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The propose of this paper is to present a modified block iterative algorithm for finding a common
element between the set of solutions of the fixed points of two countable families of asymptotically
relatively nonexpansive mappings and the set of solution of the system of generalized mixed
equilibrium problems in a uniformly smooth and uniformly convex Banach space. Our results
extend many known recent results in the literature.

1. Introduction

The equilibrium problem theory provides a novel and unified treatment of a wide class of
problems which arise in economics, finance, image reconstruction, ecology, transportation,
networks, elasticity, and optimization, and it has been extended and generalized in many
directions.

In the theory of equilibrium problems, the development of an efficient and imple-
mentable iterative algorithm is interesting and important. This theory combines theoretical
and algorithmic advances with novel domain of applications. Analysis of these problems
requires a blend of techniques from convex analysis, functional analysis, and numerical
analysis.
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Let E be a Banach space with norm ‖ · ‖, C be a nonempty closed convex subset of
E, and let E∗ denote the dual of E. Let fi : C × C → R be a bifunction, ψi : C → R be a
real-valued function, where R is denoted by the set of real numbers, and Ai : C → E∗ be a
nonlinear mapping. The goal of the system of generalized mixed equilibrium problem is to find
u ∈ C such that

f1
(
u, y

)
+
〈
A1u, y − u〉 + ψ1

(
y
) − ψ1(u) ≥ 0, ∀y ∈ C,

f2
(
u, y

)
+
〈
A2u, y − u〉 + ψ2

(
y
) − ψ2(u) ≥ 0, ∀y ∈ C,

...

fN
(
u, y

)
+
〈
ANu, y − u〉 + ψN

(
y
) − ψN(u) ≥ 0, ∀y ∈ C.

(1.1)

If fi = f , Ai = A, and ψi = ψ, the problem (1.1) is reduced to the generalized mixed equilibrium
problem, denoted by GEMP(f,A, ψ), to find u ∈ C such that

f
(
u, y

)
+
〈
Au, y − u〉 + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C. (1.2)

The set of solutions to (1.2) is denoted by Ω, that is,

Ω =
{
x ∈ C : f

(
u, y

)
+
〈
Au, y − u〉 + ϕ(y) − ϕ(u) ≥ 0, ∀y ∈ C}

. (1.3)

If A = 0, the problem (1.2) is reduced to the mixed equilibrium problem for f , denoted by
MEP(f, ψ), to find u ∈ C such that

f
(
u, y

)
+ ψ

(
y
) − ψ(u) ≥ 0, ∀y ∈ C. (1.4)

If f ≡ 0, the problem (1.2) is reduced to the mixed variational inequality of Browder type,
denoted by VI(C,A, ψ), is to find u ∈ C such that

〈
Au, y − u〉 + ψ(y) − ψ(u) ≥ 0, ∀y ∈ C. (1.5)

If A = 0 and ψ = 0, the problem (1.2) is reduced to the equilibrium problem for f , denoted by
EP(f), to find u ∈ C such that

f
(
u, y

) ≥ 0, ∀y ∈ C. (1.6)

The above formulation (1.6)was shown in [1] to cover monotone inclusion problems,
saddle-point problems, variational inequality problems, minimization problems, vector
equilibrium problems, and Nash equilibria in noncooperative games. In addition, there are
several other problems, for example, the complementarity problem, fixed-point problem, and
optimization problem, which can also be written in the form of an EP(f). In other words,
the EP(f) is a unifying model for several problems arising in physics, engineering, science,
economics, and so forth. In the last two decades, many papers have appeared in the literature
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on the existence of solutions to EP(f); see, for example [1–4] and references therein. Some
solution methods have been proposed to solve the EP(f); see, for example, [2, 4–15] and
references therein. In 2005, Combettes and Hirstoaga [5] introduced an iterative scheme of
finding the best approximation to the initial data when EP(f) is nonempty, and they also
proved a strong convergence theorem.

A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x /=y. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach
space E is said to be smooth, provided

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(1.7)

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ E. The modulus of convexity of E is the function δ : [0, 2] → [0, 1] defined by

δ(ε) = inf
{
1 −

∥∥∥∥
x + y
2

∥∥∥∥ : x, y ∈ E, ‖x‖ =
∥∥y

∥∥ = 1,
∥∥x − y∥∥ ≥ ε

}
. (1.8)

A Banach space E is uniformly convex, if and only if δ(ε) > 0 for all ε ∈ (0, 2].
Let E be a Banach space, C be a closed convex subset of E, a mapping T : C → C is

said to be nonexpansive if

∥∥Tx − Ty∥∥ ≤ ∥∥x − y∥∥ (1.9)

for all x, y ∈ C. We denote by F(T) the set of fixed points of T . If C is a bounded closed
convex set and T is a nonexpansive mapping of C into itself, then F(T) is nonempty (see
[16]). A point p in C is said to be an asymptotic fixed point of T [17] if C contains a sequence
{xn} which converges weakly to p such that limn→∞‖xn − Txn‖ = 0. The set of asymptotic
fixed points of T will be denoted by F̃(T). A point p ∈ C is said to be a strong asymptotic fixed
point of T , if there exists a sequence {xn} ⊂ C such that xn → p and ‖xn − Txn‖ → 0. The
set of strong asymptotic fixed points of T will be denoted by F̂(T). A mapping T from C into
itself is said to be relatively nonexpansive [18–20] if F̃(T) = F(T) and φ(p, Tx) ≤ φ(p, x) for
all x ∈ C and p ∈ F(T). The asymptotic behavior of a relatively nonexpansive mapping was
studied in [21, 22]. T is said to be φ-nonexpansive, if φ(Tx, Ty) ≤ φ(x, y) for x, y ∈ C. T is
said to be quas-φ-nonexpansive if F(T)/= ∅ and φ(p, Tx) ≤ φ(p, x) for x ∈ C and p ∈ F(T). A
mapping T is said to be asymptotically relatively nonexpansive, if F(T)/= ∅, and there exists a real
sequence {kn} ⊂ [1,∞) with kn → 1 such that φ(p, Tnx) ≤ knφ(p, x), for all n ≥ 1, x ∈ C, and
p ∈ F(T). {Tn}∞n=0 is said to be a countable family of weak relatively nonexpansive mappings [23] if
the following conditions are satisfied:

