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We consider the exterior problem and the initial boundary value problem for the spherically
symmetric isentropic compressible Navier-Stokes equations with density-dependent viscosity
coefficient in this paper. For regular initial density, we show that there exists a unique global strong
solution to the exterior problem or the initial boundary value problem, respectively. In particular,
the strong solution tends to the equilibrium state as t — +oo.

1. Introduction

The isentropic compressible Navier-Stokes equations with density-dependent viscosity
coefficients read as follows:

pr +div(pU) =0,

(pU), +div(pU e U) + VP(p) - div(u(p)D(U)) - V(A(p) divU) =0, (L.

where t € (0, +0) is the time and x € RN, N is the spatial coordinate, p > 0 and u denote the
density and velocity, respectively. Pressure function is taken as P(p) = p¥ with y > 1, and

V(U)+'V(U)

. (1.2)

D(U) =
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is the strain tensor and p(p), A(p) are the Lamé viscosity coefficients satisfying

u(p) >0, p(p) +NA(p) > 0. (13)

There are many important progress achieved recently on the compressible Navier-
Stokes equations with density-dependent viscosity coefficient. For instance, the mathematical
derivations are derived in the simulation of flow surface in shallow region [1-4]. The
prototype model is the viscous Saint-Venant. The well posedness of solutions to the free
boundary value problem with initial finite mass and the flow density being connected
with the infinite vacuum either continuously or via jump discontinuity is investigated by
many authors, refer to [5-12] and references therein. Mellet and Vasseur showed the global
existence of strong solutions for a € (0,1/2) [13]. The qualitative behaviors of global solutions
and dynamical asymptotics of vacuum states are also made, such as the finite time vanishing
of finite vacuum or asymptotical formation of vacuum in large time, the dynamical behaviors
of vacuum boundary, the large time convergence to rarefaction wave with vacuum, and the
stability of shock profile with large shock strength, refer to [14-17] and references therein.

In this present paper, we consider the exterior problem and the initial boundary
value problem for the spherically symmetric isentropic compressible Navier-Stokes equations
with density-dependent viscosity coefficient and focus on the regularities and dynamical
behaviors of global strong solution, and so forth. As y > 1, we show that the exterior problem
and the initial boundary value problem with regular initial data both admit the unique global
strong solution. In particular, the strong solution tends to the equilibrium state as t — +oo.

The rest of the paper is arranged as follows. In Section 2, the main results about the
dynamical behaviors of global strong solution for compressible Navier-Stokes equations are
stated. Then, the theorems of the exterior problem and the initial boundary value problem
are proved in Sections 3 and 4, respectively.

2. Notations and Main Results

For simplicity, we will take p(p) = p and A(p) = 0 and D(U) = VU in (1.1). The isentropic
compressible Navier-Stokes equations become

pr +div(pU) =0,
(pU), + div(pU & U) + VP(p) - div(pVU) = 0. 1)

Firstly, we consider the exterior problem, namely, the initial data and boundary conditions of
(2.1) are imposed as follows:

(p,U)(x,0) = (po, Up) (x), x€Q,

U=0, on 0Q, | ‘lim (p,u)(x,t) = (p,0), te[0,T], (2.2)

where Q = R®/Q, , Q, is a ball of radius r_ centered at the origin in R, and p>0isa
constant.
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We are concerned with the spherically symmetric solutions of system (2.1) in an

spherically symmetric exterior domain Q. To this end, we denote that
M=r,  pxH=p(rh, Uk =ulrb)>,

which leads to the following system of equations for r > 0,

2
pf+(pu)r+%:0’
2pu? 2u
(pu), + (p? +p7) + —(P”r)r‘P<T>r:0'

with the initial data and boundary conditions

(p,u)(r,0) = (po,uo)(r), 7€ [r-,+o0),
u(r_,t) =0, rl_i}riloo(p,u) (r,t)y=(p,0) tel0,T],

and the initial data satisfies for some constants p and p > 0

po—p € LY ([r_,+o0)) N L*([r_, +0)), [inf po>p> 0,
X€E[r_,+00 —

rpor € L2([r_,+)), r*uge H*([r_,+)).

