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We prove an equilibrium existence result for vector functions defined on noncompact domain and
we give some applications in optimization and Nash equilibrium in noncooperative game.

1. Introduction

Let X be a subset of a vector space E and f : X ×X → R, with f(x, x) = 0. It is well known in
the literature that a point x satisfying the property:

f
(
x, y

) ≥ 0, ∀y ∈ X, (1.1)

is called an equilibrium point. This notion of equilibrium plays an important role in various
areas such as optimization, variational inequalities, and Nash equilibrium problems.

We recall that an equilibrium point in this formulation was first introduced and
studied by Blum and Oettli [1], who, inspired by the very known work of Allen [2] and of
Fan [3], proved the existence of an equilibrium point by using some hypothesis concerning
continuity, convexity, compactness, and monotonicity.

Recently, many authors have investigated the existence of such equilibrium points
in different context. In some references, different generalizations of monotonicity condition
are used to prove the existence of equilibrium (see, e.g., [4–6]); while some other references
studied this equilibrium problem under generalized convexity condition (see, e.g., [5]). The
main objective of our work is to study this equilibrium problem by using a generalized
coercivity-type condition.
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In Section 3 of this paper, we prove the existence of equilibrium points when X is a
noncompact subset of a Hausdorff real-topological vector space and f is a vector function
that takes its values in another Hausdorff real topological vector space. The order on Y will
be defined by a cone C. Formally, we obtain the existence of a point x ∈ X, which will be
called a weak equilibrium point, that satisfies the following condition:

f
(
x, y

)
/∈ − intC, ∀y ∈ X, (1.2)

where intC denotes the interior of the cone C in Y . The existence of what we refer to as
equilibrium point, x ∈ X satisfying the following condition:

f
(
x, y

)
/∈ −(C \ 0), ∀y ∈ X, (1.3)

is then deduced. The results that we obtain in this section generalize the corresponding results
obtained in the classical formulation by Fan in [3, 7], Blum and Oettli in [1] as well as the
corresponding results obtained in noncompact case by Tan and Tinh in [8].

In Section 4 and as applications, we prove the existence of saddle points for vector
functions defined on noncompact domain. We also prove the existence of Nash equilibrium
for an infinite set of players game in which every player has a noncompact strategy set and
vector loss function.

2. Preliminaries

In this section, we will recall some notions, definitions, and some properties from the
literature that will be used in the paper. Let E and Y be real Hausdorff topological vector
spaces. Let X ⊂ E be a nonempty closed convex subset and C ⊂ Y a pointed convex closed
cone. The cone C can define a partial order on Y , denoted by �, as follows: x � y if and only
if y − x ∈ C. We will write x ≺ y if and only if y − x ∈ intC, in the case intC/= ∅.

We say that the cone C satisfies condition (∗) if there is a pointed convex closed cone
C̃ such that C \ {0} ⊆ int C̃.

Let f : X → Y be a mapping. f is said to be convex (resp., concave)with respect to C if
for all x, y ∈ X and α ∈ [0, 1], the following condition is satisfied:

f
(
αx + (1 − α)y

) � αf(x) + (1 − α)f
(
y
)
, (2.1)

(resp.: αf(x) + (1 − α)f(y) � f(αx + (1 − α)y)). It is clear that if C1 and C2 are two convex
closed cones in Y with C1 ⊆ C2 and f is convex (resp., concave) with respect to C1, then f is
also convex (resp., concave) with respect to C2.

The mapping f is said to be lower semicontinuous, in brief l.s.c. (resp., upper semi-
continuous, in brief u.s.c.), at x0 with respect to C if for any neighborhood V of f(x0) in Y ,
there exists a neighborhood U of x0 in X such that

f(U ∩X) ⊆ V + C, (2.2)

(resp. f(U ∩X) ⊆ V − C).
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Note that following Lemma 2.11 in [8], if f is l.s.c. with respect to C, then the set
F = {x ∈ X : f(x) /∈ C} is closed. The mapping f is said to be continuous with respect to C at
a point x0 in X if it is l.s.c. and u.s.c. with respect to C at this point.

The mapping f is said to bemonotonewith respect to C if for all x, y ∈ X, the following
condition is satisfied:

f
(
x, y

)
+ f

(
y, x

) � 0. (2.3)

In this paper, we will use the definition of coercing family borrowed from [9].

Definition 2.1. Consider a subset X of a topological vector space and a topological space Y . A
family {(Ci,Ki)}i∈I of pair of sets is said to be coercing for a set-valued map F : X → Y if and
only if the following hold.

(i) For each i ∈ I, Ci is contained in a compact convex subset of X and Ki is a compact
subset of Y .