(i) F({Tn}∞n=0)/= ∅;
(ii) φ(u, Tnx) ≤ φ(u, x), for all u ∈ F(Tn), x ∈ C, n ≥ 0;

(iii) F̂({Tn}∞n=0) = ∩∞
n=0F(Tn).
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A mapping T : C → C is said to be uniformly L-Lipschitz continuous, if there exists a constant
L > 0 such that

∥
∥Tnx − Tny∥∥ ≤ L∥∥x − y∥∥, ∀x, y ∈ C, ∀n ≥ 1. (1.10)

A mapping T : C → C is said to be closed if for any sequence {xn} ⊂ C with xn → x and
Txn → y, then Tx = y. Let {Ti}∞i=1 : C → C be a sequence of mappings. {Ti}∞i=1 is said to be
a countable family of uniformly asymptotically relatively nonexpansive mappings, if ∩∞

n=1F(Tn)/= ∅,
and there exists a sequence {kn} ⊂ [1,∞) with kn → 1 such that for each i > 1

φ
(
p, Tni x

) ≤ knφ
(
p, x

)
, ∀p ∈

∞⋂

n=1

F(Tn), x ∈ C, ∀n ≥ 1. (1.11)

In 2009, Petrot et al. [24], introduced a hybrid projection method for approximating
a common element of the set of solutions of fixed points of hemirelatively nonexpansive
(or quasi-φ-nonexpansive) mappings in a uniformly convex and uniformly smooth Banach
space:

x0 ∈ C, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTnzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTnxn

)
,

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

) ≤ φ(v, xn)
}
,

xn+1 = ΠCn+1(x0).

(1.12)

They proved that the sequence {xn} converges strongly to p ∈ F(T), where p ∈ ΠF(T)x andΠC

is the generalized projection from E onto F(T). Kumam and Wattanawitoon [25], introduced
a hybrid iterative scheme for finding a common element of the set of common fixed points of
two quasi-φ-nonexpansive mappings and the set of solutions of an equilibrium problem in
Banach spaces, by the following manner:

x0 ∈ C, C0 = C

yn = J−1(αnJxn + (1 − αn)JSzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTxn

)
,

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1(x0).

(1.13)
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They proved that the sequence {xn} converges strongly to p ∈ F(T) ∩ F(S) ∩ EP(f), where
p ∈ ΠF(T)∩F(S)∩EP(f)x under the assumptions (C1) lim supn→∞αn < 1, (C2) limn→∞βn < 1, and
(C3) lim infn→∞(1 − αn)βn(1 − βn) > 0.

Recently, Chang et al. [26], introduced the modified block iterative method to propose
an algorithm for solving the convex feasibility problems for an infinite family of quasi-φ-
asymptotically nonexpansive mappings,

x0 ∈ C chosen arbitrary, C0 = C,

yn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)

,

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

) ≤ φ(v, xn) + ξn
}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(1.14)

where ξn = supu∈F(kn − 1)φ(u, xn). Then, they proved that under appropriate control
conditions the sequence {xn} converges strongly to Π∩∞

n=1F(Si)x0.
Very recently, Tan and Chang [27], introduced a new hybrid iterative scheme for

finding a common element between set of solutions for a system of generalized mixed
equilibrium problems, set of common fixed points of a family of quasi-φ-asymptotically
nonexpansive mappings (which is more general than quasi-φ-nonexpansive mappings), and
null spaces of finite family of γ-inverse strongly monotone mappings in a 2-uniformly convex
and uniformly smooth real Banach space.

In this paper, motivated and inspired by Petrot et al. [24], Kumam andWattanawitoon
[25], Chang et al. [26], and Tan and Chang [27], we introduce the new hybrid block algorithm
for two countable families of closed and uniformly Lipschitz continuous and uniformly
asymptotically relatively nonexpansive mappings in a Banach space. Let {xn} be a sequence
defined by x0 ∈ C, C0 = C and

yn = J−1
(

βn,0J(xn) +
∞∑

i=1

βn,iJ
(
Tni xn

)
)

,

zn = J−1
(

αn,0J(xn) +
∞∑

i=1

αn,iJ
(
Sni yn

)
)

,

u
(i)
n = Kfi,riKfi−1,ri−1 · · ·Kf1,r1(zn) , i = 1, 2, . . . ,N,

Cn+1 =

⎧
⎨

⎩
z ∈ Cn : max

i=1,2,...,N
φ
(
z, u

(i)
n

)
≤ φ(z, xn) + θn, φ

(
z, yn

) ≤ φ(z, xn) + ξn

⎫
⎬

⎭
,

xn+1 = ΠCn+1x0, ∀n ≥ 0.

(1.15)

Under appropriate conditions, we will prove that the sequence {xn} generated by algorithms
(1.15) converges strongly to the point Π(∩Ni=1Ωi)∩(∩∞

i=1F(Ti))∩(∩∞
i=1F(Si))

x0. Our results extend many
known recent results in the literature.
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2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖, and let J be the normalized duality mapping
from E into 2E

∗
given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖} (2.1)

for all x ∈ E, where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality pairing
between E and E∗. It is also known that if E is uniformly smooth, then J is uniformly norm-
to-norm continuous on each bounded subset of E.

We know the following (see [28, 29]):

(i) if E is smooth, then J is single valued;

(ii) if E is strictly convex, then J is one-to-one and 〈x − y, x∗ − y∗〉 > 0 holds for all
(x, x∗), (y, y∗) ∈ J with x /=y;

(iii) if E is reflexive, then J is surjective;

(iv) if E is uniformly convex, then it is reflexive;

(v) if E is a reflexive and strictly convex, then J−1 is norm-weak-continuous;

(vi) E is uniformly smooth if and only if E∗ is uniformly convex;

(vii) if E∗ is uniformly convex, then J is uniformly norm-to-norm continuous on each
bounded subset of E;

(viii) each uniformly convex Banach space E has the Kadec-Klee property, that is, for any
sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x.