Then, we define that

_ 1 +oo ) 5 +oo 1 Y—l _Y_l — ) . )
Ep = §J‘r_ pPouyr dr+f p0<Y_l<p0 -p >+p (Po -p >>r dr,

-

(2.3)

(2.4)

(2.5)

(2.6)

Ei = % f:oo Po (uo +pyt (po),>2r2dr + J:Oo Po(Y i 1 (Pgil - ﬁH) P (p(}l N Fl>>72dr'

and give the main results as follows.

2.7)

Theorem 2.1. Let y > 1. Assume that the initial data satisfies (2.6) and Ey + E1 < erﬁy/%lm, P
is a positive constant. Then, there exist two positive constants p, and p* and a unique global strong

solution (p, u) to the exterior problem (2.4) and (2.5), namely, satisfying

0<p.<p(rh)<p’, (r,t)€lr,+)x[0,T],

p-peL>(I0TLLA(r +e)), pr € L*([0,TLLX(Ir, +00))),

we L7 ([0, T L3 ([r- +00)) ), up € L= ([0, TLL3([r-, +00)) ).

Furthermore, the solution tends to the equilibrium state (p,0)

(2.8)
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|| (p - f_)’ u) (" t) ||L°°([r,,+oo)) — 0, t— +oo. (29)

Then investigates the initial boundary value problem, and the initial data and
boundary conditions of (2.1) are assumed as follow:

(p,U)(x,0) = (po, Up) (x), x€Q,

(2.10)
U(x,t) =0, xe€0Q, te[0,T].

By (2.3), one considers (2.4) with the initial data and boundary conditions

(p,u)(r,0) = (po,uo)(r), r€l[r.,r.], 211)
u(r_,t) =u(r.,t)=0, te]0,T], '
and the initial data satisfies for some constant p > 0
po € L'([r_,r.]) nW">([r_,r.]), inf py>p>0,

enl o= (2.12)

r2uy € Hz([r_,n]).

Then, can give the main results as follows.

Theorem 2.2. Let y > 1. Assume that the initial data satisfies (2.12), there exist two positive
constants p, and p* and a unique global strong solution (p,u) to the initial boundary value problem
(2.4) and (2.11), namely, satisfying

O0<p.<p(rt)<p’, (rt)€[r,rn]x[0T],

peL=(0,TLA([r D), pr e L2(10,TLIA(r, 1)), (2.13)
ue L°°([0,T];L2([r_,r+])), U € L°°<[O,T];L2([r_, r+])>.

Furthermore, the solution (p,u) tends to the equilibrium state exponentially

” (P - :5' u) ('/ t) "Lw([r,,n]) < COe_Clt’ (2'14)

where Co and Cy are positive constants independent of time and p = [|* p(r, t)r?dr.
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Remark 2.3. Theorems 2.1 and 2.2 hold for one-dimensional Saint-Venant’s model for shallow
water, thatis, y =2, a = 1.

3. Proof of the Exterior Problem
3.1. The A Priori Estimates

It is convenient to make use of the Lagrangian coordinates so as to establish the uniformly a
priori estimates. Take the Lagrange coordinates transform

x = J p(r, Hridr, T=t, (3.1)

which map (r,t) € [r_, +o0) x R* into (x, T) € [0, +o0) x R*. The relation between Lagrangian
and Eulerian coordinates are satisfied as

ox 5 ox ”
ox _ 9o 3.2
or T o TP 5-2)

The exterior problem (2.4) and (2.5) is reformulated to

pr + p* <r2u>x =0,
_ 2pxu

ur+ (), = (P () ) -, (33)

(p,u)(x,0) = (po,uo)(x), x€[0,+00),
u(0,t) =0, xl_i)r}rloo(p,u) =(p,0), Te€]l0,+o0),

where the initial data satisfies

po—p € L([0,+o0)) N L3([0, +0)), [iglf po>p-> 0,
x€(0,+c0

r*pox € L*([0, +00)),

(ruo) € LX([0, +o0)),
2po (3.4)

\/17,00<r2u0>x € LZ([O,+oo)), ! <r2p<r2p<r2uo>x>x> € L2([O, +00)).

r2po

-

ﬁ

First, we will establish the a-priori estimates for the solution (p,u) to the exterior problem
(3.3).
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Lemma 3.1. Let T > 0. Under the conditions in Theorem 2.1, it holds for any solution (p,u) to the
exterior problem (3.3) that

o R N et G B )

0
+00
jf <—+p2u2r4>dxds§Eo, T€[0,T].

