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Let Φ(G, λ) = det(λIn − L(G)) =
∑n

k=0(−1)kck(G)λn−k be the characteristic polynomial of the
Laplacian matrix of a graph G of order n. In this paper, we give four transforms on graphs that
decrease all Laplacian coefficients ck(G) and investigate a conjecture A. Ilić andM. Ilić (2009) about
the Laplacian coefficients of unicyclic graphs with n vertices and m pendent vertices. Finally, we
determine the graph with the smallest Laplacian-like energy among all the unicyclic graphs with
n vertices and m pendent vertices.

1. Introduction

Let G = (V, E) be a simple undirected graph with n vertices and |E| edges and, let L(G) =
D(G) − A(G) be its Laplacian matrix. The Laplacian polynomial of G is the characteristic
polynomial of its Laplacian matrix. That is

Φ(G, λ) = det(λIn − L(G)) =
n∑

k=0

(−1)kck(G)λn−k. (1.1)

The Laplacian matrix L(G) has nonnegative eigenvalues μ1 ≥ μ2 ≥ · · · ≥ μn−1 ≥ μn = 0
[1]. From Viette’s formulas,

ck(G) = σk

(
μ1, μ2, . . . , μn−1

)
=

∑

I⊆{1,2,...,n−1},|I|=k

∏

i∈I
μi (1.2)
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is a symmetric polynomial of order n − 1. In particular, we have c0(G) = 1, c1(G) =
2|E(G)|, cn(G) = 0 and cn−1(G) = nτ(G), where τ(G) is the number of spanning trees of G. If
G is a tree, coefficient cn−2(G) is equal to its Wiener index, which is a sum of distance between
all pairs of vertices:

cn−2(G) = W(G) =
∑

u,v∈V
d(u, v). (1.3)

The Wiener index is considered as one of the most used topological indices with high
correlation with many physical and chemical properties of molecular compounds.

A unicyclic graph is a connected graph in which the number of vertices equals the
number of edges. Recently, the study on the Laplacian coefficients attracts much attention.

Mohar [2] proved that among all trees of order n, the kth Laplacian coefficients ck(G)
are largest when the tree is a path and are smallest for stars. Stevanović and Ilić [3] showed
that among all connected unicyclic graphs of order n, the kth Laplacian coefficients ck(G)
are largest when the graph is a cycle Cn and smallest when the graph is an Sn with an
additional edge between two of its pendent vertices, where Sn is a star of order n. He and
Shan [4] proved that among all bicyclic graphs of order n, the kth Laplacian coefficients
ck(G) is smallest when the graph is obtained from C4 by adding one edge connecting two
non-adjacent vertices and adding n− 4 pendent vertices attached to the vertex of degree 3. A.
Ilić and M. Ilić [5] verified that among trees on n vertices and m leaves, the balanced starlike
tree S(n,m) (see Definition 2.2) has minimal Laplacian coefficients. Some other works on
Laplacian coefficients can be found in [6–8].

In this paper, we determine the smallest kth Laplacian coefficients ck(G) among
all unicyclic graphs with n vertices and m pendent vertices. Thus we completely solve a
conjecture on the minimal Laplacian coefficients of unicyclic graphs with n vertices and m
pendent vertices (see [5]).

Motivated by the results in [3, 4, 9–12] concerning the minimal Laplacian coefficients
and Laplacian-like energy of some graphs and the minimal molecular graph energy of
unicyclic graphs with n vertices and m pendent vertices, this paper will characterize the
unicyclic graphs with n vertices and m pendent vertices, which minimize Laplacian-like
energy.

2. Transformations and Lemmas

In this section, we introduce some graphic transformations and lemmas, which can be used
to prove our main results. The Laplacian coefficients ck(G) of a graph G can be expressed in
terms of subtree structures of G by the following result of Kelmans and Chelnokov [13]. Let
F be a spanning forest of Gwith components Ti, i = 1, 2, . . . , k having ni vertices each, and let
γ(F) =

∏k
i=1ni.

Lemma 2.1 (see [13]). The Laplacian coefficient cn−k(G) of a graph G is given by

cn−k(G) =
∑

F∈Fk

γ(F), (2.1)

where Fk is the set of all spanning forests of G with exactly k components.
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For a real number x, we use �x� to represent the largest integer not greater than x and
�x� to represent the smallest integer not less than x.

Definition 2.2 (see [5]). The balanced starlike tree S(n,m), 3 ≤ m ≤ n − 1, is a tree of order
n with just one center vertex v, and each of the m branches of T at v is a path of length
�(n − 1)/m� or �(n − 1)/m�.