Let E be a smooth, strictly convex, and reflexive Banach space, and letC be a nonempty
closed convex subset of E. Throughout this paper, we denote by φ the function defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y

∥∥2
, for x, y ∈ E. (2.2)

Following Alber [30], the generalized projection ΠC : E → C is a map that assigns to an
arbitrary point x ∈ E the minimum point of the function φ(x, y), that is, ΠCx = x, where x is
the solution to the minimization problem

φ(x, x) = inf
y∈C

φ
(
y, x

)
. (2.3)

Existence and uniqueness of the operator ΠC follows from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J . It is obvious from the definition of function
φ that (see [30])

(∥∥y
∥∥ − ‖x‖)2 ≤ φ(y, x) ≤ (∥∥y

∥∥ + ‖x‖)2, ∀x, y ∈ E. (2.4)

If E is a Hilbert space, then φ(x, y) = ‖x − y‖2.
If E is a reflexive, strictly convex, and smooth Banach space, then for x, y ∈ E, φ(x, y) =

0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From (2.4), we
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have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J , one has
Jx = Jy. Therefore, we have x = y; see [28, 29] for more details.

We also need the following lemmas for the proof of our main results.

Lemma 2.1 (see Kamimura and Takahashi [31]). Let E be a uniformly convex and smooth real
Banach space, and let {xn}, {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is
bounded, then ‖xn − yn‖ → 0.

Lemma 2.2 (see Alber [30]). Let C be a nonempty closed convex subset of a smooth Banach space E
and x ∈ E. Then, x0 = ΠCx if and only if

〈
x0 − y, Jx − Jx0

〉 ≥ 0, ∀y ∈ C. (2.5)

Lemma 2.3 (see Alber [30]). Let E be a reflexive, strictly convex, and smooth Banach space, let C
be a nonempty closed convex subset of E, and let x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

)
, ∀y ∈ C. (2.6)

Lemma 2.4 (see Chang et al. [26]). Let E be a uniformly convex Banach space, r > 0 a positive
number, and Br(0) a closed ball of E. Then, for any given sequence {xi}∞i=1 ⊂ Br(0) and for any given
sequence {λi}∞i=1 of positive number with

∑∞
n=1 λn = 1, there exists a continuous, strictly increasing,

and convex function g : [0, 2r) → [0,∞) with g(0) = 0 such that for any positive integers i, j with
i < j,

∥∥∥∥∥

∞∑

n=1

λnxn

∥∥∥∥∥

2

≤
∞∑

n=1

λn‖xn‖2 − λiλjg
(∥∥xi − xj

∥∥). (2.7)

Lemma 2.5 (see Chang et al. [26]). Let E be a real uniformly smooth and strictly convex Banach
space with Kadec-Klee property, and C be a nonempty closed convex subset of E. Let T : C → C be a
closed and asymptotically relatively nonexpansive mapping with a sequence {kn} ⊂ [1,∞), kn → 1.
Then F(T) is closed and convex subset of C.

For solving the generalized mixed equilibrium problem (or a system of generalized
mixed equilibrium problem), let us assume that the bifunction f : C×C → R and ψ : C → R

is convex and lower semicontinuous satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim sup
t↓0

f
(
tz + (1 − t)x, y) ≤ f(x, y); (2.8)

(A4) for each x ∈ C, y �→ f(x, y) is convex and lower semicontinuous.
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Lemma 2.6 (see Chang et al. [26]). Let C be a closed convex subset of a smooth, strictly convex,
and reflexive Banach space E. Let A : C → E∗ be a continuous and monotone mapping, ψ : C → R

is convex and lower semicontinuous and f be a bifunction from C × C to R satisfying (A1)–(A4). For
r > 0 and x ∈ E, then there exists u ∈ C such that

f
(
u, y

)
+
〈
Au, y − u〉 + ψ(y) − ψ(u) + 1

r

〈
y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C. (2.9)

Define a mapping Kf,r : C → C as follows:

Kf,r(x) =
{
u ∈ C : f

(
u, y

)
+
〈
Au, y − u〉 + ψ(y) − ψ(u) + 1

r

〈
y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C

}

(2.10)

for all x ∈ E. Then, the following hold:

(i) Kf,r is singlevalued;

(ii) Kf,r is firmly nonexpansive, that is, for all x, y ∈ E, 〈Kf,rx −Kf,ry, JKf,rx − JKf,ry〉 ≤
〈Kf,rx −Kf,ry, Jx − Jy〉;

(iii) F(Kf,r) = F̃(Kf,r);

(iv) u ∈ C is a solution of variational equation (2.9) if and only if u ∈ C is a fixed point ofKf,r ;

(v) F(Kf,r) = Ω;

(vi) Ω is closed and convex;

(vii) φ(p,Kf,rz) + φ(Kf,rz, z) ≤ φ(p, z), for all p ∈ F(Kf,r), z ∈ E.

3. Main Results

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space, let C be a nonempty,
closed, and convex subset of E. Let Ai : C → E∗ be a continuous and monotone mapping,
ψi : C → R be a lower semi-continuous and convex function, fi be a bifunction from C × C to
R satisfying (A1)–(A4), Kfi,ri is the mapping defined by (2.10) where ri ≥ r > 0, and let {Ti}∞i=1,
{Si}∞i=1 be countable families of closed and uniformly Li, μi-Lipschitz continuous and asymptotically
relatively nonexpansive mapping with sequence {kn}, {ζn} ⊂ [1,∞); kn → 1, ζn → 1 such that
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F := (∩Ni=1Ωi) ∩ (∩∞
i=1F(Ti)) ∩ (∩∞

i=1F(Si))/= ∅. Let {xn} be a sequence generated by x0 ∈ C and
C0 = C,

yn = J−1
(

βn,0J(xn) +
∞∑

i=1

βn,iJ
(
Tni xn

)
)

,

zn = J−1
(

αn,0J(xn) +
∞∑

i=1

αn,iJ
(
Sni yn

)
)

,

u
(i)
n = Kfi,riKfi−1,ri−1 · · ·Kf1,r1(zn), i = 1, 2, . . . ,N,

Cn+1 =
{
z ∈ Cn : max

i=1,2,...,N
φ
(
z, u

(i)
n

)
≤ φ(z, xn) + θn, φ

(
z, yn

) ≤ φ(z, xn) + ξn
}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.1)

where ξn = supp∈F(kn −1)φ(p, xn), θn = δn + ξnζn, and δn = supp∈F(ζn −1)φ(p, xn). The coefficient
sequences {αn,i} and {βn,i} ⊂ [0, 1] satisfy the following:

(i)
∑∞

i=0 αn,i = 1;

(ii)
∑∞

i=0 βn,i = 1;

(iii) lim infn→∞αn,0αn,i > 0, for all i ≥ 1;

(iv) lim infn→∞βn,0βn,i > 0, for all i ≥ 1,

Ωi, i = 1, 2, . . . ,N is the set of solutions to the following generalized mixed equilibrium problem:

fi
(
z, y

)
+
〈
Aiz, y − z〉 + ψi

(
y
) − ψi(z) ≥ 0, ∀y ∈ C, i = 1, 2, . . . ,N. (3.2)

Then the sequence {xn} converges strongly toΠFx0.

