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We introduce an iterative algorithm for finding a common element of the set of solutions of a
system of mixed equilibrium problems, the set of solutions of a general system of variational
inequalities for Lipschitz continuous and relaxed cocoercive mappings, the set of common
fixed points for nonexpansive semigroups, and the set of common fixed points for an infinite
family of strictly pseudocontractive mappings in Hilbert spaces. Furthermore, we prove a strong
convergence theorem of the iterative sequence generated by the proposed iterative algorithm
under some suitable conditions which solves some optimization problems. Our results extend and
improve the recent results of Chang et al. (2010) and many others.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C be a nonempty
closed convex subset of H. Recall that a mapping T : C — C is nonexpansive if

[Tx-Ty|| <[lx-y|, VvxyeC (1.1)
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We denote the set of fixed points of T by F(T), thatis F(T) = {x € C : x = Tx}. A mapping
f:C — Cissaid to be an a-contraction if there exists a coefficient & € (0, 1) such that

If) - f@ll <allx-yl, ¥YxyeC (1.2)
Let B: C — H be a mapping. Then B is called:
(1) monotone if
(Bx-By,x-y)>0, VYx,yeC; (1.3)

(2) d-strongly monotone if there exists a positive real number d such that

(Bx-By,x-y)>d||x-y|’, V¥xyeC (1.4)
for constant d > 0, this implies that
|| Bx = By|| > dl|x -y, (1.5)

that is, B is d-expansive and when d = 1, it is expansive;

(3) L-Lipschitz continuous if there exists a positive real number L such that

|Bx-By|| <L||x-vy|, VYxyeC (1.6)

(4) c-cocoercive [1, 2] if there exists a positive real number ¢ such that
(Bx - By,x - y) >c||Bx - By|]>, Vx,yeC, (1.7)

Clearly, every c-cocoercive map B is (1/c¢)-Lipschitz continuous;

(5) relaxed c-cocoercive, if there exists a positive real number c such that

(Bx - By, x —y) > (-¢)||Bx - By 2 Vx,y € C; (1.8)

(6) relaxed (c, d)-cocoercive, if there exists a positive real number ¢, d such that
2 2
(Bx-By,x-y) > (—c)||Bx - By||" +d||x-y|", VxyeC (1.9)

for ¢ = 0, B is d-strongly monotone. This class of mapping is more general than the
class of strongly monotone mapping. It is easy to see that we have the following
implication: d-strongly monotonicity implying relaxed (c, d)-cocoercivity,
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(7) k-strictly pseudocontractive, if there exists a constant k € [0, 1) such that

|Bx - By|” < ||x-y||> + k|1 - B)x - (I - B)y||>, Vx,yeC. (1.10)

Remark 1.1 (see [3, Remark 1.1 pages 135-136]). If B: C — H is a Lp-Lipschitz continuous
and relaxed (c, d)-cocoercive mapping with d > cL2 and 0 < 7 < 2(d — cL3)/L3, then I — 7B
satisfies the following:

(I -7B)x -~ (I-7B)y| < (1 -7¢)[|lx -y

, Yx,yeC, (1.11)

where ¢ = (L3/2)[2(d - cL3)/L% - 7].

Similarly, if D : C — H is Lp-Lipschitz continuous and relaxed (¢, d’)-cocoercive
mapping with d' > ¢'L? and 0 < 6 < 2(d’' - ¢'L3)) /L%, then the mapping I — 6D satisfies the
following:

|(I-6D)x - (I-6D)y| < (1-68)|x-y], (1.12)

where ¢' = (L% /2)[2(d' - ¢'L%) /L7, - 6].

Let A be a strongly positive linear bounded operator on H if there is a constant y > 0 with
the property

(Ax,x) >¥||lx|>, VYxeH. (1.13)
We recall optimization problem (for short, OP) as the following
min £ (Ax, x) + 2 [x - )P = h(x) (1.14)
xeF 2 ! 2 !

where F = N, C,,Cy,Cy,... are infinitely closed convex subsets of H such that N5, C, #0,
u € H, u > 01is a real number, A is a strongly positive linear bounded operator on H, and h is
a potential function for yf (i.e., h'(x) = y f(x) for x € H). This kind of optimization problem
has been studied extensively by many authors, see, for example, [4-7] when F = N%,C, and
h(x) = (x,b), where b is a given point in H.

On the other hand, a family S = {S(s) : 0 < s < oo} of mappings of C into itself is
called a nonexpansive semigroup on C if it satisfies the following conditions:

(i) S(0)x =x forall x € C;

(ii) S(s+t) = S(s)S(t) forall s,t > 0;
(iii) ||S(s)x = S(s)y|| < |lx —y| forall x,y € C and s > 0;
)

(iv) for all x € C, s+ S(s)x is continuous.

We denote by F(S) the set of all common fixed points of S = {S(s) : s > 0}, thatis, F(S) =
Ns>0F(5(s)). It is known that F(S) is closed and convex.



4 Journal of Applied Mathematics

Let ¢ : C — R be a real-valued function and let {Q; : CxC — R, k=1,2,...,N}
be a finite family of equilibrium functions, that is, O (u, u) = 0 for each u € C. The system of
mixed equilibrium problems (for short, SMEP) for function (©1,0,,...,0N,¢) isto find z € C
such that

©1(zy) +d(y) -9(2) 20, VyeC,

©:(z,y) +d(y) -$(2) 20, ¥y eC,
: (1.15)

On(z,y) +(y) - $(z) 20, VyeC.

The set of solutions of (1.15) is denoted by ﬂf(\i 1 MEP(©y, ¢), where MEP (O, ¢) is the set of
solutions of the mixed equilibrium problem (for short, MEP), which is to find z € C such that

Ok(zy)+¢(y) - P(z) 20, VyeC. (1.16)

In particular, if ¢ = 0, and N = 1, then the problem (1.15) reduces to the equilibrium problem
(for short, EP), which is to find z € C such that

O(z,y) 20, VYyeC (1.17)

It is well known that the SMEP includes fixed point problem, optimization problem,
variational inequality problem, and Nash equilibrium problem as its special cases (see [8—
13] for more details).

For solving the solutions of a nonexpansive semigroup and the solutions of the system
of mixed equilibrium problems were studied by many authors see [14-23] and reference
therein. In 2010, Chang et al. [24] studied the following approximation method:

O (u,(f),x) +¢(x) - ¢<u5,1)> + rll<K’<u$,1)> - K'(xn),11<x, u§1)>> >0, VxeC,

O, (u?,x) +P(x) - (i)(u;z)) + %<K'<uf12)> - K'(xn),q<x, u512>>> >0, VxeC,

(1.18)
1
On (ui,N),x> +¢(x) - ¢<u§lN)> + E<K, <u£,N)> - K’(xn),11<x, ui,N)>> >0, VxeC,
1 (N)
Xn+1 = O f Wixy) + Puxn + ynt— S(s)Wyu,, ’ds,
nJo
where
Wl = 19,
ul = Jul) = g Ry, (P = g9 102D, (1.19)

_ 10 9, 1O _
- Jrk '”]rzz r]lxn/ k_2/3/"'/N/
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% :C —- C, k=12,...,N is the mapping defined by (2.22) below, W, is the mapping
defined by (2.12), and S = {S(s) : 0 < s < o} is a nonexpansive semigroup. They proved that
{xn} converges strongly to a fixed point of F(S) N F(W) N (ﬁkN: 1 MEP(©, ¢)) under control
conditions on the parameters.