Let Pn be the path with n vertices. A path P : vv1v2 · · ·vk in G is called a pendent path
if d(v1) = d(v2) = · · · = d(vk−1) = 2 and d(vk) = 1. If k = 1, then we say vv1 is a pendent
edge of the graph G. A leaf or pendent vertex is a vertex of degree one. A branching vertex is
a vertex of degree greater than two. The k paths Pl1 , Pl2 , . . . , Plk are said to have almost equal
lengths if l1, l2, . . . , lk satisfy |li − lj | ≤ 1 for 1 ≤ i, j ≤ k.

Definition 2.3 (see [5]). The dumbbell D(n, a, b) consists of the path Pn−a−b together with a
independent vertices adjacent to one leaf of Pn−a−b and b independent vertices adjacent to the
other leaf.

The union G = G1
⋃
G2 of graph G1 and G2 with disjoint vertex sets V1 and V2 and

edge sets E1 and E2 is the graph G = (V, E) with V = V1
⋃
V2 and E = E1

⋃
E2. If G is a union

of two paths of lengths a and b, then G is disconnected and has a + b vertices and a + b − 2
edges. Let mk(G) be the number of matchings of G containing exactly k independent edges.
Especially, letmk(a, b) be the number of k matchings in G = Pa

⋃
Pb.

Lemma 2.4 (see [5]). Let v be a vertex of nontrivial connected graph G, and let G(p, q) denote the
graph obtained from G by adding pendent paths P = vv1v2 · · ·vp and Q = vu1u2 · · ·uq, at vertex v.
Assume that both numbers p and q are even. If p − 2 ≥ q + 2 ≥ 4, then for every k we have

mk

(
G
(
p, q

)) ≤ mk

(
G
(
p − 2, q + 2

))
. (2.2)

Lemma 2.5 (see [12]). Let mk(a, b) be the number of k-matchings in G = Pa
⋃
Pb and n = 4s + r

with 0 ≤ r ≤ 3. Then the following inequality holds:

mk(n, 0) ≥ mk(n − 2, 2) ≥ mk(n − 4, 4) ≥ · · · ≥ mk(2s + r, 2s). (2.3)

Lemma 2.6 (see [5]). Among trees on n vertices and 2 ≤ m ≤ n − 2 leaves, the balanced starlike tree
S(n,m) has minimal Laplacian coefficient ck(G), for every k = 0, 1, . . . , n.

Definition 2.7 (see [5]). Let v be a vertex of a tree T of degreem+1. Suppose that P1, P2, . . . , Pm

are pendent paths incident with v, with lengths ni ≥ 1, i = 1, 2, . . . , m. Let w be the neighbor
of v distinct from the starting vertices of paths v1, v2, . . . , vm, respectively. We form a tree
T ′ = δ(T, v) by removing the edges vv1, vv2, . . . , vvm−1 from T and adding m − 1 new edges
wv1, wv2, . . . , wvm−1 incident with w. We say that T ′ is a δ-transform of T .

Lemma 2.8 (see [5]). Let T be an arbitrary tree, rooted at the center vertex. Let vertex v be on
the deepest level of tree T among all branching vertices with degree at least three. Then for the δ-
transformation tree T ′ = δ(T, v) and 0 ≤ k ≤ n holds:

ck(T) ≥ ck
(
T ′). (2.4)
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Figure 1: Example of π1-transformation.

Lemma 2.9 (see [14]). For every acyclic graph T with n vertices,

ck(T) = mk(S(T)), 0 ≤ k ≤ n, (2.5)

where S(T) means the subdivision graph of T .

3. Main Results

In this section, we present four new graphic transformations that decrease the Laplacian
coefficients.

Definition 3.1. Let u be a vertex in the cycle C of a unicyclic graph G, such that u has degree
p + 2 and p pendent paths named Pl1 , Pl2 , . . . , Plp , where Pli :ui,1, ui,2, . . . , ui,li , 1 ≤ i ≤ p. If li ≥
lj + 2, and let

G1 = G − ui,li−1ui,li + uj,lj ui,li � π1(G). (3.1)

We say that G1 is a π1-transformation of G.

It is easy to see thatπ1-transformation preserves the size of a cycle ofG and the number
of pendent vertices.

Theorem 3.2. Let G be a connected unicyclic graph with n vertices and m pendent vertices, G1 =
π1(G). Then for every k = 0, 1, . . . , n,

ck(G) ≥ ck(G1), (3.2)

with equality if and only if k ∈ {0, 1, n − 1, n}.