Proof. Multiplying (3.3), by r°u and integrating the result with respect to x over [0, +o0),
making use of (3.3); and (3.4), we have

1d 2d e -1 A RV
33r x+—j ( <p P’ >+p (p -p ))dx+f0 p(ru)xdx

=2 fo p(ru2>xdx,

integrating (3.6) with respect to T, we obtain

1™, 1 y-1_ =1\ L = (-1 _ ) I f 2,2 4

zfo udx+f0 <Y‘1<P p >+p <p dx + +pur dxds
R N e O R (AR )
2 ) 0 0 y-1 0 0

(3.5)

(3.6)

(3.7)

Lemma 3.1 can be obtained. O

Lemma 3.2. Let T > 0. Under the conditions in Theorem 2.1, it holds for any solution (p,u) to the
exterior problem (3.3) that

1 (™ 2 +00 1 . B I
§J0 <u+r2px> dx+f <Y 1<pY1 p’ >+py<p -p ))dx

0

T (+0 (38)
+ Yf J pY‘lpir‘ldx ds<E;, T€]0,T],
0Jo
and there exist two constants 0 < p, < p* such that
0<pe<plx,7)<p*, (x,7)€[0,+0) x [0,T]. (3.9)

Proof. Differentiating (3.3); with respect to x, we have

Par + <p2 <r2u>x>x =0. (3.10)
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Summing (3.10) and (3.3),, we get

2pxu
-2 " = (2 -0 3.11
(r u+px>T +(p"), <r >Tu p (3.11)
Note that
r(x, ) =1+ SIx —dz, 3.12
( ) 0 P(Z/T) ( )
and so
or 1 (Y/1 1(*/,
== L <E>t(z' Hdz = - L <r u)z(z, tdz = u(x,7), (3.13)
which together with (3.11) yields
2px
<r’2u + px> +(p"), =-2ru? - % (3.14)

Multiplying (3.14) by (u + r?p,)r? and integrating the result with respect to x and 7, we have

1 +oo ) 2 +00 1 o _ .

- y-1_ 51 V(o1 — 51

2[0 (u+rpx> dx+f0 <Y_1<p p >+p <p p >)dx

+ yj f P piridxds (3.15)
1 (e

AT e () - o

Let

p(p) = %(py‘l —pH) +ﬁr<p—1 —ﬁ’1>,

;o (3.16)
g (p) = L ¢(n) "dn.
P
It follows from (3.6) and (3.13) that
+o0 B +00 ;
lyr(p)| < f B (p)dx| < 72 f ¢(p)"*paridx
v v
+o0 +oo 5 /2 (3.17)
<r? f (p(p)dyj (rsz> dx| <r?(Ey+Ey).
0 0

We can verify that
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(1) Asp — +oo, itholds for ¢ = 0p + (1 - 0)p, where 8 € (0,1)

lim ¢(p) = lim ((Y 2)817 +2p"¢ )/zlﬂ—ﬁldn

p—+o0 p—+o
P
> i —-2)73 2‘Y— f -p)d
_pgrgw((y )&+ 207¢7) (n=pdn (3.18)
.1 _ _ N a\1/2 .
=Plggm§((r—2)(9p+(1—9)p)y T+ 2p"(0p+ (1-0)p) ") (p-p)’
—> +00.
(2) Asp — 0,itholds for ¢ =0p + (1 - 8)p, where 8 € (0,1)
X . P B o a\1/2 _
limgs(p) = hrrgf? ((r-2)¢ +25"¢°) " [n - pln
p— p— P
1/2 (P
< -li —2)&r3 4+ 2p" -3 f -p)d
<-lim((r=287+29°¢°) | (n-p)dn 519

=—;1m ((Y 2)(6p + (1-0)p)" + 25" (Bp + (1-0)p) )/2(P—F)2

_yp!/22

-vp

Applying (3.17)-(3.19) and Ey + E; < erﬁ” 2172 where vis a positive constant, we
can prove (3.9).