Proof. We first show that Cn, for all n ≥ 0 is closed and convex. Clearly C0 = C is closed and
convex. Suppose that Ck is closed and convex for some k > 1. For each z ∈ Ck, we see that
φ(z, u(i)

k
) ≤ φ(z, xk) is equivalent to

2
(
〈z, xk〉 −

〈
z, u

(i)
k

〉)
≤ ‖xk‖2 −

∥∥∥u(i)k

∥∥∥
2
. (3.3)

By the set of Ck+1, we have

Cn+1 =
{
z ∈ Cn : max

i=1,2,...,N
φ
(
z, u

(i)
n

)
≤ φ(z, xn) + θn

}

=
N⋂

i=1

{
z ∈ C : φ

(
z, u

(i)
n

)
≤ φ(z, xn) + θn

}
.

(3.4)

Hence, Cn+1 is also closed and convex.
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By taking Θj
n = Krj ,fiKrj−1,fj−1 · · ·Kr1,f1 for any j ∈ {1, 2, . . . , i} and Θ0

n = I for all n ≥ 1.

We note that u(i)n = Θi
nzn.

Next, we show that F ⊂ Cn, for all n ≥ 1. For n ≥ 1, we have F ⊂ C = C1. For any given
p ∈ F := (∩Ni=1Ωi) ∩ (∩∞

i=1F(Ti)) ∩ (∩∞
i=1F(Si)). By (3.1) and Lemma 2.4, we have

φ
(
p, yn

)
= φ

(

p, J−1
( ∞∑

i=0

βn,iJT
n
i xn

))

=
∥
∥p

∥
∥2 −

∞∑

i=0

βn,i2
〈
p, JTni xn

〉
+

∥
∥
∥
∥
∥

∞∑

i=0

βn,iJT
n
i xn

∥
∥
∥
∥
∥

2

≤ ∥
∥p

∥
∥2 −

∞∑

i=0

βn,i2
〈
p, JTni xn

〉
+

∞∑

i=0

βn,i
∥
∥JTni xn

∥
∥2 − βn,0βn,ig

(∥∥JTn0 xn − JTni xn
∥
∥)

=
∥∥p

∥∥2 −
∞∑

i=0

βn,i2
〈
p, JTni xn

〉
+

∞∑

i=0

βn,i
∥∥Tni xn

∥∥2 − βn,0βn,ig
(∥∥Jxn − JTni xn

∥∥)

=
∞∑

i=0

βn,iφ
(
p, Tni xn

) − βn,0βn,ig
(∥∥Jxn − JTni xn

∥∥)

≤ knφ
(
p, xn

) − βn,0βn,ig
(∥∥Jxn − JTni xn

∥∥)

≤ φ(p, xn
)
+ sup

p∈F
(kn − 1)φ

(
p, xn

) − βn,0βn,ig
(∥∥Jxn − JTni xn

∥∥)

≤ φ(p, xn
)
+ ξn − βn,0βn,ig

(∥∥Jxn − JTni xn
∥∥)

≤ φ(p, xn
)
+ ξn,

(3.5)

where ξn = supp∈F(kn − 1)φ(p, xn).
By (3.1) and (3.5), we note that

φ
(
p, u

(i)
n

)
= φ

(
p,Θi

nzn
)

≤ φ(p, zn
)

≤ φ
(

p, J−1
(

αn,0Jxn +
∞∑

i=1

JSni yn

))

=
∥∥p

∥∥2 − 2

〈

p, αn,0Jxn +
∞∑

i=1

JSni yn

〉

+

∥∥∥∥∥
αn,0Jxn +

∞∑

i=1

JSni yn

∥∥∥∥∥

2

≤ ∥∥p
∥∥2 − 2αn,0

〈
p, Jxn

〉 − 2
∞∑

i=1

αn,i
〈
p, JSni yn

〉
+ αn,0‖xn‖2 +

∞∑

i=1

∥∥Sni yn
∥∥2

− αn,0αn,ig
∥∥Jxn − JSni yn

∥∥
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≤ αn,0φ
(
p, xn

)
+

∞∑

i=1

αn,iφ
(
p, Sni yn

) − αn,0αn,ig
∥
∥Jxn − JSni yn

∥
∥

≤ αn,0φ
(
p, xn

)
+ ζn

∞∑

i=1

αn,iφ
(
p, yn

) − αn,0αn,ig
∥
∥Jxn − JSni yn

∥
∥

≤ αn,0φ
(
p, xn

)
+ ζn

∞∑

i=1

αn,i
(
φ
(
p, xn

)
+ ξn

) − αn,0αn,ig
∥
∥Jxn − JSni yn

∥
∥

≤ αn,0φ
(
p, xn

)
+ ζn

∞∑

i=1

αn,iφ
(
p, xn

)
+ ξnζn

∞∑

i=1

αn,i − αn,0αn,ig
∥
∥Jxn − JSni yn

∥
∥

≤ ζnφ
(
p, xn

)
+ ξnζn

∞∑

i=1

αn,i − αn,0αn,ig
∥
∥Jxn − JSni yn

∥
∥

≤ φ(p, xn
)
+ sup

p∈F
(ζn − 1)φ

(
p, xn

)
+ ξnζn

∞∑

i=1

αn,i − αn,0αn,ig
∥∥Jxn − JSni yn

∥∥

≤ φ(p, xn
)
+ δn + ξnζn − αn,0αn,ig

∥∥Jxn − JSni yn
∥∥

≤ φ(p, xn
)
+ θn,

(3.6)

where δn = supp∈F(ζn − 1)φ(p, xn), θn = δn + ξnζn. By assumptions on {kn} and {ζn}, we have

ξn = sup
p∈F

(kn − 1)φ
(
p, xn

)

≤ sup
p∈F

(kn − 1)
(∥∥p

∥∥ +M
)2 −→ 0 as n −→ ∞,

(3.7)

δn = sup
p∈F

(ζn − 1)φ
(
p, xn

)