Proof. It is easy to see that c0(G1) = c0(G) = 1, c1(G1) = 2|E(G1)| = 2|E(G)| = c1(G), cn(G1) =
cn(G) = 0, cn−1(G1) = nτ(G1) = n|E(C)| = nτ(G) = cn−1(G).

Now, consider the coefficients cn−k (k /= 0, 1, n − 1, n). Let Fk and Fk1 be the sets of
spanning forests of G and G1 with exactly k components, respectively.

Without loss of generality, we assume that l1 ≥ l2 + 2. Let G1 = π1(G) = G − u1,l1−1u1,l1 +
u2,l2u1,l1 (see Figure 1).
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Figure 2: Example of π2-transformation.

Obviously, by the definition of the spanning forest, the cycle C in the unicyclic graph
satisfies that C /∈ F ∈ Fk and C /∈ F1 ∈ Fk1 , where F and F1 are the arbitrary forests in
Fk and Fk1 , respectively. Without loss of generality, we remove one of the edges in the cycle
C, say uv, so we get T and T ′, respectively. By Lemmas 2.4 and 2.9, we have that for every
k = 0, 1, . . . , n,

ck(T) ≥ ck
(
T ′), (3.3)

with equality if and only if k ∈ {0, 1, n − 1, n}. If we remove the other edge, say xy, we get S
and S′, respectively. By Lemmas 2.4 and 2.9, we have that for every k = 0, 1, . . . , n,

ck(S) ≥ ck
(
S′), (3.4)

with equality if and only if k ∈ {0, 1, n − 1, n}.
It is easy to see that T − xy = S − uv and T ′ − xy = S′ − uv. We know that the numbers

of the same tree of spanning forests of T − xy and T ′ − xy with exactly k components are
equal to the numbers of the same tree of spanning forests of S − uv and S′ − uv with exactly
k components, respectively.

Applying to Definition 3.1 and Lemma 2.1, we can show that for every k = 0, 1, . . . , n,

ck(G) ≥ ck(G1), (3.5)

with equality if and only if k ∈ {0, 1, n − 1, n}.

Definition 3.3. Let v be a vertex in a cycle C of a connected unicyclic graph G, where d(v) ≥ 3.
Suppose that u is one of two neighbors adjacent to v in C, such that u has degree p + 2 and p
pendent paths incident with u and v has degree q + 2 and q pendent paths incident with v.
Let

G2 = G − vvq+1 + uvq+1 � π2(G), (3.6)

where vq+1 is one of the other neighbors adjacent to v in C. We say that G2 is a π2-
transformation of G (see Figure 2).
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Obviously, π2-transformation decreases the size of a cycle of G and preserves the
number of pendent vertices.

Theorem 3.4. Let G be a connected unicyclic graph with n vertices and m pendent vertices, G2 =
π2(G). Then for every k = 0, 1, . . . , n,

ck(G) ≥ ck(G2), (3.7)

with equality if and only if k ∈ {0, 1, n}.

Proof. Obviously, c0(G2) = c0(G) = 1, c1(G2) = 2|E(G2)| = 2|E(G)| = c1(G), cn(G2) = cn(G) = 0.
For k = n − 1, the length of a cycle in G is greater than the length of a cycle in G2. Therefore,
cn−1(G) > cn−1(G2).

Now, consider the coefficients cn−k (k /= 0, 1, n − 1, n). Let Fk and Fk2 be the sets of
spanning forests of G and G2 with exactly k components, respectively. Let F2 ∈ Fk2 and T ′ be
the component of F2 and u ∈ V (T ′). If vq+1 ∈ V (T ′), we define F with V (F) = V (G) and

E(F) = E(F2) − uvq+1 + vvq+1. (3.8)

Now, we distinguish F2 as the following two cases.
Case 1 (v ∈ V (T ′)). We have trees of equal sizes in both spanning forests thus γ(F) = γ(F2).

Case 2 (v /∈ V (T ′)). Let vertex v be in the tree S′, that is, v ∈ V (S′).
Note the fact that uv is a cut edge of G2. It is easy to see that F is a spanning forest of

G, and the number of components of F is k − 1 or k. We claim that F ∈ Fk. Otherwise, u, v
belong to one tree of F; then there exists a path P joining vq+1 to u in F; then uPvq+1u is a cycle
of F2, which contradicts the fact that F2 is a forest.