O

Lemma 3.3. Let T > 0. Under the conditions in Theorem 2.1, it holds for any solution (p,u) to the
exterior problem (3.3) that

J‘m( >2dx+£ (ru) 4dx+ff ru) ridxds

10 (3.20)
JI rzu dxds+fj ru)xdxds<C 7€ [0,T],

where C > 0 denotes a constant independent of time.
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Proof. Multiplying (3.3), by p~2(r’u), and integrating the result with respect to x over
[0, +o0), making use of (3.4), we obtain

% ;00 <% <r2u>i -p? <r2u>x) dx + J‘(:OO p? <r2u>ir*4dx
<) [ (e [ o) e [Tt (), ()

+00 +00
+2 J;) p2u? <r2u>Tr‘3dx -2 .[0 p‘szu<r2u>Tr‘1dx,
(3.21)

which implies

+o0o 2 T +o0o 2
f <r2u> dx + ’[ f <r2u> r~*dxds
0 x 0Jo s
+00 2 T p+00 uz T p+00
SC+CI (py"z—ﬁy_2> dx+Cf f <—2+uir4>dxds+CJ’ j piridx ds
0 070 r 070
T +00 2 T +o0 T +oo
+ CI j P> <r2u> rdx ds + Cf ’[ utrdxds + CI f prutridx ds
0Jo x 0Jo 0Jo

T p+o0 2
<C+ Cj f p,zc <r2u> rtdxds+C sup ||u||i°°-
0Jo

x 7€[0,T]
(3.22)
From (3.3);, (3.5), (3.8), and (3.9), we can deduce that for some small ¢ € (0, 1)
T +co 2 T +0o0o 2 T +co 2
J f o> <r2u> rdx ds < ef I P2 (r2u> rdx ds + ef j <r2u> r~tdxds
0Jo x 0/Jo x 0/0 xs
T pA+00 T pA+00 u2 (323)
+€f f p,zcdxds+C(e)J. f (—2 +uir4>dxds,
0Jo 0Jo r
+00o 2 +o0
sup ||u||%m <€ sup <r2u> dx + C(e) sup u’dx, (3.24)
7€[0,T] 7€[0,T] /0 X 7€[0,T] /0

using (3.22)—(3.24), we can obtain that
g (

+o0o 2 T +oo 2 T +00o 2
I <r2u>xdx + J-o Io <r2u>sr*4dx ds<C+ CeJ‘ J‘ <r2u>xsrf4dx ds. (3.25)

0 070
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Differentiating (3.3); with respect to 7, multiplying the result by (r’u),, and
integrating the result with respect to x over [0, +o), we have

1d - a2\
Ed_ dx+J‘0 p <r u)dex
+00

ZI Ul <r2u> Tr‘3dx - % J (r‘4>T <r2u>idx +2 J.m u(r‘1u>T <r2u> r2dx
0 0 T

o o ) . v 100 . (3.26)
+J‘O (P, <r u> de—fo (p >T<r u>x<r u)ﬂdx—fo < p >T<r u)de

+00
+2J‘0 (r 2>Tr 1u2<r2u>de.