≤ sup
p∈F

(ζn − 1)
(∥∥p

∥∥ +M
)2 −→ 0 as n −→ ∞,

(3.8)

whereM = supn≥0‖xn‖.
So, we have p ∈ Cn+1. This implies that F ∈ Cn, for all n ≥ 0 and also {xn} is well

defined.
From Lemma 2.2 and xn = ΠCnx0, we have

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn,

〈
xn − p, Jx0 − Jxn

〉 ≥ 0, ∀p ∈ Cn.
(3.9)

From Lemma 2.3, one has

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ
(
p, x0

) − φ(p, xn
) ≤ φ(p, x0

)
(3.10)
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for all p ∈ F ⊂ Cn and n ≥ 1. Then, the sequence {φ(xn, x0)} is also bounded. Thus {xn} is
bounded. Since xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ∈ N. (3.11)

Therefore, {φ(xn, x0)} is nondecreasing. Hence, the limit of {φ(xn, x0)} exists. By the
construction of Cn, one has that Cm ⊂ Cn and xm = ΠCmx0 ∈ Cn for any positive integer
m ≥ n. It follows that

φ(xm, xn) = φ(xm,ΠCnx0)

≤ φ(xm, x0) − φ(ΠCnx0, x0)

= φ(xm, x0) − φ(xn, x0).
(3.12)

Letting m,n → 0 in (3.12), we get φ(xm, xn) → 0. It follows from Lemma 2.1, that ‖xm −
xn‖ → 0 asm,n → ∞. That is, {xn} is a Cauchy sequence.

Since {xn} is bounded and E is reflexive, there exists a subsequence {xni} ⊂ {xn} such
that xni ⇀ u. Since Cn is closed and convex and Cn+1 ⊂ Cn, this implies that Cn is weakly
closed and u ∈ Cn for each n ≥ 0. since xn = ΠCnx0, we have

φ(xni , x0) ≤ φ(u, x0), ∀ni ≥ 0. (3.13)

Since

lim inf
ni →∞

φ(xni , x0) = lim inf
ni →∞

{
‖xni‖2 − 2〈xni , Jx0〉 + ‖x0‖2

}

≤ ‖u‖2 − 2〈u, Jx0〉 + ‖x0‖2

= φ(u, x0).

(3.14)

We have

φ(u, x0) ≤ lim inf
ni →∞

φ(xni , x0) ≤ lim sup
ni →∞

φ(xni , x0) ≤ φ(u, x0). (3.15)

This implies that limni →∞φ(xni , x0) = φ(u, x0). That is, ‖xni‖ → ‖u‖. Since xni ⇀ u, by the
Kadec-klee property of E, we obtain that

lim
n→∞

xni = u. (3.16)

If there exists some subsequence {xnj} ⊂ {xn} such that xnj → q, then we have

φ
(
u, q

)
= lim

ni →∞,nj →∞
φ
(
xni , xnj

)
≤ lim

ni →∞,nj →∞

(
φ(xni , x0) − φ

(
ΠCnj

x0, x0
))

= lim
ni →∞,nj →∞

(
φ(xni , x0) − φ

(
xnjx0, x0

))
= 0.

(3.17)
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Therefore, we have u = q. This implies that

lim
n→∞

xn = u. (3.18)

Since

φ(xn+1, xn) = φ(xn+1,ΠCnx0) ≤ φ(xn+1, x0) − φ(ΠCnx0, x0)

= φ(xn+1, x0) − φ(xn, x0)
(3.19)

for all n ∈ N, we also have

lim
n→∞

φ(xn+1, xn) = 0. (3.20)

Since xn+1 = ΠCn+1x0 ∈ Cn+1 and by the definition of Cn+1, for i = 1, 2, . . . ,N, we have

φ
(
xn+1, u

i
n

)
≤ φ(xn+1, xn) + θn. (3.21)

Noticing that limn→∞φ(xn+1, xn) = 0, we obtain

lim
n→∞

φ
(
xn+1, u

i
n

)
= 0, for i = 1, 2, . . . ,N. (3.22)

It then yields that limn→∞(‖xn+1‖−‖uin‖) = 0, for all i = 1, 2, . . . ,N. Since limn→∞‖xn+1‖ = ‖u‖,
we have

lim
n→∞

∥∥∥uin
∥∥∥ = ‖u‖, ∀i = 1, 2, . . . ,N. (3.23)

Hence,

lim
n→∞

∥∥∥Juin
∥∥∥ = ‖Ju‖, ∀i = 1, 2, . . . ,N. (3.24)

From Lemma 2.1 and (3.22), we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

∥∥∥xn+1 − uin
∥∥∥ = 0, ∀i = 1, 2, . . . ,N. (3.25)

By the triangle inequality, we get

lim
n→∞

∥∥∥xn − uin
∥∥∥ = 0, ∀i = 1, 2, . . . ,N. (3.26)

Since J is uniformly norm-to-norm continuous on bounded sets, we note that

lim
n→∞

∥∥∥Jxn − Juin
∥∥∥ = lim

n→∞

∥∥∥Jxn+1 − Juin
∥∥∥ = 0, ∀i = 1, 2, . . . ,N. (3.27)
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Now, we prove that u ∈ (∩∞
i=1F(Ti)) ∩ (∩∞

i=1F(Si)). From the construction of Cn, we
obtain that

φ
(
xn+1, yn

) ≤ φ(xn+1, xn) + ξn. (3.28)

From (3.7) and (3.20), we have

lim
n→∞

φ
(
xn+1, yn

)
= 0. (3.29)

By Lemma 2.1, we also have

lim
n→∞

∥
∥xn+1 − yn

∥
∥ = 0. (3.30)

Since J is uniformly norm-to-norm continuous on bounded sets, we note that

lim
n→∞

∥∥Jxn+1 − Jyn
∥∥ = 0. (3.31)

From (2.4) and (3.29), we have (‖xn+1‖ − ‖yn‖)2 → 0. Since ‖xn+1‖ → ‖u‖, it yields that
∥∥yn

∥∥ −→ ‖u‖ as n −→ ∞. (3.32)

Since J is uniformly norm-to-norm continuous on bounded sets, it follows that

∥∥Jyn
∥∥ −→ ‖Ju‖ as n −→ ∞. (3.33)

This implies that {Jyn} is bounded in E∗. Since E is reflexive, there exists a subsequence
{Jyni} ⊂ {Jyn} such that Jyni ⇀ r ∈ E∗. Since E is reflexive, we see that J(E) = E∗. Hence,
there exists x ∈ E such that Jx = r. We note that

φ
(
xni+1, yni

)
= ‖xni+1‖2 − 2

〈
xni+1, Jyni

〉
+
∥∥yni

∥∥2

= ‖xni+1‖2 − 2
〈
xni+1, Jyni

〉
+
∥∥Jyni

∥∥2
.