Let B,D : C — H be two mappings. The general system of variational inequalities problem
(see [25]) is to find (x*, y*) € C x C such that

(TBy* +x* —y*, x-x*) >0, VxeC, (1.20)
(6Dx* +y* —x*,x-y*) >0, VxeC, '

where 7 and 6 are two positive real numbers. The set of solutions of the general system of
variational inequalities problem is denoted by SVI(C, B, D). In particular, if B = D, then the
problem (1.20) reduces to the following equation:

(TBy* +x* —y*,x—x*) >0, VxeC, (1.21)
(6Bx* +y* —x*,x-y*) >0, VxeC, '

which is defined by Verma [26] (see also Verma [27]), and is called the new system of variational
inequalities. Further, if we set D = 0, then problem (1.20) reduces to the classical variational
inequality is to find x* € C such that

(Bx*,x-x*)>0, VxeC. (1.22)

We denoted by VI(C,B) the set of solutions of the variational inequality problem. The
variational inequality problem has been extensively studied in literature, see, for example,
[28-31] and references therein. In order to find the solutions of the general system of
variational inequality problem (1.20), Wangkeeree and Kamraksa [32] considered the
following iterative algorithm:

O, ) + () = Pun) + - (K'(wn) = K' (), 1, 10)) 20, V¥x €€,

zn = Pc(uy — 6Duy),
X1 = Ay f (%) + Puxn + [ (1= Bu)] — 2y A)|W,, P (2, — TBzy),

(1.23)

where B,D : C — H is a Lg-Lipschitz continuous and relaxed (c, d)-cocoercive mapping and
Lp-Lipschitz continuous and relaxed (c', d')-cocoercive mapping, respectively. They proved
that {x,} converges strongly to a fixed point of F(W,) N MEP(O, ¢) n SVI(C, B, D) which
is a solution of general system of variational inequality (1.20). Very recently, Jaiboon and
Kumam [33] studied a new general iterative method for finding a common element of the
set of solution of a mixed equilibrium problem, the set of fixed points of an infinite family
of nonexpansive mappings, and the set of solutions of variational inequalities for an inverse-
strongly monotone mapping in Hilbert spaces, which solves some optimization problems.
Inspired and motivated by Chang et al. [24], Jaiboon and Kumam [33], Kumam and
Jaiboon [34] and Wangkeeree and Kamraksa [32], the purpose of this paper is to introduce
an iterative algorithm for finding a common element of the set of solutions of (1.15), the
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set of solutions of (1.20) for Lipschitz continuous and relaxed cocoercive mappings, the set
of common fixed points for nonexpansive semigroup, and the set of common fixed points
for an infinite family of strictly pseudocontractive mappings. Consequently, we prove the
strong convergence theorem in Hilbert spaces under control conditions on the parameters.
Furthermore, we can apply our results for solving some optimization problems. Our results
extend and improve the corresponding results in Chang et al. [24], Kumam and Jaiboon [34],
Wangkeeree and Kamraksa [32], and many others.

2. Preliminaries

Let H a real Hilbert space and C a nonempty closed convex subset of H. We denote strong
convergence (weak convergence) by notation — (—). In a real Hilbert space H, it is well
known that

I =yl = Il = ly[* - 2(x - v, y), 2.1)

[l + y||* < IxlP +2(y, x + ), 2.2)

I+ yl* > l1xI> + 2(y, x), (23)

[[Ax + (1= Dy|* = M« + @ = D)[|y]|* - 2@ -V |lx -y (2.4)

forallx,y € Hand X € R.
Recall that for every point x € H, there exists a unique nearest point in C, denoted by
Pcx, such that

lx - Pex|| < ||x-y|, VyeC. (2.5)

Pc is called the metric projection of H onto C. It is well known that Pc is a nonexpansive
mapping of H onto C and satisfies

(x -y, Pex - Pey) > || Pex - Pey||® (2.6)
for every x,y € H. Obviously, this immediately implies that
IGe-9) - ex - Pey) P < [l -yl - Pex - PeylP, WxyeH. @)
Moreover, Pcx is characterized by the following properties: Pcx € C and

(x = Pcx,y - Pex) <0, 28)
llx = yI* > llc = Pex||” + |y — Pex|? '

forallx e H, y € C.
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In order to prove our main results, we need the following lemmas.

Lemma 2.1 (see [35]). Let V : C — H be a k-strict pseudo-contraction, then

(1) the fixed point set F(V) of V is closed convex so that the projection Py is well defined;
(2) define a mapping T : C — H by

Tx=tx+(1-t)Vx, VxeC. (2.9)

Ift € [k, 1), then T is a nonexpansive mapping such that F(V) = F(T).

A family of mappings {V; : C — H}%, is called a family of uniformly k-strict pseudo-
contractions, if there exists a constant k € [0,1) such that

|Vix = Viy|* < |x - y||* + k|| - Vi)x - I = Vi)y|’, Vx,yeC, Vi>1. (2.10)

Let {V; : C — C}Z, be a countable family of uniformly k-strict pseudo-contractions. Let
{Ti : C — C}Z, be the sequence of nonexpansive mappings defined by (2.9), that is,

Tix=tx+(1-t)Vix, VxeC, Vi>1, telk1). (2.11)

Let {T;} be a sequence of nonexpansive mappings of C into itself defined by (2.11) and
let {p;} be a sequence of nonnegative numbers in [0, 1]. For each n > 1, define a mapping W,
of C into itself as follows:

un,n+1 = I/
un,n = ﬂnTnun,nH + (1 - ﬂn)I/
un,n—l = Un-1 Tn—lun,n + (1 - ,un—l)I/

Upie = Tl + (1 - pic) I, (2.12)
Upje-1 = Pk T + (1 - piea) 1,

Upp = ool + (1 - o)1,
Wn = Un,l = ‘ulTllln,z + (1 = ‘l/ll)I

Such a mapping W, is nonexpansive from C to C and it is called the W-mapping generated
by T, Ty, ..., Ty and p1, pa, . . ., P

For each n,k € N, let the mapping U, x be defined by (2.12). Then we can have the
following crucial conclusions concerning W,. You can find them in [36]. Now we only need
the following similar version in Hilbert spaces.

Lemma 2.2 (see [36]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T1, T, ... be nonexpansive mappings of C into itself such that N | F(Ty) is nonempty, let p1, o, . ..
be real numbers such that 0 < u, < b <1 for every n > 1. Then,
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(1) W, is nonexpansive and F(W,) = "L, F(T;), foralln > 1;
(2) for every x € C and k € N, the limit lim,, _, .U, kx exists;
(3) a mapping W : C — C defined by

Wx = lim Wyx = limU,1x, VxeC (2.13)

n— oo n— oo

is a nonexpansive mapping satisfying F(W) = N%, F(T;) and it is called the W-mapping
generated by Ty, Ty, ... and p1, po, . . . .

Lemma 2.3 (see [37]). Let C be a nonempty closed convex subset of a Hilbert space H, {T; : C —
C} a countable family of nonexpansive mappings with N, F(T;) #0, {u;} a real sequence such that
0<pi <b<1, foralli>1.1f D is any bounded subset of C, then

lim sup||Wx - W,x|| =0. (2.14)
n—=% xeD

Lemma 2.4 (see [38]). Each Hilbert space H satisfies Opial’s condition, that is, for any sequence
{xn} C H with x, — x, the inequality

lim inf ||x, — x|| < liminf ||x, - y|| (2.15)

holds for each y € H with y # x.

Lemma 2.5 (see [39]). Assume A is a strongly positive linear bounded operator on H with coefficient
¥>0and 0 < p <|A|"Y. Then, |I - pA|| <1 - pY.

