Comparing Figure 4 with Figures 2 and 3, edge e11 is selected in Figure 4 in the same
manner as Figure 3, which is not selected in Figure 2. On the other hand, edge e7 selected
in Figure 3 is changed into edge e2. This is why the reliability of e7 is smaller than that of
edge e2 from Table 1. In our proposed BST problem, we simultaneously consider the higher
total reliability of spanning tree, and hence, our proposed model with randomness and the
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Figure 3: Optimal spanning tree of probability maximization-based BST problem.
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Figure 4: Optimal spanning tree of our proposed BST problem with the reliability.

reliability is well balanced between constructing more reliable edges and avoiding uncertain
risks.

6. Conclusion

In this paper, we have proposed a new bottleneck spanning tree problem that each edge cost
includes both uncertainty derived from randomness and the reliability of given spanning
tree and have developed the risk control and management approach. Since it is difficult
to determine a specific random distribution to each edge cost from received data, we
have considered the d-confidence interval based on only mean value and variance in risk-
control and management to avoid adverse impacts derived from uncertainty. Our proposed
model has been formulated as a multiobjective bottleneck spanning tree problem such as
(i) minimizing the maximum value of worse edge costs, (ii) maximizing the minimum
robustness derived from the d-confidence interval of each edge, and (iii) maximizing the
reliability to the whole of spanning tree. Furthermore, in order to deal with the satisfaction
for the objects of the decision maker and to solve the proposed model in mathematical
programming, we have introduced satisfaction functions for all objects and developed
the exact solution algorithm using Bellman-Zadeh’s minimum operator and deterministic
equivalent transformations. By comparing our proposed model with some existing models of
bottleneck spanning tree problems using a numerical example, we have obtained the result
that our proposed model with randomness and the reliability was well balanced between
constructing more reliable edges and avoiding uncertain risks.
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Our modeling approach to introduce robustness and reliability in a given network is
simple and has usefulness in well-balanced network between robustness and reliability. Fur-
thermore, our proposed model will be naturally applied to the other network optimization
problems such as the shortest path problem and the maximum flow problem. Therefore, this
study will be based on the other extended studies of network optimization. In this problem,
it is also important to determine the value of the reliability to each edge and the relativity
between any two edges strictly, and hence, we are now attacking to construct the exact and
mathematical method to determine the reliability and relativity of all edges as a future study.
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