A complicated computation gives
d%_ j+w <r2u>2r‘4dx + J-+oo 0’ <r2u>2 dx
T 0 XT
< CI r? u rdx + CTEBI;] < 2 >2 . J:w <r2u>idx (3.27)

+c0o 2 +co 2
+Cf u—2+ur dx( 1+ sup (r2u> dx ),
0 r re[0,1] Jo x

integrating (3.27) with respect to 7, by means of (3.3),, (3.5), (3.8), (3.9), and (3.25), it holds
that

j r? u 4dx+f f rzu dxds
0

<C+Cff ru 4dxds+Csup

r’u
7€[0,T] < >
1/2 , wtoo ) 1/2
<C+ Cf J r u r~*dxds + C sup (f > (I <r2u> dx>
rel0,T] \J 0 0 xx

+C sup < >dx

7€[0,T]

o C sup <r2u> dx

7€[0,T] /0 x

+00

<C+C€I j r2u dxds+C€f

0

r’u 2r*4dx,
(),
(3.28)

choosing the constant e small sufficiently, we can complete the proof of Lemma 3.3. O
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Remark 3.4. By Lemmas 3.1-3.3, the following inequality holds:

+00 +00 © oo
f uzdx+f (p-p) dx+J. u dx+f 2dx+f pidx
0

0

T +oo +oo
+ f p2dxds + ’[ J‘ uldxds + J I utdx ds (3.29)
0Jo

T +00
+ f I u? dxds + J '[ w2 dxds < C.
0/0 0Jo

Lemma 3.5. Under the conditions in Theorem 2.1, it holds for any solution (p,u) to the exterior
problem (3.3) that

(o =P W) D o000y — 0 T — +o0, (330)

where C > 0 denotes a constant independent of time.

Proof. From Lemmas 3.1-3.3, we can obtain

2

[ 1070,y <o [ 0=, c G

T<
L2([0,+00))

dr

J:O %”(P _ﬁf”)x”iZ([o,m))
:f f < 4pp? (r u> —szpx<r2u> x)dx+2fo UxUyrdX
<CI J‘ pzdxdT+Cf J‘ <—+ur +< >ix+uiT>dxdT§C,

which together with (3.31) implies

dr (3.32)

| (p - ﬁ/”)x”iZ([o,m)) e WH(R"). (3.33)

It holds from Gagliardo-Nirenberg-Sobolev inequality that

1/2 _ 1/2
(o - P’u)||L°°(0+oo))—”(P Pl 2 O+oo))”(P_p’u)x||L2([O,+oo))’ (3.34)

which together with (3.5), (3.9), and (3.33) implies this lemma. O

3.2. Proof of Theorem 2.1

Proof. The global existence of unique strong solution to the exterior problem as (2.4) and
(2.5) can be established in terms of the short-time existence carried out as in [6], the uniform
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a-priori estimates and the analysis of regularities, which indeed follow from Lemmas 3.1-3.3.

We omit the details. The large time behaviors follow from Lemma 3.5 directly. The proof of
Theorem 2.1 is completed. 0

4. Proof of the Initial Boundary Value Problem
4.1. The A-Priori Estimates

Take the Lagrange coordinates transform
x = Ir p(r,tyr’dr, T=t. (4.1)
By (4.1) and the conservation of mass for (p, 1)
Ih p(r, Hridr = J‘n po(r)rzdr =1, (4.2)

the Lagrange coordinates transform (4.1) map (r,t) € [r—, 7] x R* into (x,7) € [0,1] x R*.
The relation between Lagrangian and Eulerian coordinates are satisfied as

ox ’ ox »

- = 4.3
or PT o T TPMT *3)
and the initial boundary value problem’s (2.4) and (2.11) are reformulated to

pe (), -

0,
2px
rus+ (), = (7)), - (a4
(p,u)(x,0) = (po,uo)(x), x€[0,1],

u(0,t) =u(1,t) =0, 7e€]0,+x0),

where the initial data satisfies

po e LN, NW=(0,1]),  inf oo >p>0,
x€l0, -
\/17<r2u0> e L([0,1]), \/7%po <r2uo> e L*([0,1]),
r2po *

L (r(ra(w)),) €.

Then, we will establish the a-priori estimates for the solution (p, ) to the initial boundary
value problem (4.4).

(4.5)
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Lemma 4.1. Let T > 0. Under the conditions in Theorem 2.2, it holds for any solution (p,u) to the
initial boundary value problem (4.4) that

J( Y- ot 1>d“f f< +p2u2r4>dxds

—f1<1u2 ! >dx T€[0,T]
- 0 2 Y- 1p0 4 .