For solving the system of mixed equilibrium problems (1.15), let us assume that
function©x: Hx H — R, k=1,2,..., N satisfies the following conditions:

(H1) Ok is monotone, that is, Ok (x,y) + O (y,x) <0, forall x, y € H;
(H2) for each fixed y € H, x — O (x, y) is convex and upper semicontinuous;

(H3) for each x € H, y +— Ok(x,y) is convex.
Letn: HxH — Hand B: H — H be two mappings. B is said to be

(1) monotone if

(Bx - By,n(x,y)) >0, Vx,ye€H; (2.16)

(2) d-strongly monotone if there exists a positive real number d such that

(Bx-By,n(x,y)) >d||x-vy|? VxyeH; (2.17)

(3) L-Lipschitz continuous if there exists a constant L > 0 such that

G| <L||x-y|, VxyeH. (2.18)
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Let K : H — R be a differentiable functional on H, which is called:
(1) n-convex [40] if

K(y) - K@) > (K'(x),(y,x)), Vx,yeH, (2.19)

where K'(x) is the Fréchet derivative of K at x;

(2) n-strongly convex [41] if there exists a constant o > 0 such that

K(y) - K(x) - (K'(x),n(y,x)) > g”x -y|>, Vx,yeH. (2.20)

In particular, if 77(x, y) = x — y for all x, y € H, then K is said to be strongly convex.

Lemma 2.6 (see [42]). Let H be a real Hilbert space and let ¢ be a lower semicontinuous and convex
functional from H to R. Let © be a bifunction from H x H to R satisfying (H1)-(H3). Assume that

(i) n: Hx H — H is A-Lipschitz continuous with constant A > 0 such that

(@) n(x,y) +n(y,x) =0, forall x,y € H,

(b) n(-,-) is affine in the first variable,

(c) for each fixed x € H, y — n(x,y) is sequentially continuous from the weak topology
to the weak topology;

(ii) K : H — R is n-strongly convex with constant o > 0 and its derivative K' is sequentially
continuous from the weak topology to the strong topology;

(iii) for each x € H, there exist bounded subsets E, C H and z, € H such that for any
yeH\E,

1 ! !
Oy, 2:) + Pl) - $(y) + - (K'(y) ~ K'(x),n(z2,9)) <0. (221)
For givenr > 0, let J© : H — H be the mapping defined by

190) = {v € H:0(5,2) +9(2) - (1) + 1K' () - K@) n(z)) 20, Ve H) 222)

forall x € H. Then

(1) J® is single-valued.

(2) F(J®) = MEP(©, E), where MEP(O, (E) is the set of solution of the mixed equilibrium
problem,

O(x,y) +(y) - p(x) 20, VYyeH. (2.23)

(3) MEP(©, (E) is closed and convex.
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Lemma 2.7 (see [43]). Let {x,} and {v,} be bounded sequences in a Banach space X and let {p,} be
a sequence in [0,1] with 0 < liminf, ., f, <limsup, _,  p, < 1. Suppose xp1 = (1= Pn)vn + Prxy
for all integers n > 0 and limsup,, _, _ (I|0n+1 = Oull = [|Xn41 = xall) < 0. Then, lim,, _, oo||v, — x4 = 0.

Lemma 2.8 (see [44]). Assume {x,} is a sequence of nonnegative real numbers such that

Xp1 < (1-ap)x, +b,, Yn>0, (2.24)

where {a,} is a sequence in (0,1) and {b, } is a sequence in R such that
(1) X2 an = oo,
(2) limsup,, _,  (b,/a,) <0o0r 372, |by| < co.

Then, lim,, _, . x, = 0.

Lemma 2.9 (see [45]). Let C be a nonempty closed convex subset of a real Hilbert space H and
g:C — RU {oo} a proper lower-semicontinuous differentiable convex function. If z is a solution to
the minimization problem

8(2) = inf g(x), (2.25)
then
(g (x),x-2)>0, xeC. (2.26)

In particular, if z solves problem OP, then
(u+[yf-(I+pA)]zx-z)<0. (2.27)

Lemma 2.10 (see [46]). Let C be a nonempty bounded closed convex subset of a Hilbert space H and
let S ={S(s) : 0 < s < oo} be a nonexpansive semigroup on C, then for any h > 0,

t t
: for(s)xds - T(h)<% fOT(s)xds>

Lemma 2.11 (see [47]). Let C be a nonempty bounded closed convex subset of H, {x,} a sequence
in C,and S = {S(s) : 0 < s < oo} a nonexpansive semigroup on C. If the following conditions are
satisfied:

lim sup
t=o yeC

' =0. (2.28)

(i) xn — z

(i) limsup,_, limsup,_ [IS(s)x, — x,|| =0, then z € S.
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Lemma 2.12 (see [25]). For given x*,y* € C and (x*,y*) is a solution of the problem (1.20) if and
only if x* is a fixed point of the mapping G : C — C is defined by

G(x) = Pc[Pc(x - 6Dx) —TBP-(x - 6Dx)], Vx € H, (2.29)

where y* = Pc(x — 6Dx), 6 and T are positive constants and B,D : H — H are two mappings.

Throughout this paper, the set of fixed points of the mapping G is denoted by
SVI(C, B, D).

Lemma 2.13 (see [32]). Let G : C — C be defined in Lemma2.12. If B : H — H isa
Lg-Lipschitzian and relaxed (c,d)-cocoercive mapping and D : H — H is a Lp-Lipschitz and
relaxed (c', d')-cocoercive mapping where T < 2(d — cL3) /L and 6 < 2(d' - ¢'L})) /L3, then G is
nonexpansive.

Lemma 2.14 (demiclosedness principle [48]). Assume that S is a nonexpansive self-mapping of
a nonempty closed convex subset C of a real Hilbert space H. If S has a fixed point, then I — S is
demiclosed; that is, whenever {x,} is a sequence in C converging weakly to some x € C (for short,
xn — x € C), and the sequence { (I — S)x,} converges strongly to some y (for short, (I - S)x, — y),
it follows that (I — S)x = y. Here I is the identity operator of H.

3. Main Results

In this section, we prove a strong convergence theorem of an iterative algorithm (3.1) for
finding the solutions of a common element of the set of solutions of (1.15), the set of solutions
of (1.20) for Lipschitz continuous and relaxed cocoercive mappings, the set of common fixed
points for nonexpansive semigroups, and the set of common fixed points for an infinite family
of strictly pseudocontractive mappings in a real Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H which C+C c C
and let f be a contraction of C into itself with a € (0,1). Let ¢ be a lower semicontinuous and convex
functional from H toRand let {© : HxH — R, k=1,2,..., N} be a finite family of equilibrium
functions satisfying conditions (H1)-(H3). Let S = {S(s) : 0 < s < oo} be a nonexpansive semigroup
on C and let {t,} be a positive real divergent sequence. Let {V; : C — C}2; be a countable family of
uniformly k-strict pseudo-contractions, let {T; : C — C}Z; be the countable family of nonexpansive
mappings defined by Tix = tx + (1 - t)Vix, forall x € C, foralli > 1, t € [k, 1), let W, be the
W-mapping defined by (2.12), and let W be a mapping defined by (2.13) with F(W) #@. Let A be a
strongly positive linear bounded operator on H with coefficient y > 0 and let 0 < y < (1 + py)/a,
B : H — H be a Lg-Lipschitz continuous and relaxed (c,d)-cocoercive mapping with d > cL?,
and let D : H — H be a Lp-Lipschitz continuous and relaxed (c',d")-cocoercive mapping with
d' > c'L%,. Suppose that Q := F(S) N F(W) N FNSVI(C, B, D) #0, where § = (ﬂkN:1 MEP (O, ¢)).
Let y >0,y >0and re >0, k =1,2,...,N, which are constants. For given x1 € H arbitrarily
and fixed u € H, suppose {x,}, {yn}, {2z} and {uftk) }, k=1,2,..., N are the sequences generated
iteratively by

O, <u,(11),x> +P(x) - ¢<u$ll)> + rll<K' (uf,l)) - K'(xn),q<x, u;1)>> >0, VxeH,
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@2<u£,2),x> +¢(x) - ¢<u§lz)> + }2<K’<u,(,,2)> - K’(xn),rl<x,u$,2)>> >0, VxeH,

On (uilN),x> +P(x) - ¢<u£lN)> + %<K'<u§lN)> - K'(xn),11<x, u;N))> >0, Vx€eH,
z, = Pc (ui,N) - 5Dule)>,