(ii) For each i, j ∈ I, there exists k ∈ I such that Ci
⋃
Cj ⊆ Ck.

(iii) For each i ∈ I, there exists k ∈ I with
⋂

x∈Ck
F(x) ⊂ Ki.

Remark 2.2. Definition 2.1 can be reformulated by using the “dual” set-valued map F∗ : Y →
X defined for all y ∈ Y by F∗(y) = X \ F−1(y). Indeed, a family {(Ci,Ki)}i∈I is coercing for F
if and only if it satisfies conditions (i), (ii) of Definition 2.1 and the following one:

∀i ∈ I, ∃k ∈ I, ∀y ∈ Y \Ki, F
∗(y

) ∩ Ck /= ∅. (2.4)

Note that in case where the family is reduced to one element, condition (iii) of
Definition 2.1 and in the sense of Remark 2.2 appeared first in this generality (with two sets
K and C) in [10] and generalizes condition of Karamardian [11] and Allen [2]. Condition
(iii) is also an extension of the coercivity condition given by Fan [7]. For other examples of
set-valued maps admitting a coercing family that is not necessarily reduced to one element,
see [9].

The following generalization of KKMprinciple obtained in [9]will be used in the proof
of the main result of this paper.

Proposition 2.3. Let E be a Hausdorff topological vector space, Y a convex subset of E,X a nonempty
subset of Y , and F : X → Y a KKM map with compactly closed values in Y (i.e., for all x ∈ X,
F(x) ∩ C is closed for every compact set C of Y ). If F admits a coercing family, then

⋂
x∈X F(x)/=φ.

3. The Main Result

The main result of this paper is the following equilibrium theorem for vector valued maps.

Theorem 3.1. Let X be a nonempty closed convex subset of a Hausdorff topological vector space E, Y
a Hausdorff topological vector space, and f, g : X ×X → Y be two functions satisfying the following
conditions.

(1) f is monotone function.
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(2) For any fixed x ∈ X, the function f(x, ·) : X → Y is convex, l.s.c. with respect to C on X.

(3) g(x, x) = 0 for all x ∈ X.

(4) For any fixed y ∈ X, the function g(·, y) : X → Y is u.s.c. with respect to C on X.

(5) For any fixed x ∈ X, the function g(x, ·) : X → Y is convex.

(6) There exists a family {(Ci,Ki)}i∈I satisfying conditions (i) and (ii) of Definition 2.1 and the
following one: For each i ∈ I, there exists k ∈ I such that

{
x ∈ X : f

(
y, x

) − g
(
x, y

)
/∈ intC, ∀y ∈ Ck

} ⊂ Ki. (3.1)

Then, there exists a point x ∈ X such that:

f
(
y, x

) − g
(
x, y

)
/∈ intC, ∀y ∈ X. (3.2)

Proof. For any y ∈ X, we consider the set-valued map:

F
(
y
)
=
{
x ∈ X : f

(
y, x

) − g
(
x, y

)
/∈ intC

}
. (3.3)

We have the following.
(i) For all y ∈ X, F(y) is closed in X, then F has compactly closed values.
(ii) Let {yi : i ∈ I} be a finite subset of X and z ∈ conv{yi : i ∈ I}. We want to show

that

conv
{
yi : i ∈ I

} ⊂
⋃

i∈I
F
(
yi

)
. (3.4)

By absurdity, suppose that z =
∑

i∈I λiyi with λi ≥ 0,
∑

i∈I λi = 1 and z /∈ ⋃
i∈I F(yi), it means

that for all i ∈ I, f(yi, z) − g(z, yi) ∈ intC,

∑

i∈I
λi
(
f
(
yi, z

) − g
(
z, yi

)) ∈ intC, ∀i ∈ I. (3.5)

By assumption (1) and (2), we obtain

∑

i∈I
λif

(
yi, z

) �
∑

i,j∈I
λiλjf

(
yi, yj

)
=

1
2

∑

i,j∈I
λiλj

(
f
(
yi, yj

)
+ f

(
yj, yi

)) � 0. (3.6)

Further, it implies from assumptions (3) and (5) that

0 = g(z, z) �
∑

i∈I
λig

(
z, yi

)
. (3.7)

It follows that

∑

i∈I
λif

(
yi, z

) �
∑

i∈I
λig

(
z, yi

)
. (3.8)
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Or

∑

i∈I
λi
(
f
(
yi, z

) − g
(
z, yi

)) ∈ (−C). (3.9)

We deduce that

∑

i∈I
λi
(
f
(
yi, z

) − g
(
z, yi

)) ∈ intC ∩ (−C) = ∅, (3.10)

so we have a contradiction.
(iii) Hypothesis (6) implies that the family {(Ci,Ki)}i∈I satisfies the following con-

dition: for all i ∈ I, there exists k ∈ I with

⋂

y∈Ck

F
(
y
) ⊂ Ki, (3.11)

and hence it is a coercing family for F.
F satisfies all hypothesis of Proposition 2.3, so

⋂

y∈X
F
(
y
)
/= ∅. (3.12)

Take x in this intersection, then f(y, x) − g(x, y) /∈ int C, for all y ∈ X.