Proof. Multiplying (4.4); by r?u and integrating the result with respect to x over [0, 1], using
(4.4); and (4.5), we obtain

1 2 1 -1 ! 2(.2 ! 2
d Y — 4.7
< u +_p )dx+J‘ ,D <1 u) dx—ZJ p(1u > dx, ( )

0

(4.6)

and integrating (4.7) with respect to 7, we obtain

1
J‘ < = pY 1)dx +f f <— +p2u2r4>dxds = fo <%u§ + ﬁpg_l>dx. (4.8)

Lemma 4.1 can be obtained. O

Lemma 4.2. Let T > 0. Under the conditions in Theorem 2.2, it holds for any solution (p,u) to the
initial boundary value problem (4.4) that

1 ) 1 Tl
1 J‘ <u + rsz> dx + L f P ldx + yf f P pirtdxds
2Jo 0

Lo (4.9)
= —j <u0 +r2p0x dx+ I pY 1dx T€[0,T],
2Jo
where C is a positive constant independent of time.
Proof. Differentiating (4.4); with respect to x, we have
Pxr + <p2 <r2u>x>x =0, (4.10)
which together with (4.4), and 0r/07 = u gives
-2 3.2 2pxu
<r u +px>T +(p"), =-2r7u’ - - (4.11)
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Multiplying (4.11) by (u + r?p,)r?, and integrating the result with respect to x and 7, it holds
that

1
%J‘ <u+r2px dx+—f P 1dx+yf f P pirtdxds

0
f py "dx.

The proof of (4.9) is completed. O

(4.12)

1
= %f <u0+r2p0x dx+
0

Lemma 4.3. Let T > 0. Under the conditions in Theorem 2.2, there exists a constant p* > 0 such that
0<p(x,T)<p*, (x,7)€[0,1] x[0,T]. (4.13)

Proof. It follows from (4.6) and (4.9) that

p(x,7) =p(r,t) < f + p(r,t)dr + f +|pr(r, t)|dr

t
<t f p(r, t)rzdr+r_zj \/7|Pr(T ) r’dr
(4.14)
§C+Cf l—)|pr(r,t)| *r2dr
-
5C+cf |px(x, 7)|*rtdx < C =: p*.
0
O

Lemma 4.4. Let T > 0. Under the conditions in Theorem 2.2, it holds for any solution (p,u) to the
initial boundary value problem (4.4) that

f zndx+f J’ ( P12 4>dxds<C(T) (4.15)

for any positive integer n € N, where C(T') is a positive constant dependent of time.

Proof. Multiplying (4.4), with u**"!, integrating by parts over [0,1], we have

%%J‘luhdx+-l‘lp2<rzu> <r2 2n— 1) dx = j <py< 2 on- 1> +p<2m2n> )dx. (4.16)
0 x R

0
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Since it holds that

2 2 2n-1
<r2u> <r2u2"*1> (2, 21, U +(2n - 1)r*u®"2u,
x X pPr pPr

4q2n _ Anu* ly,r
— + 2n- DAty ——— 2,
o212 x

P

(4.17)

it follows from (4.16) that

d (fu L L w2 24
— | =—dx+2| —dx+(2n-1 e d
i), x J;) p x+ (2n )fopu u,r-dx

1 ,y-1,.2n-1 1
= ZI %dx +(2n-1) f Pt urtdx (4.18)
0 0

1,2n 1 o
2 22,2 4 y- 2n-2
<f0 7dx+f0p W usrtdx + Cllpl| 7. Lu dx,

which together with (4.13) and Young’s inequality yields

1,2n 1 1
u?dx + j —dx + I p2u2"‘2uir4dx <C+ f u*dx, (4.19)
ot 0 0

d 1
dr ),

and by applying the Gronwall’s inequality to (4.19), we can obtain (4.15). O

Lemma4.5. LetT >0, forn € N,and n > 1/2(y—1). Under the conditions in Theorem 2.2, it holds
for any solution (p,u) to the initial boundary value problem (4.4) that

ds < C(T), (4.20)