Yn = Pc(z, — TBzy),

X1 = On [+ Y f(Waxp)] + Brxn + [(1 = )] — (I + yA)]é : S(s)Wnynds,

(3.1)
where
1
uil) = rellxn/
k S k-1 Ok 7Ok k-2 O, 1
uil) = T’kkugl ) = ]rkk Tk]_clluSI ) = rkk o ]Szuil )I (32)

(S) 9, 1O
£ )0%,, k=23,...,N,

- Ik 1

Sk :H — H, k =1,2,...,N is the mapping defined by (2.22) and {a,} and {p,} are two
sequences in (0,1) for all n € N. Assume the following conditions are satisfied:

(C1) n: Hx H — H is \-Lipschitz continuous with constant A > 0 such that

(@) n(x,y) +n(y,x) =0, forall x,y € H,

(b) x — n(x,y) is affine,

(c) for each fixed y € H, y — n(x,y) is sequentially continuous from the weak topology
to the weak topology;

(C2) K : H — R is i-strongly convex with constant o > 0 and its derivative K' is not only
sequentially continuous from the weak topology to the strong topology but also Lipschitz
continuous with a Lipschitz constant v > 0 such that o > \v;

(C3) for each k € {1,2,...,N} and for all x € H, there exist bounded subsets E, C H and
zx € H such that forany y € H \ E,

Ok (¥, 2x) + P(zx) — () + %(K’(y) - K'(x),1n(zx,y)) <0; (3.3)

(C4) limy,—, o, = 0and 3,774 ay = 00;
(C5) 0 < liminf, , f, < limsup, _, fBn <1;
(C6) 0<T<2(d-cL%)/Lyand 0< 6 <2(d - L) /L3,
Then, {x,} converges strongly to x* € Q, which solves the following optimization problem (OP):

. M * ¥ 1 x 2 *
min = (Ax", x") + o [la" - ull” - h(x%), (34)
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and (x*,y*) is a solution of the general system of variational inequality problem (1.20) such that
y* = Pc(x* — 6Dx™).

Proof. By the condition (C4) and (C5), we may assume, without loss of generality, that a,, <
1-6)+ ,u||A||)_1 for all n € N. Indeed, A is a strongly positive bounded linear operator on
H, we have

[All = sup{|{Ax, x)| : x € H, [|x] = 1}. (3.5)

Observe that

(=B —an(I+pA))x,x) =1-p, —a, — ayu{Ax,x)
>1-Pn—an—anplAll (3.6)
> 0/

so this shows that (1 — f,)I — a, (I + pA) is positive. It follows that

[(1=Bu)T = an(I+pA) || = sup{|[{((1 = Bu) I = an(I + pA))x, x)| : x € H, ||x]| = 1}
=sup{l-f, - an — apu{Ax,x) : x € H, ||x|| = 1} (3.7)

<1-Pn—ay—anpuy.

We shall divide the proofs into several steps.

Step 1. We show that {x,} is bounded.
Let x* € Q = F(S)n F(W)n (ﬁfj:l MEP(©x, ¢)) N SVI(C, B, D). In fact, by the

assumption that for each k € {1,2,...,N}, ]ffk is nonexpansive. Let AN = r?,” ---]22 ,(?‘

and &° = I. Then, we have x* = #Nx* and uY) = #Nx,,. Since x* € SVI(C, B, D), then

x* = Pc[Pc(x* — 6Dx*) — TBP(x* — 6Dx*)] = Pc [PC (I - 8D)eANx* — TBP-(I — 6D)AN x*|.
(3.8)

Putting y* = Pc(x* — 6Dx*) = Pc(I — 6D)A#ANx*, we have x* = Pc(y* — TBy*). Since x* =
S(s)x*, for all s > 0 and x* = W,x*, for all n > 1, therefore, we have

x* = 4Nx* = Pc(y* - TBy*) = W,,Pc(y* - 7By*) = S(s)W,,Pc(y* - TBy"). (3.9)
Because Pc and " are nonexpansive mappings and from Remark 1.1, we have

[y = x| = | Pe(zn = 7Bz) = Pe(y™ - 7By") |
<||(I-7B)z, - (I-7B)y*
<z -yl
= ”PC <u,(1N) - 6Du51N)> — Pc(x* — 6Dx™)




14 Journal of Applied Mathematics

< || (I -6D)u™ — (I - 6D)x*

< uilN) —x*
= ”Jan - ANx*
< e = X7
(3.10)
which yields that
|xpe1 = x*|| = ||onu + an(Yf(ann) - (I + .uA)x*) +ﬂn(xn -x")

F((1= )] an(I + pA)) <tl f; S(s)Wyynds - x*> H

< anllull + an ||y fWaxn) = (I + pA)xX"|| + Bull2cw — x*||
+ (1= B = a1+ 7)) 00 ')

< apllul| + “n“Yf(ann) - Yf(x*)
+ (1= B - ta (14 7)) 00 = '

< allull + anyallxn — x| + au||y f(x*) = (I + pA)X"|| + Bullxn — x7]|
+ (L= Bn = an(1+py))l1xn — 7|

= an([full + |y f(x") = (T+ pA)x"[|) + (1 - an (1 + py) + awya) xn — x7||

= (1= (1 47) - yo)) - |

llull + [y f(x*) = (T + pA)x*

+ ||y f(x7) = (I +pA)x*

+ Bullxcn — x|

+a, ((1+py) - ya)

(L+py) —ya
(3.11)
It follows from (3.11) and induction that
* _ I A *
(1+py) —ya

Hence, {x,} is bounded, so are {v,}, {z,}, (Wnx,}, {f (Whx,)}, {uflk)} forallk =1,2,...,N
and {K,W,y,}, where K, = (1/t,) [;" S(s)ds.

Step 2. We prove that lim,,_, » |41 — x| = 0 and limnﬁmﬂugl) - u,SN)” =0.

Again, from Remark 1.1, we have the following estimates:

|yne1 = yull = IPc(zns1 = TBZni1) — Po(zn — TBzy) ||
< ||(Zn+1 - TBZn+1) - (Zn - TBZT!)”

<|zn+1 = zall
= ”PC <u(N) - 6Du(N)> - Pc <u5,N) - 6Du$lN)> ”

n+1 n+l
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< ” <u5§1) - 6Du(N)> - (u,(f\’) - 5Du£lN)> ”

n+1

<

u

(N) (N)
nel ~ Un ||

N N
:”94 Xns1 — A Xy

< Hlxne1 = x4l

(3.13)
On the other hand, since T; and U,,; are nonexpansive, we have
||Wn+1]/n - Wn]/n ” = ||I’11T1un+l,2yn - ﬂlTlun,Zyn ”
< Hi ”un+1,2yn - un,Zyn ”
= p1 || p2Tol i1 3Yn — p2 Tl 3y |
< o ||Unsr 3yn — Unaya|
(3.14)

S Hipo - Pn ||Un+1,n+1yn ~Unni1Yn ”

n
<M,y Hl’lil
i=1

where M; > 01is a constant such that ||U,s1n+1Yn — Upna1Ynll < My for all n > 0. It follows
from (3.13) and (3.14) that we have

”Wn+l]/n+l - Wn]/n” < ||Wn+1yn+1 - Wn+l]/n|| + ||Wn+1]/n - Wnyn”

< n —Yn M i
<N Yws1 =yl + 11;[# (315)

n
< et = xull + M ] Jpaie
i=1

It follows that

Epi1

tn
S(S)Waymads — [ S(s)Wayads
0

tn+1 0 n

||Kn+1Wn+1yn+1 - Kan]/n” =

1 [ %)
< [ 15O Wiy - S Wl
n+l Jo

tn

tn+1
[ s Wands - 1 [ S Waads
tn+1 0 tn 0

+

Epi1 tn tn

— S(s)Wny,,als+L S(S)W,,ynals—l S(s)Wnyy,ds
tn+1 t, tn+1 0 tn 0

< “Wn+1yn+1 Wy ” +

1 tn+l
< ||Wn+1yn+1 - Wn]/n” + t_ J‘ ”S(S)W”y"”ds
n+l Jt,
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tn