Suppose that T ′ − vq+1 contains a ≥ 1 vertices in the cycle C (including u) and b ≥ 0
vertices in the paths P1, . . . , Pp, and T ′ − u contains c ≥ 1 vertices in the cycle C. Let S′ contain
d ≥ 1 in the paths Pp+1, . . . , Pp+q. Assume the orders of the components of F2 different from T ′

and S′ are n1, n2, . . . nk−2. We have

γ(F) − γ(F2) = [(a + b)(c + d) − (a + b + c)d]
k−2∏

i=1

ni

= c(a + b − d)
k−2∏

i=1

ni = c(a + b − d)N,

(3.9)

where N =
∏k−2

i=1 ni.
If we sum all differences for such forest, having fixed values a, c and b+d = M, we get

∑

F∈F∗
γ(F) − γ(F2) =

∑

F∈F∗
c(a + b − d)N

= cN
M−1∑

b=0

(a + 2b −M) = (a − 1)cNM.

(3.10)
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Figure 3: Example of π3-transformation.

It is easy to see that a ≥ 1 and c ≥ 1, so (a − 1)cNM ≥ 0. Since at least one vertex is in
C − u − vq+1, there exists one forest F2 such that a > 1 and c ≥ 1, and then (a − 1)cNM > 0.

If vq+1 /∈ V (T ′), thus γ(F) = γ(F2).
Therefore, by using Lemma 2.1, we get

ck(G) =
∑

F∈Fk

γ(F) >
∑

F2∈Fk2

γ(F2) = ck(G2). (3.11)

This completes the proof of Theorem 3.4.

Definition 3.5. Let v (not in the cycle C) be a vertex of degree q + 1 in a connected unicyclic
graph G. Suppose that Pp+1, . . . , Pp+q are pendent paths incident with v. Let u be the neighbor
of v distinct from the starting vertices of paths v1, v2, . . . , vq, respectively. Let

G3 = π3(G) = G − vv2 − vv3 − · · · − vvq + uv2 + uv3 + · · · + uvq. (3.12)

We say that G3 is a π3-transformation of G (see Figure 3).

It is not difficult to see that π3-transformation preserves the size of a cycle ofG and the
number of pendent vertices.

Theorem 3.6. Let G be a connected unicyclic graph with n vertices and m pendent vertices, G3 =
π3(G). Then for every k = 0, 1, . . . , n,

ck(G) ≥ ck(G3), (3.13)

with equality if and only if k ∈ {0, 1, n − 1, n}.

Proof. Obviously, c0(G3) = c0(G) = 1, c1(G3) = 2|E(G3)| = 2|E(G)| = c1(G), cn(G3) = cn(G) = 0,
cn−1(G3) = nτ(G3) = n|E(C)| = nτ(G) = cn−1(G).

Now, consider the coefficients cn−k (k /= 0, 1, n − 1, n). Let Fk and Fk3 be the sets of
spanning forests of G and G3 with exactly k components, respectively. Obviously, by the
definition of the spanning forest, the cycle C in the unicyclic graph satisfies that C /∈ F ∈ Fk

andC /∈ F3 ∈ Fk3 , where F and F3 are the arbitrary forests inFk andFk3 , respectively. Without
loss of generality, we remove one of the edges on the cycle, saywu, so we get two trees T and
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Figure 4: Example of π4-transformation.

T ′, respectively. Applying to Definition 2.7, we know that T ′ = δ(T). Then using Lemma 2.8,
we can get that for every k = 0, 1, . . . , n,

ck(T) ≥ ck
(
T ′), (3.14)

with equality if and only if k ∈ {0, 1, n − 1, n}. If we remove another edge, say xy, we get S
and S′, respectively. By Definition 2.7, we know that S′ = δ(S). Then applying to Lemma 2.8,
we get that for every k = 0, 1, . . . , n,

ck(S) ≥ ck
(
S′), (3.15)

with equality if and only if k ∈ {0, 1, n − 1, n}.
It is easy to see that T − xy = S − uv and T ′ − xy = S′ − uv. We know that the numbers

of the same tree of spanning forests of T − xy and T ′ − xy with exactly k components are
equal to the numbers of the same tree of spanning forests of S − uv and S′ − uv with exactly
k components, respectively.

By Definition 3.5 and Lemma 2.1, we have that for every k = 0, 1, . . . , n,

ck(G) ≥ ck(G3), (3.16)

with equality if and only if k ∈ {0, 1, n − 1, n}.

Definition 3.7. Let u, v, andw be three vertices on the triangle in a unicyclic graphG. Suppose
that P1, . . . , Pp are pendent paths incident with u, Pp+1, . . . , Pp+q are pendent paths incident
with v, and Pp+q+1, . . . , Pp+q+l are pendent paths incident with w(p + q + l = m). Let

G4 = G − vv1 − · · · − vvq + uv1 + · · · + uvq � π4(G). (3.17)

We say that G4 is a π4-transformation of G (see Figure 4).