T
2n(y-1) u2n
J; ”P L= ([0,1])

|2n

ds<C(T), t€l0,T], (4.21)
L=([01])

,

|(p"), 72

where C(T) is a positive constant dependent of time.
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Proof. By means of Sobolev imbedding theorem and Cauchy-Schwarz inequality, applying
(4.6), (4.13), and (4.15), we get

T
I ||p2n(y—1)u2n ds
0 L=([0,1])

T 1 T 1l
< Jo fo |p2"(Y‘1)u2” dxds + Io fo | (pz"(y‘l)u2">x'dx ds

T 1 T 1
<C(T) + CI f P2 0D o |uPdx ds + Cf I p o |u2"‘1ux'dx ds (4.22)
0Jo 0Jo

T 1 T 1
<C(T) + CJ‘ ’[ x| rtdx ds + CJ‘ J PP -D=Dydnp~d gy ds
0Jo 0Jo

T pl T ol
+ f f PP DDy 24 gy ds + CI J PPttt dx ds < C(T).
0Jo 0Jo
Next, we find that
pxr? = poxta +Ug — U — f (py)xrzds, (4.23)
0
which together with (4.13), (4.15), and (4.22) gives

)

2n

|(p") .72

— an IT
0

— an IT
0
T s 2n
pay (fo (Py)xrzfﬂ)

<C JZ ”pzn(y_l) (péﬁ + ué" + u2"> )Lwds +C Jo
| (Py)xrzrn“ dlds,
Loc

Lwds +C(T) J: Jj

applying the Gronwall’s inequality to (4.24), we obtain (4.21). O

ds
Lw

2n
ds

L

pZn(y—l) ' P 72

p2n(y—1)

ds (4.24)
Loc

S
Poxrg +uUg—u-— f (pY)xrzdl
0

ds

L

<C(T)+C f ' (st
0

Lemma 4.6. Let T > 0. Under the conditions in Theorem 2.2, there exists a constant p, > 0 such that

p(x,T)>p. >0, (x,7)€e]0,1]x[0,T]. (4.25)
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Proof. 1t is easy to verify that

1 1’2 . 1+(y+1)/2
por)/2(7) = fo p(Y”)/Z(x, T)dx > r—; <I p(r, t)rzdr>
+ T

2 1+(y+1)/2 (4'26)
= _; < po(r)rzdr> >0,
+ T-
o072 = p0 @) e W0, T, (4.27)
Indeed, it holds that
4 2
(0+1)/2 _ ,(+1)/2 r+1)/2Y 42 < )
f ”p p (s) o) ds < CL ” (p )xr LZ([O,l])dS <C, (4.28)
which together with (4.4), (4.9), and (4.13) gives
r+1)/2 _ (y+1)/2
P ATl
< (Y +1) j U <p(Y+1)/2 _ p(Y+1)/2(S)>p(Y+1)/2—1psdx ds
T (1) 0 (4.29)
+ 2I ’[ (r+1)/2 _ y+1)/2(s r+D/2(s)) dx|d
NG ) (P 7E),
< Cf j (Y+1 p(Y+1)/2(s) dx ds + J‘ f urtdxds < C.
By Gagliardo-Nirenberg-Sobolev inequality and (4.27), it follows that
||p /2 _ o1 — 0 asT— +oo. (4.30)
Thus, there is a Ty > 0 and a constant p; > 0 such that
p(x,7) 2p1, x€[0,1], T € [To, +o0). (4.31)
For 7 € [0, T], denote
1
v(x,T) = (4.32)

o) (x, 1)
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then from (4.4), we can obtain
2
_ (), 2ou (4.33)

= _ o
r2 r’

multiplying (4.33) by 4v° and integrating the result over [0,1] x [0, Ty], we have