+

nYn|ds

t
< ||Wn+1]/n+1 - Wn]/n” + 2( - >M2
n+1

< Hlxpe — x| + Mll_[ﬂz +2<1 - ; 1>M2/
n+

i=1
(3.16)
where M = max{||S(s)W,yal}.
Setting x,41 = (1 — Bn) Uy + Puxy, for all n > 1, we have
_ Xut = Puxn _ n(ut yfWaxn)) + (1= Pu) ] —an(I+pA)) KWy (3.17)

v, =
" 1-p, 1-p,
Then, we obtain

At (U + Y f Wiaaxni1)) + (1= Brer) I =t (I + pA)) Kt Wi Y

On+l —On =

1- ﬂn+l
_an (u+yfWyxn) + (1= pu) —an(I + pA))K,Wyyn
1-pn
1 7;1 (u + Yf(Wn+1le+1)) T:B (u + Yf(ann)) + Kn+1Wn+1yn+1 - Kanyn
+ 1- nYn — Tl+1 (I +#A)Kn+lwn+1yn+l

1 7;1 ((” + Yf(Wn+1xn+1)> (I + #A)Kn+1Wn+1yn+1)

+ 1— ,B ((I + /’lA)Kanyn —Uu- Yf(ann)) + Kn+an+1yn+1 - Kanyn-
(3.18)
It follows from (3.16) and (3.18) that
||Un+1 - Un” - ”xml || =1 1;1 (”u” + ”Yf(wn+lxn+1)” + ”(I +ﬂA)Kn+1Wn+1]/n+1”)
+ 1 _,Bn (” (I +#A)K"W"y"” + ”u” + ”Yf(wnxn)”)
n tn

+ M111;[/,ti + 2<1 . )Mz.

(3.19)

By the conditions (C4), (C5) and from t, € (0,0),t, — ccand 0 < y; < b <1, foralli>1,
we have

lim sup (||[vn+1 — Onll = |Xn+1 — xa|]) < 0. (3.20)

n—oo
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Hence, by Lemma 2.7, we obtain

lim ||v, — x| = 0. (3.21)
It follows that
lim [[xp41 — x4[| = lim (1 - ﬂn) [on = xn|| = 0. (3.22)

Applying (3.22) into (3.13), we obtain that

i [y =yl = lim 120 = 2] = lim [|) - ]| = 0. (3.23)
Step 3. We show that lim,_,o||KiWuyn — yull = 0, limy—ollyn — S(S)yall = 0, and

limy, - oo [ — 4™ || = 0, where K, = (1/t,) fé" S(s)ds.
Since xy41 = an (U + Yy f (Winxpn)) + Puxn + (1 = )1 — an(I + pA))K,W,y,, we have

[[n = KnWayn||
< lon = Xl + || 2ms1 = KWt ||
= [[xn — xp4a |
+]|an (U +y f (Waxn)) +Bnxn+((1 = ) I—an (I + pA) ) KaWoyyu— K Woyn|| - (3.24)
= (2w = X ||+ ]| et ((u + y f (Waxn)) = (I + pA) KaWayyn) +Pn (X0 = KaWay) ||
< loen = x|l + an ([lull + ||y f Woxn) || + || (T + pA) KaWayn]|)
+ Bul|%n — KaWalal|,

that is
[l202 = KuWayal| < ﬁllxn = Xnl| + 1i‘—"ﬂn(llull +llyf Waxa) || + ([ (T + pA) KWy )-
(3.25)
By (C4), (C5), and (3.22) it follows that
lim || K,Ways — x4 || = 0. (3.26)

n—oo
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Since JO : C — C s firmly nonexpansive, u") = #Nx,, where #N := JON ... J92 ]
and x* € Q, we have

2

2
|ufiN)—x* =||e4an—e4Nx*

< <=4an—e4Nx*,xn—x*>

B <u(N)—x* . —x*> (3.27)

- n rivn

1 N L2 . N 12

= 5 ([ = =1 = =),
and hence

N _«|? 12 N |2

|un —x*| <l — X7 = || xn — Uy ” (3.28)

Observe that

s = 1% = | (1= Bu)T = (I + pA)) (KW = X°) + P (s = x°)
+an, (U +yf (Wyxy) — (I +pA)x") ||2
= [[((U=B) ] = an(I+ pA)) (KaWayn = x7) + Pulon = x7)

+ @2 |Ju+yf Waxy) = (I+pA)x*||?

2

+ 2PBpan(xn — X", u+y f(Waxy) — (I + pA)x*)
+2a,(((1 = Bu)I — an(I + pA)) (KiWoyn — x*), u+ 7 f(Waxy) — (I + pA)x*)
< [(1 ~ Bn — tw — anpy) ”ann]/n - x*” + Pulloxn - x*”]z

+(xfl||u +yf(Wyxy) — (I + pA)x* 2

+ 2Bty (xn = X5, u + y f Waxy) — (I + pA)x*)
+ 20 ( (1 = )1 = an (I + pA)) (KuWypn = x7), 1+ y f (Wixtn) = (I + pA)x")
= [(1 = Bn = an = ut?) | KaWoyn = x°|| + ulln = x7[1]” + o
< (1= Pu =t = i) || KaWan = 7| + B2l — )2
+2(1 = B — = i) | Ku Wity = || 10 = %] + €2
< (1= P =t = au¥) (| KaWay = x*|* + 210 — 72
+ (1= B =t = i) | KW = 2| + 10 = x°IP] + €
= (1= @ = i) = 2(1 = = awpi) B + B2 | KWy = x> + Bl = x|

+ [(1 = = i) o — B [ Ka Wy = x|+ lw = 2 IP] + €
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= (1 - — @) = (1= = i) B [ KaWa = x°
+ (1 = @y — @) Bull2n — x*|* + cn

< (1 =y = ani) (1= B = @ = anpi) |y — x|

+ (1 = an — anpty) Pullxn — x*||2 +c,,

where

cn = ar||u+yf(Waxy) — (I+pA)x*
+ 20, (1= Bu)I — any (I + pA)) (KiWoyy — x°), u+y f(Waxy) — (I + pA)x*).

It follows from condition (C4) that

lim ¢, = 0.

n— oo

Putting (3.28) into (3.29) and using also (3.10), we have

e = I < (1= @ = i) (1= B = n = anpi) |y = x°||°

+ (1 =ty — @) Bullxn — X*|I* + cn
2

*

uﬁlN) -x

< (1= @y — i) (1= B — @y — aupi¥) |

+ (1= an — anpty) Bullxn — x*|* + cn

< (1—ay—anpuy) (1 - Pn — an — appy) { I = x| -

2
=l }

+ (1= an — anpty) Bullxn — X7+ cn
= (1= &ty — @) [0 = x|

2
N
xn—u; )” +cy

— (1= @y~ i) (L~ o = 3 — )

2
N
xn—uil )” +Cy.

< ot = %I = (1 = @ — i) (1~ P~ ~ i)
It follows that

N) || 2 2
o = || < v = 1P = s =21 +

(1= @y~ i) (1= B — @, — aups¥) |

2, 2By (xn — X", u+yf (Wyxy) — (I +pA)x*)

19

(3.29)

(3.30)

(3.31)

(3.32)

<loen = X[ (l2en = 27 + X041 = X7[]) + cpe

(3.33)



20 Journal of Applied Mathematics

Therefore, by (3.22) and (3.31), we get

lim ||, — 2 || = 0. (3.34)
n—oo
Since
| uSLN) - Kanyn < | uS’lN) - Xn|| t ”xn - Kanyn”/ (335)

and by (3.26) and (3.70), we have

lim |u$,N) - K,W,y,

n— oo

=0. (3.36)