Corollary 3.2. Let X, C, {(Ci,Ki)}i∈I , f and g satisfy all assumptions of Theorem 3.1 and the addi-
tional following conditions.

(a) f(x, x) = 0 for all x ∈ X.

(b) For any fixed x, y ∈ X, the function k : t ∈ [0, 1] → f(ty + (1 − t)x, y) is u.s.c. with
respect to C at t = 0.

Then, there exists a point x ∈ X such that

f
(
x, y

)
+ g

(
x, y

)
/∈ − intC, ∀y ∈ X. (3.13)

In addition, if C satisfies condition (∗), then

f
(
x, y

)
+ g

(
x, y

)
/∈ −(C \ {0}), ∀y ∈ X. (3.14)

Proof. By Theorem 3.1, there exists x ∈ X with

f
(
y, x

) − g
(
x, y

)
/∈ int C, ∀y ∈ X. (3.15)

Since x ∈ K, by applying Lemma 3.3 in [8], we obtain

f
(
x, y

)
+ g

(
x, y

)
/∈ − intC, ∀y ∈ X. (3.16)
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This proves the first assertion of Corollary 3.2. Now, let C satisfy condition (∗) and let C̃ be
a pointed convex closed cone in Y such that C \ {0} ⊂ int C̃. It is easy to see that X, C̃,
{(Ci,Ki)}i∈I , f , and g satisfy all assumptions of Theorem 3.1, by the first assertion, we have

f
(
x, y

)
+ g

(
x, y

)
/∈ − int C̃, ∀y ∈ X. (3.17)

Since −(C \ {0}) ⊂ − int C̃, it follows that

f
(
x, y

)
+ g

(
x, y

)
/∈ −(C \ {0}), ∀y ∈ X. (3.18)

Let K be a convex subset of X. The core of K relative to X, denoted by coreXK, is the
set defined by a ∈ coreXK if and only if a ∈ K and K ∩ (a, y]/= ∅ for all y ∈ X \ K, where
(a, y] = {x ∈ E : x = λa + (1 − λ)y for λ ∈ [0, 1)}.

The following result can be deduced from Theorem 3.1.

Corollary 3.3. Let X, C, {(Ci,Ki)}i∈I , f and g satisfy hypothesis (1–5) of Theorem 3.1 and the
following condition

(6′) There exists a nonempty convex compact subsetK of X such that, for any x ∈ K \ coreXK,
one can find a point y ∈ coreXK such that

f
(
x, y

)
+ g

(
x, y

) � 0. (3.19)

Then, there exists a point x ∈ X such that

f
(
x, y

)
+ g

(
x, y

)
/∈ − int C, ∀y ∈ X. (3.20)

In addition, if C satisfies condition (∗), then

f
(
x, y

)
+ g

(
x, y

)
/∈ −(C \ {0}), ∀y ∈ X. (3.21)

Proof. We just prove the first assertion. By taking for all i ∈ I, Ci = Ki = K, which is a convex
compact set we can see that by using hypothesis (6′) that F admits a coercing family in the
sense of Remark 2.2.

Remark 3.4. Note that if X is a compact convex subset of E, then condition (6) of Theorem 3.1
is automatically satisfied. Hence, Theorem 3.1 extends Theorem 1 in [1]. Corollary 3.2
extends also Lemma 3.2 in [8] obtained in the noncompact case and Corollary 3.3
corresponds to Theorem 3.1 in [1]. In case of real-valued function f , those results coincide
with the corresponding results obtained in [3, 7].
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4. Applications

Let I be a (possibly infinite) set of players. If each player i ∈ I has a nonempty strategy
subset Xi of a Hausdorff topological vector space and a loss function, fi : X =

∏
i∈IXi →

Y depending on the strategies of n players. For x = (xi)i∈I ∈ X, we denote x−i =
(x1, x2, . . . , xi−1, xi+1, . . .) and (x−i, yi) = (x1, x2, . . . , xi−1, yi, xi+1, . . .).