(3.34)

Taking the limit interior of both side and in view of weak lower semicontinuity of norm ‖ · ‖,
we have

0 ≥ ‖u‖2 − 2〈u, r〉 + ‖r‖2

= ‖u‖2 − 2〈u, Jx〉 + ‖Jx‖2

= ‖u‖2 − 2〈u, Jx〉 + ‖x‖2 = φ(u, x),

(3.35)

that is, u = x. This implies that r = Ju and so Jyn ⇀ Jp. It follows from limn→∞‖Jyn‖ =
‖Ju‖, as n → ∞ and the Kadec-Klee property of E∗ that Jyni → Ju as n → ∞. Note
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that J−1 : E∗ → E is hemicontinuous, it yields that yni ⇀ u. It follows from limn→∞‖un‖ =
‖u‖, as n → ∞ and the Kadec-Klee property of E that limni →∞yni = u.

By similar, we can prove that

lim
n→∞

yn = u. (3.36)

By (3.20) and (3.30), we obtain

lim
n→∞

∥
∥xn − yn

∥
∥ = 0. (3.37)

Since J is uniformly norm-to-norm continuous on bounded sets, we note that

lim
n→∞

∥
∥Jxn − Jyn

∥
∥ = 0. (3.38)

So, from (3.27) and (3.31), by the triangle inequality, we get

lim
n→∞

∥∥∥Jyn − Juin
∥∥∥ = 0, for i = 1, 2, . . . ,N. (3.39)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we note that

lim
n→∞

∥∥∥yn − uin
∥∥∥ = 0, for i = 1, 2, . . . ,N. (3.40)

Since

φ
(
p, xn

) − φ(p, yn
)
= ‖xn‖2 −

∥∥yn
∥∥2 − 2

〈
p, Jxn − Jyn

〉

≤ ‖xn‖2 −
∥∥yn

∥∥2 + 2
∥∥p

∥∥∥∥Jxn − Jyn
∥∥

≤ ∥∥xn − yn
∥∥(‖xn‖ +

∥∥yn
∥∥) + 2

∥∥p
∥∥∥∥Jxn − Jyn

∥∥.

(3.41)

From (3.37) and (3.38), we obtain

φ
(
p, xn

) − φ(p, yn
) −→ 0, n −→ ∞. (3.42)

On the other hand, we observe that, for i = 1, 2, . . . ,N.

φ
(
p, xn

) − φ
(
p, uin

)
= ‖xn‖2 −

∥∥∥uin
∥∥∥
2 − 2

〈
p, Jxn − Juin

〉

≤ ‖xn‖2 −
∥∥∥uin

∥∥∥
2
+ 2

∥∥p
∥∥
∥∥∥Jxn − Juin

∥∥∥

≤
∥∥∥xn − uin

∥∥∥
(
‖xn‖ +

∥∥∥uin
∥∥∥
)
+ 2

∥∥p
∥∥
∥∥∥Jxn − Juin

∥∥∥.

(3.43)
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From (3.22) and (3.27), we have

φ
(
p, xn

) − φ
(
p, uin

)
−→ 0, n −→ ∞, ∀i = 1, 2, . . . ,N. (3.44)

For any p ∈ ∩Ni=1Ωi ∩ (∩∞
i=1F(Ti)) ∩ (∩∞

i=1F(Si)), it follows from (3.5) that

βn,0βn,ig
(∥∥Jxn − JTni xn

∥
∥) ≤ φ(p, xn

)
+ ξn − φ

(
p, yn

)
. (3.45)

From condition, lim infn→∞βn,0βn,i > 0, property of g, (3.7), and (3.42), we have that

∥
∥Jxn − JTni xn

∥
∥ −→ 0, n −→ ∞, ∀i = 1, 2, . . . ,N. (3.46)

Since xn → u and J is uniformly norm-to-norm continuous. It yields Jxn → Jp. Hence from
(3.46), we have

∥∥xn − Tni xn
∥∥ −→ 0, n −→ ∞, ∀i = 1, 2, . . . ,N. (3.47)

Since xn → u, this implies that limn→∞JTni xn → Ju as n → ∞. Since J−1 : E∗ → E is
hemicontinuous, it follows that

Tni xn ⇀ u, for each i ≥ 1. (3.48)

On the other hand, for each i ≥ 1, we have

∥∥Tni xn
∥∥ − ‖u‖ =

∣∣∥∥Tni xn
∥∥ − ‖u‖∣∣

≤ ∥∥Tni xn − u
∥∥ −→ 0, n −→ ∞.

(3.49)

from this, together with (3.48) and the Kadec-Klee property of E, we obtain

Tni xn −→ u, for each i ≥ 1. (3.50)

On the other hand, by the assumption that Ti is uniformly Li-Lipschitz continuous, we have

∥∥∥Tn+1i xn − Tni xn
∥∥∥ ≤

∥∥∥Tn+1i xn − Tn+1i xn+1
∥∥∥ +

∥∥∥Tn+1i xn+1 − xn+1
∥∥∥

+ ‖xn+1 − xn‖ +
∥∥xn − Tni xn

∥∥

≤ (Li + 1)‖xn+1 − xn‖ +
∥∥∥Tn+1i xn+1 − xn+1

∥∥∥

+
∥∥xn − Tni xn

∥∥.

(3.51)
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By (3.18) and (3.50), we obtain

lim
n→∞

∥
∥
∥Tn+1i xn − Tni xn

∥
∥
∥ = 0, ∀i ≥ 1, (3.52)

and limn→∞Tn+1i xn = u, that is, TiTnxn → u, for all i ≥ 1. By the closeness of Ti, we have
Tiu = u, for all i ≥ 1. This implies that u ∈ ∩∞

i=1F(Ti).
By the similar way, we can prove that for each i ≥ 1

∥
∥Jxn − JSni yn

∥
∥ −→ 0, n −→ ∞. (3.53)

Since xn → u and J is uniformly norm-to-norm continuous. it yields Jxn → Jp. Hence from
(3.53), we have

∥∥xn − Sni yn
∥∥ −→ 0, n −→ ∞. (3.54)

Since xn → u, this implies that limn→∞JSni yn → Ju as n → ∞. Since J−1 : E∗ → E is
hemicontinuous, it follows that

Sni yn ⇀ u, for each i ≥ 1. (3.55)

On the other hand, for each i ≥ 1, we have

∥∥Sni yn
∥∥ − ‖u‖ =

∣∣∥∥Sni yn
∥∥ − ‖u‖∣∣

≤ ∥∥Sni yn − u
∥∥ −→ 0, n −→ ∞.