Since B is a Lp-Lipschitz continuous and relaxed (c, d)-cocoercive mapping on Band 0 < 7 <
2(d - cL2)/L3 for any x* € Q, we have

[y = x| = [|Pc(20 = TBza) = Pe(y* - 7By") |
<N (za-y) = 7(Bza - By)|I’
= llzn =y’ - 27(zu ~ y", Bzu - By") + 7°|| Bz, - By’||”
< loen = x*|* - 27'{—c||an - By*||2 +d|zn - y*||2} +7%||Bz, - By*”2

3.37
— ota — x°|2 + 27¢|| Bz - By | = 20|20 — v P + 22| Bza - By T )

27d
<l = '+ 27¢]| Bz, ~ By*[|* = 5 ||Bzy - By’ + 7| By - By’
B
= |l = x*|* + <2Tc +72 - ZI:F—2d> |Bz. - By*||*.
B

Similarly, since D is a Lp-Lipschitz continuous and relaxed (c’, d')-cocoercive mapping on D
and 0 < 6 < 2(d' - c'L%) /L%, we also have

2

I
lzn = v*||” < lloen = x7|* + <26c’ +62% - 25—2‘1> ||Du,(1N) ~Dx* (3.38)
D
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Substituting (3.37) into (3.29), we have

o1 = %17 < (1= = i) (1~ P = s~ tufi)

x {||xn - x*||2 + <27‘c - 2L7'_2d> ||BZn - B]/*”Z}
B

+ (1-an— anyy)Pullxn - X7+ cn
=(1-a,- zxmu?)zﬂxn - x*|?

+ (1-an—anuy) (1= Pu— an — ayuy) <27'c +7° - 2Ij-—2d> || Bz - By* ||’

+ ¢y
B
2
< loen — x*|* + <27'c . Ld> || Bz - By*”2 +Cp.
Ly
(3.39)
Again, substituting (3.38) into (3.29) and using also (3.10), we get
1% = x*|* < (1= an = anpy) (1= Pun = an = anp) || yn - x*Hz
+ (1 =ty = @) Bullxn — X*|I* + cn
_ — 112
< (1= an = anpy) (1= B — an = anpty) | zn = |
+ (1= oty = aupt) Pullxn = x°|1* + e
< (1-ay = anpy) (1= fn = an — anpy)
26d’ 2
* (12 ! 2 (N) *
x {||xn — x|+ <26c +62 - ¥>”Dun - Dx } (3.40)
+ (1 - an — anpty) Pullxn — x*|* + cp
= (1= oy = apt) [0 = "1 + (1 = @ = i) (1= B = @t = Aupt¥)
' 2
x <26c’ +6% - @> |Dus = D || + .
LZ
D
26d 2
<l = x> + <26c’ + 6% - 6—2> ||Du;N) - Dx*|| +cp.
Ly
Therefore, by (3.39) and (3.40), we have
2td
<L_2 -27rc - T2> 1Bz = By*||” < 1% = %" |1* = | %01 = X*[1* + cn
B
< |lxp = Xps Xy — X + || X1 = X*|) + €1,
< Ul Il + llxna = x*1) (3.41)

2 *12 *(12
<l = X7 = (2041 = x7[|° + €

26d'
(— -26c - 52> ”DuSlN) - Dx*
LZ
D

< 2w = xmaal[(lloen = X[ + [0 = X¥|[) + cn
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It follows from (3.22) and (3.31) that we obtain

lim ||Bz, - By*|| =0, (3.42)
Tim || Duf™ - Dx|| = 0. (3.43)

From (2.6), we have

2~y I = || Pe (4 ~ 5D - Pe(x* - 5D |
< <(u£,N) - 6Du£IN)> - (x*-6Dx"),z, — y*>

A

() 6Du) - (x* - D) || + [z - v

[ 00?) - 5 -602] - e[}

R e A R

(ui,N) - zn> -(x*-y") - 5<Du£lN) - Dx*> ”2}

{

1 2
3 { b=

N —

(u,&N’ _ zﬂ) e _y*)uz

+26<<u,(1N) - zn> - (x* - y*),Du,SN) - Dx*> - 62||Du51N) - Dx*||2}

(u,(f\” _ zn> e _y*)uz

1 N *
< {1z -y - |

+26“ <uftN) - zn> - (2" =y") ” ||Du,(1N) - Dx*” - 62||Du£,N) - Dx*||2}.

(3.44)

So, we obtain

(uff\” 3 zn> (' —y) ”2

Iz = y*[* < o = 21 - |
(3.45)

+ 26' (uS,N) - zn> - (x - y*)” ||Du£lN) - Dx*” - 62||Du£,N) - Dx*“z.
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By (3.29), we get

a1 = 17 < (1= an = anpi¥) (1= P = n = anpi) |y = x°|1°
+ (1 - an — anpy) Bullxn - x*||2 + ¢y,
_ _ a2
< (1= aw = anpy) (1= fn = ctn = anpy) || zn - v°||
+ (1= ap — anuy) ullxn — x*||2 + ¢,

< (1-ay — aiy) (1 - fu — @ — aupiy)
X {||x,1 —x*|? - | (u;N) - Zn> - (x" _y*)||2

+26|

(4~ 22) & =) ot - D | - Dt -}

+ (1 - an — anpy)Bullxn — x*||2 + ¢y
=(1-a,- any?)zﬂxn — x|+ (1-an — anpy) (1 = Bn — an — anpiy)

{2 - -0

+26|

(8 -2) - ok o - out -0}

(u,(f‘” 3 zn) () ”2

< lxn = x*”2 - (1 —Qan = an‘u?) (1 —Pu -y — an#?)'

+26|

(7 = 20) = (" =y [P - |

—62(1 =ty — auiT) (1 = = tn — GniT) ||Du£N> _ Dx*||2 + ¢

(3.46)
which implies that
(1 —a, — an‘uf) (1 —ﬂn —-a, — zxn‘uf)| <u1(1N) — zn> - (x* _ y*) ||2
< Jlotn = x| = s — 27
+ 26| (u,gN) - zn> - (x*=y") ” ”Du;N) - Dx*”
- 62(1 —0n = “W‘?) (1 —Pn—an - ‘xnﬂ?) ||Du1(1N) - Dx* ||2 +Cn (3.47)

< Hloen = Xl (ll2en = 27 + [|xne1 = 27])

+26| (uizN) _ Zn> —(xt - y*)” ”DuilN) — Dx*“

-8 (1= an — anpy) (1 = Bn — an — Anpiy) ”Du;N) - Dx"”2 +cy.
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From (3.22), (3.31), and (3.43), we have

lim ” <u$lN> - zn> -(x"-y)

n—oo

=0. (3.48)

Now, from (2.2) and (2.7), we observe that

1(za = ya) + (=" = y)II* = || (20 = TBza) = (" = TBy")

~[Pc(zn — TBzy) — Pc(y* — TBy*)| + 7(Bz, — By*) ||2
< ||(za = 7Bzy) = (v = 7By") = [Pc(za ~ 7Bzs) - Pe(y” — By")] ||
+27(Bzy — BY*, (zu — yu) + (x* = y7))
< [[(z0 = TBza) = (y" = TBy")||"~ || Pc (20 = TBza) ~Pc(y* - By") |
+27(|Bzn - By"||[|(zn = yn) + (x" = y") |
< ||(za = 7Bz) - (v - 7By |