(2 )
j vtdx = f dx+4jj ——5—dxds -8 If—dxds
=J vgdx+12j I v4u pxr2>dxds+24f I U4deds

f dx+12f J v u<p0xr0 +uy—u j (p") rzdl>dxds
+24f J v —dxds

From (4.21), it holds that

1 T 1
f vtdx + 12j j v*utdx ds
0 0J0

1 T Al T Al
= J vgdx + 12f f v4up0xr§dx ds + 12f J‘ vtuuydx ds
0 0Jo 0o

T 1 s T 1 u
—12f J v4u<f (pY)xr2d1>dxds+24J f v*=dxds
0Jo 0 0Jo T

T Al T l
§6I f v4u2dxds+C(T0)J I vidx ds,
0Jo 0Jo

(4.34)

(4.35)

which yields to
1 T 1
J‘ vidx < C+ C(Ty) J‘ J vidx ds, (4.36)
0 0J0

where C(Tp) is a positive constant dependent of time Tj. By Gronwall’s inequality, (4.36) leads
to

1 1
f vtdx = f %dx < C(Ty). (4.37)
0 0oPT
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It holds for (x,T) € ([0,1]) x [0, T] that

1 1
LI P, f (l) dx
P JoP 0l \pP
(4.38)
<C+C —dx+c<f —de> <f P> 4dx> < C(Ty),
o pire 0 p'r
namely,
p(x,7) 2 C(To) =: p2, (x,7) € ([0,1]) x [0, To]. (4.39)
Therefore, we can choose
ps =min{p1, p2}, (4.40)
to get
p 2 p*/ (er) € ([0/1]) X [O/ +CXD). (441)
O

Lemma 4.7. Let T > 0. Under the conditions in Theorem 2.2, it holds for any solution (p,u) to the
initial boundary value problem (4.4) that

jl <r2u>2dx + jl <r2u)2r‘4dx + IT Jd <1’2u>2r_4dx ds
0 T 0Jo s

0 g (4.42)
T 1 2 T 1 2
+ f f p2 <r2u> dxds + j J (r2u> dxds<C, T€]0,T],
0 0 Xs 0 0 xx
where C > 0 denotes a constant independent of time.
Proof. The proof is similar to Lemma 3.3. We omit here. O

Remark 4.8. By Lemmas 4.1-4.7, the following inequality holds:
f 2dx+f (p-p) dx+j 2dx+’[ 2dx+f pidx

f f pzdxds+f I u dxds+f f u’dx ds (4.43)
f I u> dxds+f I u? dxds < C.
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Lemma 4.9. Under the conditions in Theorem 2.2, it holds for any solution (p,u) to the initial
boundary value problems (2.4) and (2.11) that

1Gp =20 Ol gy < Coe™, £>0, (444)

where Co and Cy denote the constants independent of time and p = [ p(r,t)r*dr.

Proof. In a similar argument to show (4.8) and (4.12) with modification, we can obtain the
following

Ty

d(™/1 , 1 ~
= 5 ——(p"=p" =y p- 2 2 2.2 _
dt _[,_ <2p” i y—1<f’ pr=yp " (p P)))r dT+L_ (20w + pulr®)dr =0, (445)

1d (™ 1\ 2 Lod (" y o o 2
EEL_ p(u+pp,) rdr+ Y—lﬁfr_ (" =" P (p - ) )rdr
N (4.46)
+ yI p' 2 p2ridr = 0.
It holds from (4.9), (4.13), and (4.25) that
I ) (p-p)iridr < Cf + pI2piridr. (447)
Denote
I > e
E(t) =: f p<u2 + (u + p‘lpr> >r2dr + f (pY - =yp Hp- ﬁ))rzdr. (4.48)

By (4.45)—(4.48), a complicated computation gives rise to
d _
—E® +CE®) <0, (4.49)
which gives
E(t) < E(0)e™ . (4.50)
By the fact that

2 2
E(t) 2 C<||”||%2([r,,r+]) +lp =Pl + ”Pr”Lz([r,,m]))' (4.51)
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where ¢ > 0 is a constant independent of time and Gagliardo-Nirenberg-Sobolev inequality

~ ~ 1/2 - 1/2

1 =B )| ey < CN G =B 0 2 1 G0 =B M oy (4.52)
we obtain (4.44). O
4.2, Proof of Theorem 2.2
Proof. The proof of Theorem 2.2 is similar to Theorem 2.1. We omit the details. O
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