Theorem 3.8. Let u, v, and w be three vertices on the triangle in a unicyclic graph G, G4 = π4(G).
Then for every k = 0, 1, . . . , n,

ck(G) ≥ ck(G4), (3.18)

with equality if and only if k ∈ {0, 1, n − 1, n}.
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Figure 5: Obtained trees from Figure 4.

Proof. It is obvious to see that c0(G4) = c0(G) = 1, c1(G4) = 2|E(G4)| = 2|E(G)| =
c1(G), cn(G4) = cn(G) = 0. For k = n − 1, the length of a cycle in G4 is equal to the length
of a cycle in G. Therefore, cn−1(G) = cn−1(G4).

Now, consider the coefficient cn−k (k /= 0, 1, n − 1, n). Let Fk and Fk4 be the sets of
spanning forests of G and G4 with exactly k components, respectively.

Similarly to the proof of Theorem 3.2, we can get 6 trees as shown in Figure 5.
Obviously, by Definition 2.7, we know that T ′

i = δ(Ti) (i = 1, 2, 3). And according to
Lemma 2.8, we can verify that

ck(T1) ≥ ck
(
T ′
1

)
,

ck(T2) ≥ ck
(
T ′
2
)
,

ck(T3) ≥ ck
(
T ′
3
)
.

(3.19)

By (3.19), Definition 3.7, and Lemma 2.1, it is easy to see that for every k = 0, 1, . . . , n,

ck(G) ≥ ck(G4), (3.20)

with equality if and only if k ∈ {0, 1, n − 1, n}. This completes the proof of Theorem 3.8.

Theorem 3.9. Let G be a connected unicyclic graph with n vertices andm pendent vertices. Then for
0 ≤ k ≤ n,

ck(G) ≥ ck
(
S′(n,m)

)
, (3.21)
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with equality if and only if k ∈ {0, 1, n}, where S′(n,m) is as shown in Figure 6, and each of the m
branches at v is a path of length �(n − 3)/m� or �(n − 3)/m�.

Proof. Let C = w1w2 · · ·wtw1 be a cycle of connected unicyclic graph G, and let Ti be a tree
attached atwi, i = 1, 2, . . . , t. We can apply π3-transformation to Ti, such that the tree contains
one branch vertexwi with pendent path attached to it. Next, we can apply π2-transformation
to decrease the size of the cycle C as long as the length of C is not 3. Then we can apply
π1-transformation at the longest and the shortest path repeatedly, the Laplacian coefficients
do not increase while the attached paths become more balanced. Finally, we can apply π4-
transformation as long as it is not S′(n,m).

According to Theorems 3.2, 3.4, 3.6, and 3.8, we know that πi-transformation (i =
1, 2, 3, 4) cannot increase the Laplacian coefficients. So, for an arbitrary unicyclic graph G
with n vertices and m pendent vertices, we verify that

ck(G) ≥ ck
(
S′(n,m)

)
, (3.22)

where 0 ≤ k ≤ n and with equality if and only if k = 0, 1, n. This completes the proof of
Theorem 3.9.

4. Laplacian-Like Energy of Unicyclic Graphs with m Pendent Vertices

Let G be a graph. The Laplacian-like energy of graph G, LEL for short, is defined as follows:

LEL(G) =
n−1∑

k=1

√
μk, (4.1)

where μ1 ≥ μ2 ≥ · · · ≥ μn = 0 are the Laplacian eigenvalues of G. This concept was introduced
by J. Liu and B. Liu [9], where it was demonstrated it has similar feature as molecular graph
energy (for more details see [15]). Stevanović in [10] presented a connection between LEL
and Laplacian coefficients.

Theorem 4.1. Let G and H be two graphs with n vertices. If ck(G) ≤ ck(H) for k = 1, 2, . . . , n − 1,
then LEL (G) ≤ LEL (H). Furthermore, if a strict inequality ck(G) < ck(H) holds for some 1 ≤
k ≤ n − 1, then LEL (G) < LEL (H).
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Using this result, we can conclude the following.

Corollary 4.2. Let G be a connected unicyclic graph with n vertices and m pendent vertices. Then if
G � S′(n,m)

LEL
(
S′(n,m)

)
< LEL (G), (4.2)

where S′(n,m) is shown in Figure 6, and each of the m branches at v is a path of length �(n − 3)/m�
or �(n − 3)/m�.
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