— | KaW,Pc (2, - 7Bz,) - K, WP (y* — 7By ||

+27||Bzn = By*[|[[ (z0 = ym) + (x" = ¥")
= |20 = 7Bz) = (v" = 7By")|" - || KaWan = KW, ||”
+27(|Bzn - By"||[|(za = yn) + (x" = y") |
= (|[(zn = 7Bzn) = (y* = mBy") || - | KuWayn — x*|)

x (|| (za = 7Bza) = (y" = BY") || + | KuWaym - x7|)
+27(|Bzn - By"||[|(zn = yn) + (x" = y") |
<|[(zn = 7Bzy) = (y" = TBy") = (KuWayn — )|

x (|| (za = 7Bza) = (y" = BY") || + | KuWaym - x7|)
+27(|Bzn - By*|[[|(zn = yn) + (x" = y") |
= ” <u,(1N) - Kanyn> +(x*-y") - <u5,N) - zn> - 7(Bz, - By") ”
% (|[(zn = TBzn) = (y" = TBY") || + [| KaWaym - x*||)
+27(|Bzy = By”||[| (zn = yu) + (x" = y") |-

(3.49)
It follows from (3.36), (3.42), and (3.48) that we have
Jim [[(z - ) + (" )] =0, (350)

since

1Ka Wt - ll < |

KoWhyn — uly || + || (usz) - Zn> - (x"-y")

1 En=yn) + =)
(3.51)
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It follows from (3.36), (3.48) and (3.50), we get

nliirgo||Kanyn -ya]| =0, (3.52)

and from (3.26), and (3.52) that we have

lim ||x, = ya|| = 0. (3.53)

Since {W,y,} is a bounded sequence in C, from Lemma 2.10 for all s > 0, we have

tn 1 tn
m || KuWayn — S()KaWoy|| = lim Htl f S(5)Woynds — S(s) <t— f S(S)Wnynds>
n—oo n—oo n O n 0

-0,

(3.54)

and since

v = S©)yall < llyn = KaWayull + [ KaWayn = SO KuWayal| + [|S(8)KaWayn = S(s) v
<2|yn = KaWayiu| + | KuWan = S(5) KWy

7

(3.55)

it follows from (3.52) and (3.54) that we get
1111330||yn - S(s)ya| = 0. (3.56)
On the other hand, since J&* : H — H is firmly nonexpansive, o#% := Jo...

]rez2 ,?‘, k=1,2,...,N and x* € Q, we have

2
_ Okn1 gk Oks1 %
- ]Tk+1 A xy — o1 X

< (Jr oA = X, A, - x) (3.57)

A )

2
||e4k+1xn —x*

Ok gk * Ori1 gk k
Jrot A xy — x W A Xy — A Xy,

2 . 112
+||e4 Xy — X

and hence

2

2
||°4k+1xn —x* < ”xn _ x*”2 _ ||e4k+1xn _kan

(3.58)
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From (3.10), (3.29), and (3.58), foreach k =1,2,..., N — 1, we have

ner = X1 < (1= @n = ane¥) (1= B = an = anpi) |y = x°|°

+ (1= = @t Bull2n — X*|I* + cn

(1 = ) (1 o 0~ ) 50—
+ (1 - an — anpy) Pullxn — x*|1* + cp

< (1= = i) (1= Bu = = i) |45,
+ (1 - an — anpy)Pullxn - x*||2 + ¢y,

< (1= an = anfty) (1= B — o — Aupi¥) { e = x| = || — £ 2,

2

)
+ (1 - an — anpy)Pullxn - x”‘||2 + ¢y,

= (1 - ay — anpy) |20 — x°|2

2
- (1-an—anyy) (1 - Pu— an — anyy) “Jk”xn LS |
< [l = |17
2
- (1—an— anpy) (1 = Pn — an — ayuy) ”Jk”xn — A, ||+ cp
(3.59)
It follows that
2
(1-ay—anpy) (1= Pn — an — azuy) ||e4k+1xn —A*x,
<t = 21 = [lotner = x> + ¢ (3.60)
< lxen = x| ([l = || + 3001 = X¥|]) + cn
Therefore, by (3.22) and (3.31), we get
lim |e4’<+1xn — x|l =0 thatis lim ||u,<j‘+1’ - u;"’” -0. (3.61)
Step 4. We prove that
limsup(u + [yf — (I + pA)]x*, x, —x*) <0, (3.62)

n— oo

where x* is a solution of the optimization problem:

. /’l * % 1 x 2 *
min 7 (Ax™, x™) + 2||x ul|” — h(x"). (3.63)
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To show this inequality, we can choose a subsequence {vy,,} of {y,} such that

lim (u+[yf - (I +pA)|x*, yu, —x*y =limsup(u + [yf - (I + pA)]x*, yu —x*).  (3.64)

n—oo

Since {yy,} is bounded, there exists a subsequence {yni]_} of {y,,} which converges
weakly to z € C. Without loss of generality, we can assume that y,, — z. From (3.53), we get
Xy, — Z.

Next, we show that z € Q := F(S) n FW) n § n SVI(C,B,D), where § =
(NN, MEP(©y, $)).

(1) First, we prove that z € F(S). Indeed, from Lemma 2.11 and (3.56), we get z €
F(S), thatis, z = S(s)z, for all s > 0.

(2) Next, we show that z € F(W) = N, F(W,,), where F(W,,) =N F(T;), foralln > 1
and F(Wy.1) C¢ F(W,). Assume that z ¢ F(W), then there exists a positive integer m such
that z ¢ F(T,) and so z ¢ N, F(T;). Hence for any n > m,z ¢ N, F(T;) = F(W,), that is,
z # Wpz. This together with z = S(s)z, for all s >0, shows z = S(s)z# S(s)W,z, for all s >0;
therefore, we have z # K,,W, z, for all n > m. It follows from the Opial’s condition and (3.52)
that

lim inf||yy, — z|| < liminf||y,, — K, Wa,z||
1— 00 1— 00
< hgglf(”yﬂx - Kﬂinyﬂi ” + ”KniWniyni - KﬂiWﬂiZ”) (365)

<timinf]ly,, - =]
1— 00

which is a contradiction. Thus, we get z € F(W).
(3) Now, we prove that z € §. Since 4! = ]fffl“eélk, k=12,...,N-1and uf*V =
4*1x,, we have

@(Jk+1xn,x> () - ¢<e4k+1xn> N _<K,<4k+1xn> _ K’(kan),n<x,e4k+1xn>> >0,

Tk+1
Vx € H.
(3.66)

It follows that

rk1+1 <K' <e4k+1xni> -K <e4kxni>,11<x, e4k+1xni>> > —@(Jk”xni,x) - P(x) + ¢<e4k+1xni>
(3.67)
for all x € H. From (3.61) and by conditions (C1)(c) and (C2), we get
lim r: : (K (#12,) = K (A5, ) (3, #5120, ) ) = 0. (3.68)
Nni— 0Ty

By the assumption that ¢ is lower semicontinuous, then it is weakly lower semicontinuous
and by the condition (H2) that x — (-©;(x,y)) is lower semicontinuous, then it is weakly
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lower semicontinuous. Since y,, — z, it follows from (3.36), (3.52), and (3.61) that ugf) —z
foreachk =1,2,..., N — 1. Taking the lower limit n; — oo in (3.67), we have

Ot (z,x) +dp(x) —Pp(z) >0, VxeH, Vk=0,1,2,...,N-1. (3.69)

Therefore, z € N, MEP (O, §).
(4) Next, we show that z € SVI(C, B, D). By (3.36) and (3.52), we have

uqu) —Yn|| < u1(1N) - annyn + ”K”W"y" - y”” — 0 asn— oo (3.70)

By Lemma 2.13 that G is a nonexpansive, we obtain

lyn = G(ya)|| = IIPC [Pc (uilN) - 6Du,(1N)> —TBP- <u,(1N) - 6Dule)>] -G(yn)

= |6 (™) - G(ym) (3.71)
< uglN) —Ynl|-
Thus,
lim ||y, — G(ya)|| = 0. (3.72)

n— oo

By Lemma 2.14, we obtain that z € SVI(C, B, D). Hence z € Q is proved.
Now, from Lemma 2.9, (3.64), and (3.53), we have

limsup(u + [yf — (I + pA)]x*, x, — x*) =limsup(u + [yf — (I + pA)]x*, y, — x*)
= lim (u+[yf - T+ pA)]|x*, yn, — x*) (3.73)
=(u+[yf-(I+pA)]x*,z-x*)<0.