(3.56)

From this, together with (3.54) and the Kadec-Klee property of E, we obtain

Sni yn −→ u, for each i ≥ 1. (3.57)

On the other hand, by the assumption that Si is uniformly μi-Lipschitz continuous, we have

∥∥∥Sn+1i yn − Sni yn
∥∥∥ ≤

∥∥∥Sn+1i yn − Sn+1i yn+1
∥∥∥ +

∥∥∥Sn+1i yn+1 − yn+1
∥∥∥

+
∥∥yn+1 − yn

∥∥ +
∥∥yn − Sni yn

∥∥

≤ (
μi + 1

)∥∥yn+1 − yn
∥∥ +

∥∥∥Sn+1i yn+1 − yn+1
∥∥∥

+
∥∥yn − Sni yn

∥∥.

(3.58)
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By (3.36) and (3.57), we obtain

lim
n→∞

∥
∥
∥Sn+1i yn − Sni yn

∥
∥
∥ = 0 (3.59)

and limn→∞Sn+1i yn = u, that is, SiTnyn → u. By the closeness of Si, we have Siu = u, for all i ≥
1. This implies that u ∈ ∩∞

i=1F(Si). Hence u ∈ (∩∞
i=1F(Ti)) ∩ (∩∞

i=1F(Si)).
Next, we prove that u ∈ ∩Ni=1Ωi. For any p ∈ F, for each i = 1, 2, . . . ,N, we have

φ
(
uin, zn

)
= φ

(
Θi
nzn, zn

)

≤ φ(p, zn
) − φ

(
p,Θi

nzn
)

= φ
(
p, zn

) − φ
(
p, uin

)

≤ φ(p, xn
)
+ θn − φ

(
p, uin

)
→ 0, as n → ∞.

(3.60)

It then yields that limn→∞(‖uin‖ − ‖zn‖) = 0. Since limn→∞‖uin‖ = ‖u‖, for all i ≥ 1, we have

lim
n→∞

‖zn‖ = ‖u‖. (3.61)

Hence,

lim
n→∞

‖Jzn‖ = ‖Ju‖. (3.62)

This together with limn→∞‖uin‖ = ‖u‖ show that for each i = 1, 2, . . . ,N,

lim
n→∞

∥∥∥uin − ui−1n

∥∥∥ = lim
n→∞

∥∥∥Juin − Jui−1n

∥∥∥ = 0, (3.63)

where u0n = zn. On the other hand, we have

uin = Kfi,riu
i−1
n , for each i = 2, 3, . . . ,N, (3.64)

and uin is a solution of the following variational equation

fi
(
uin, y

)
+
〈
Aiu

i
n, y − uin

〉
+ ψi

(
y
) − ψi

(
uin

)
+

1
ri

〈
y − uin, Juin − Jui−1n

〉
≥ 0, ∀y ∈ C. (3.65)

By condition (A2), we note that

〈
Aiu

i
n, y − uin

〉
+ ψi

(
y
) − ψi

(
uin

)
+

1
ri

〈
y − uin, Juin − Jui−1n

〉

≥ −fi
(
uin, y

)
≥ fi

(
y, uin

)
, ∀y ∈ C.

(3.66)
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By (A4), (3.63), and uin → u for each i = 2, 3, . . . ,N, we have

〈
Aiu, y − u〉 + ψi

(
y
) − ψi(u) ≥ fi

(
y, u

)
, ∀y ∈ C. (3.67)

For 0 < t < 1 and y ∈ C, define yt = ty + (1 − t)u. Noticing that y, u ∈ C, we obtain yt ∈ C,
which yields that

〈
Aiu, yt − u

〉
+ ψi

(
yt

) − ψi(u) ≥ fi
(
yt, u

)
. (3.68)

In view of the convexity of φ it yields

t
〈
Aiu, y − u〉 + t(ψi

(
y
) − ψi(u)

) ≥ fi
(
yt, u

)
. (3.69)

It follows from (A1) and (A4) that

0 = fi
(
yt, yt

) ≤ tfi
(
yt, y

)
+ (1 − t)fi

(
yt, u

)

≤ tfi
(
yt, y

)
+ (1 − t)t[〈Aiu, y − u〉 + (

ψi
(
y
) − ψi(u)

)]
.

(3.70)

Let t → 0, from (A3), we obtain the following:

fi
(
u, y

)
+
〈
Aiu, y − u〉 + ψi

(
y
) − ψi(u) ≥ 0, ∀y ∈ C, i = 1, 2, . . . ,N. (3.71)

This implies that u is a solution of the system of generalizedmixed equilibrium problem (3.2),
that is, u ∈ ∩Ni=1Ωi. Hence, u ∈ F := (∩Ni=1Ωi) ∩ (∩∞

i=1F(Ti)) ∩ (∩∞
i=1F(Si)).

Finally, we show that xn → u = ΠFx0. Indeed from w ∈ F ⊂ Cn and xn = ΠCnx0, we
have the following:

φ(xn, x0) ≤ φ(w,x0), ∀n ≥ 0. (3.72)

This implies that

φ(u, x0) = lim
n→∞

φ(xn, x0) ≤ φ(w,x0). (3.73)

From the definition of ΠFx0 and (3.73), we see that u = w. This completes the proof.