A point x = (xi) ∈ X is said to be a weak Nash equilibrium if and only if for all i ∈ I,

fi
(
x−i, yi

)
− fi(x) /∈ intC (4.1)

holds for all y = (yi)i∈I ∈ X.
A point x = (xi) ∈ X is said to be a Nash equilibrium if and only if for all i ∈ I,

fi
(
x−i, yi

)
− fi(x) /∈ −(C \ {0}) (4.2)

holds for all y = (yi)i∈I ∈ X.

Proposition 4.1. Let Xi, fi, X be as above. Assume that, for all i ∈ I, the following conditions are
satisfied.

(1) fi is continuous with respect to C.

(2) For any fixed x−i, the function fi(x−i, ·) is convex.
(3) There exists a family {(Ci,Ki)} satisfying condition (a) and (b) of Definition 2.1 and the

following one:

{

x = (xi)i∈I ∈ X :
∑

i∈I

(
fi
(
x−i, yi

)
− fi(x)

)
/∈ − intC, ∀y ∈ Ck

}

⊂ Ki. (4.3)

Then, there exists a weak Nash equilibrium. In addition, if C satisfies condition (∗), then there
exists a Nash equilibrium.

Proof. Define g : X ×X → X, for all x = (xi)i∈I , y = (yi)i∈I ∈ X, by

g
(
x, y

)
=
∑

i∈I

(
fi
(
x−i, yi

)
− fi(x)

)
. (4.4)

We can easily verify that X, {(Ci,Ki)}i∈I , f = 0, and g as above satisfy all assumptions of
Corollary 3.2. Applying the first part of this corollary, we conclude that there exists a point
x = xi∈I ∈ X with

g
(
x, y

)
/∈ − intC ∀y ∈ X, (4.5)

or

∑

i∈I

(
fi
(
x−i, yi

)
− fi(x)

)
/∈ − intC ∀y ∈ X. (4.6)
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If for i ∈ I, we choose y ∈ X in such a way that x−i = y−i, then

g
(
x, y

)
= fi

(
x−i, yi

)
− fi(x) /∈ − intC, ∀yi ∈ Xi. (4.7)

This completes the proof of the first assertion of the proposition. The second assertion
of Corollary 3.2 implies that

fi
(
x−i, yi

)
− fi(x) /∈ −(C \ {0}) ∀yi ∈ Xi, (4.8)

and this gives us the second assertion.

Let E1 and E2 be twoHausdorff topological vector spaces,X1 andX2 be two nonempty
convex closed subsets ofE1 andE2, respectively. Let Y andC be as above and T : X1×X2 → Y .

A point (x1, x2) ∈ X1 ×X2 is called a weak saddle point of T with respect to C if

T
(
y1, x2

) − T
(
x1, y2

)
/∈ − int C (4.9)

holds for all (y1, y2) ∈ X1 ×X2.
A point (x1, x2) ∈ X1 ×X2 is called a saddle point of f with respect to C if

f
(
y1, x2

) − f
(
x1, y2

)
/∈ −(C \ {0}) (4.10)

holds for all (y1, y2) ∈ X1 ×X2.

Proposition 4.2. Let X1, X2, Y and C be as above and f : X1 ×X2 → Y . Assume that the following
hold.

(1) For any fixed y ∈ X2, f(·, y) is a convex l.s.c. function with respect to C.

(2) For any fixed x ∈ X1, f(x, ·) is a concave u.s.c. function with respect to C.

(3) There exists a family {(Ci,Ki)} satisfying condition (a) and (b) of Definition 2.1 and the
following one. For each i ∈ I, there exists k ∈ I such that

{
x = (x1, x2) ∈ X1 ×X2 : f

(
y1, x2

) − f
(
x1, y2

)
/∈ − intC, ∀y =

(
y1, y2

) ∈ Ck

} ⊂ Ki. (4.11)

Then, there exists a weak saddle point of f . In addition, if C satisfies condition (∗), then there
exists a saddle point of f .

Proof. Consider the function g : X×X → Y , whereX = X1×X2, defined for all x = (x1, x2), y =
(y1, y2) ∈ X1 ×X2 by

g
(
x, y

)
= f

(
y1, x2

) − f
(
x1, y2

)
. (4.12)
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Apply the first part of Corollary 3.2 for g and the null function 0, we conclude that there exists
a point x = (x1, x2) ∈ X with g(x, y) /∈ − intC, for all y ∈ X. This follows:

f
(
y1, x2

) − f
(
x1, y2

)
/∈ − intC, ∀y =

(
y1, y2

) ∈ X. (4.13)

The second assertion of Corollary 3.2 implies that

f
(
y1, x2

) − f
(
x1, y2

)
/∈ −C \ {0}, ∀y =

(
y1, y2

) ∈ X, (4.14)

and this completes the proof.
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