Since every asymptotically relatively nonexpansive mappings is quasi-φ-nonexpan-
sive mappings, hence we obtain the following corollary.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach space, let C be a
nonempty, closed, and convex subset of E. Let Ai : C → E∗ be a continuous and monotone
mapping, ψi : C → R be a lower semi-continuous and convex function, fi be a bifunction from
C × C to R satisfying (A1)–(A4), Kfi,ri is the mapping defined by (2.10) where ri ≥ r > 0, and
let {Ti}∞i=1, {Si}∞i=1 be countable families of closed and quasi-φ-nonexpansive mapping such that
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F := (∩Ni=1Ωi) ∩ (∩∞
i=1F(Ti)) ∩ (∩∞

i=1F(Si))/= ∅. Let {xn} be a sequence generated by x0 ∈ C and
C0 = C, such that

yn = J−1
(

βn,0J(xn) +
∞∑

i=1

βn,iJ(Tixn)

)

,

zn = J−1
(

αn,0J(xn) +
∞∑

i=1

αn,iJ
(
Siyn

)
)

,

u
(i)
n = Kfi,riKfi−1,ri−1 · · ·Kf1,r1(zn), i = 1, 2, . . . ,N,

Cn+1 =
{
z ∈ Cn : max

i=1,2,...,N
φ
(
z, u

(i)
n

)
≤ φ(z, xn), φ

(
z, yn

) ≤ φ(z, xn)
}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.74)

where ΠC is the generalized projection from E onto C, J is the duality mapping on E. The coefficient
sequences {αn,i} and {βn,i} ⊂ [0, 1], satisfying:

(i)
∑∞

i=0 αn,i = 1;

(ii)
∑∞

i=0 βn,i = 1;

(iii) lim infn→∞αn,0αn,i > 0, for all i ≥ 1;

(iv) lim infn→∞βn,0βn,i > 0, for all i ≥ 1.

Ωi, i = 1, 2, . . . ,N is the set of solutions to the following generalized mixed equilibrium problem:

fi
(
z, y

)
+
〈
Aiz, y − z〉 + ψi

(
y
) − ψi(z) ≥ 0, ∀y ∈ C, i = 1, 2, . . . ,N. (3.75)

Then the sequence {xn} converges strongly toΠFx0.

If Ai = A,ψi = ψ, and fi = f for all i ≥ 1 in Theorem 3.1, we obtain the following
corollary.

Corollary 3.3. Let E be a uniformly smooth and uniformly convex Banach space, letC be a nonempty,
closed, and convex subset of E. Let A : C → E∗ be a continuous and monotone mapping,
ψ : C → R be a lower semicontinuous and convex function, f be a bifunction from C × C
to R satisfying (A1)–(A4), Kf,r be the mapping define by (2.10) where r > 0, and let {Ti}∞i=1,
{Si}∞i=1 be countable families of closed and uniformly Li, μi-Lipschitz continuous, and asymptotically
relatively nonexpansive mappings with sequence {kn}, {ζn} ⊂ [1,∞); kn → 1, ζn → 1 such that
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F := Ω ∩ (∩∞
i=1F(Ti)) ∩ (∩∞

i=1F(Si))/= ∅. Let {xn} be a sequence generated by x0 ∈ C and C0 = C,
such that

yn = J−1
(

βn,0J(xn) +
∞∑

i=1

βn,iJ
(
Tni xn

)
)

,

zn = J−1
(

αn,0J(xn) +
∞∑

i=1

αn,iJ
(
Sni yn

)
)

,

un = Kf,rzn,

Cn+1 =
{
z ∈ Cn : max

i=1,2,...,N
φ
(
z, u

(i)
n

)
≤ φ(z, xn) + θn, φ

(
z, yn

) ≤ φ(z, xn) + ξn
}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.76)

where ξn = supp∈F(kn −1)φ(p, xn), θn = δn + ξnζn, and δn = supp∈F(ζn −1)φ(p, xn). The coefficient
sequences {αn,i} and {βn,i} ⊂ [0, 1], satisfying:

(i)
∑∞

i=0 αn,i = 1;

(ii)
∑∞

i=0 βn,i = 1;

(iii) lim infn→∞αn,0αn,i > 0, for all i ≥ 1;

(iv) lim infn→∞βn,0βn,i > 0, for all i ≥ 1.

Then the sequence {xn} converges strongly toΠFx0.

If i = 1 in Theorem 3.1, then we obtain the following corollary.

Corollary 3.4. Let E be a uniformly smooth and uniformly convex Banach space, letC be a nonempty,
closed, and convex subset of E. Let A : C → E∗ be a continuous and monotone mapping,
ψ : C → R be a lower semicontinuous and convex function, f be a bifunction from C × C to R

satisfying (A1)–(A4), Kf,r is the mapping define by (2.10) where r > 0, and let T, S are two closed
and uniformly L, μ-Lipschitz continuous and asymptotically relatively nonexpansive mappings with
sequence {kn}, {ζn} ⊂ [1,∞); kn → 1, ζn → 1 such that F := Ω ∩ F(T) ∩ F(S)/= ∅. Let {xn} be a
sequence generated by x0 ∈ C and C0 = C, we have

yn = J−1
(
βnJxn +

(
1 − βn

)
JTnxn

)
,

zn = J−1
(
αnJxn + (1 − αn)JSnyn

)
,

un = Kf,rzn,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn, φ

(
z, yn

) ≤ φ(z, xn) + ξn
}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.77)

where ξn = supp∈F(kn −1)φ(p, xn), θn = δn + ξnζn, and δn = supp∈F(ζn −1)φ(p, xn). The coefficient
sequences {αn} and {βn} ⊂ [0, 1], satisfying
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(D1) lim infn→∞αn(1 − αn) > 0;

(D2) lim infn→∞βn(1 − βn) > 0.

Then the sequence {xn} converges strongly toΠFx0.

Remark 3.5. Theorem 3.1 and Corollary 3.3 improve and extend the corresponding results of
Petrot et al. [24], Kumam and Wattanawitoon [25], and Chang et al. [26] in the following
senses:

(i) for the mappings, we extend the mappings from nonexpansive mappings, hemirel-
atively nonexpansive mappings to two infinite family of closed asymptotically
relatively nonexpansive mappings;

(ii) from a solution of the classical equilibrium problem to a system of generalized
mixed equilibrium problems and the generalized mixed equilibrium problem with
an infinite family of closed relatively nonexpansive mappings.

Remark 3.6. Corollary 3.4 improves and extends the corresponding results of Theorem 3.1 in
Kumam and Wattanawitoon [25] and Corollary 3.3 in Saewan et al. [11] in the following
senses:

(i) the mapping in [11] and [25]

(ii) the conditions (D1) and (D2) of the parameters {αn} and {βn} are weaker and
not complicated than the conditions (C1)–(C3) in [[25], Theorem 3.1] and [[11],
Theorem 3.1] which are easy to compute.
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