By (3.52), (3.53), and (3.73), we obtain

limsup(u + [yf - (I + pA)]x*, K,Wy,y, —x*) <0. (3.74)

n—oo
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Step 5. Finally, we show that x, — x*. From (3.1), we obtain

et = x7|?

IN

IN

IN

et (a + FWon)) + e + (1= Pu) I = (I + pA)) KaWoyn = x°|
1((1 = B)T = (T + RA)) (KuWogin = x°) + o = x°)
oty (1 + Y f(Waxy) = (T + pA)x) ||
(1= BT = (I + pA)) (KuWoyn = x*) + B0 = x7)||*
+ 20, (1= )] = an (I + pA)) (KaWoypn — x*), u+ yf (Wax,) — (I + pA)x*)
+ 2020 = X U+ Y f(Wixn) = (I + pA)X*) + 22|+ 7y f (Woxy) — (I + pA) x*||?
[(1 = Bn = (1 + 1)) [ KaWayn = x| + Bullcn = x°[1]°
+ 20, (1= ) Y (KW — x*, f (Waxy) — f(x¥))
+ 20, (1= B ) (K Woyn — x*, u+y f(x*) = (T + pA)x*)
= 2a, (1 + pA) (KuWayn = x°), f(Woxa) = f(x7))
=202 {(I + pA) (KaWyyn — x*), u+yf(x*) = (I + pA)x*)
+ Zcxnﬂn}f(xn -x*, f(Wypxy) - f(x*)) + thnﬂn<xn -x"u+yf(x*) - (I + yA)x*)
+ a2||u+y fWaxa) = (I + pA)x* ||
(1= B = an (1 + f0) [ KaWayn = x*|| + fullxa = x*1]*
+ 20 (1= Bu) Y | KaWayn = x| || f Waxn) = f (") |
+ 20, (1= B ) (KW — x*,u+y f(x*) = (I + pA)x*)
= 2ey | (I + pA) (KaWayp = ") ||| f Waxa) = f ()|
= 20 || (I + pA) (KaWoyn = x*) [l + y (%) = (I + pA) x|
+ 20 By 20 = XN | f (Wan) = £ () || + 2B = %", 1+ Y f (") = (I + pA)x")
+a||u+ yf (Waxa) = (T+pA)x|?
[(1 = B = a1+l 120 = [ + Bulln — ]
+ 2a, (1= u)yallx, - x|
+ 20, (1= B ) (K Woyn — x*, u+y f(x*) = (T + pA)x*)
= 2agya||(I+pA) (KaWnyn = x) ||l1xn = x|
= 20 || (1 + pA) (KW = x7) [l + v f (%) = (I + pA) x|

+ 20 Py el — x| + 20 fu(xn — x*, u+ yf(x7) = (I + pA)x*)
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[l yf(Waxa) = (I+ pA)x"||”
= [(1-an(1+ 7)) +2anya]llx, — x|
+ {201 = Bu) (Ka Wy = X u+ pf () = (I + pA)x”)
= 2ayal| (I +pA) (KaWyyn = x7) ||l = x|
= 20, || (I + pA) (KuWayn = ) |||+ y f (x7) = (T + pA)x"||
+ 2B (xy — x* u+yf(x*) — (I +pA)x*)
wa [+ y f(Waaea) = (1+pA)x|*)
= [1- 20 (1 + 7) + (1 + i7)” + 2a0ya] [en = x|
+ 0, {201 = Bu) (Ka Wy = " u+ yf () = (I + pA)x”)
= 2ayya|| (I + pA) (KaWyyn — x*) || [0 — x*||
= 20 || (T + pA) (KuWayn = x) |||+ y f (x") = (T + pA)x"||
+ 2B (xy — x*, u+yf(x*) = (I +pA)x*)
st |[u+ y f(Waaea) = (1+pA)x |}
= [1 =20, (1 + py — ya)] |2, — x*||?
+ {201 = B) (Ka Wy = " u+ yf () = (I + pA)x”)
+ 2B (xy — ", u+yf(x*) = (I +pA)x*)
4oy | (L )l = x|
= 2ya|| (I + pA) (KaWayn = ) [[llxn — 27|
=2|| (1 + pA) (KaWayn = x7) ||l +y f (%) = (T + pA)x"||

o+ yf Waxa) = (1 + pa)x | }.

(3.75)
Since {x,}, { f(Wnxy)}, and {K,W,y,} are bounded, there exist M > 0 such that
(1+17)lln = x°
= 2va|| (I + uA) (K, Woy, — x| ||x, — x*
yal (I +pA)( Yu =)l I (376)

= 2||(1 + pA) (KaWoym - x) ||l +y f (") = (T + pA)x"|
+ ”u +yf(Waxy) - (I+HA)x*||2 <M
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for all n > 0. It follows that

1301 = |12 < (1 = anan) ||2n — x*||* + apby, (3.77)

where
an =2(1+py —ya),
by =2(1 = Bu) (KaWnyn — x5, u+yf(x*) = (I + pA)x*) (3.78)
+ 2Bp {2y — " u+yf(x*) = (I + pA)x*) + a, M.
Applying Lemma 2.8 to (3.77), we conclude that x,, — x*. This completes the proof. m

Remark 3.2. For example, of the control conditions (C4)—(C6), weseta, =1/10n, f, =n/(n+
1). We set B, D is a 1-Lipschitz continuous and relaxed (0, 1)-cocoercive mapping, (i.e., Lg =
l=Lpandc=0=c,d=1=4d").

Then, we can choose 7 € (0,2) and 6 € (0,2) which satisfies the condition (C6) in
Theorem 3.1.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H which C +C c C
and let f be a contraction of C into itself with a € (0,1). Let ¢ be a lower semicontinuous and convex
functional from H to R and let © : H x H — R be a finite family of equilibrium functions satisfying
conditions (H1)-(H3). Let S = {S(s) : 0 < s < oo} be a nonexpansive semigroup on C and let {t,} be
a positive real divergent sequence. Let {V; : C — C}Z; be a countable family of uniformly k- strict
pseudo-contractions, let {T; : C — C}2; be the countable family of nonexpansive mappings defined
by Tix =tx+ (1 -t)Vix, forall x € C, forall i > 1,t € [k, 1), let W,, be the W-mapping defined
by (2.12), and let W be a mapping defined by (2.13) with F(W) #0. Let A be a strongly positive
linear bounded operator on H with coefficient ¥ > 0 and let 0 <y < (1 + py)/a, B: H — H bea
Lg-Lipschitz continuous and relaxed (c, d)-cocoercive mapping with d > cL3, and let D : H — H
be a Lp-Lipschitz continuous and relaxed (c', d')-cocoercive mapping with d' > ¢'L%,. Suppose that
Q:= F(S)NF(W)NMEP(©, E)NSVI(C,B,D) #0. Let u > 0, y > 0 and r > 0, which are constants.
For given x1 € H arbitrarily and fixed u € H, suppose {x,}, {yn},{zn}, and{u,} are the sequences
generated iteratively by

Ot ) + () = () + (K (tn) = K' () 15, 10)) 20, Vx € H,

zn = Pe(uy, — 6Duy,),

Yn = Pc(z, — TBz,), (379)

tn
X1 = [U+ Y f(Waxn)] + Buxn + [(1 = )] — an (I + pA)] % «[0 S(s)Wyuy,ds,

where u, = JOx, such that J© : H — H is the mapping defined by (2.22) and {a,} and {B,} are
two sequences in (0,1) for all n € N. If the functionsn: Hx H — H and K : H — R satisfy the
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conditions (C1)—(C6) as given in Theorem 3.1, then {x,} converges strongly to x* € Q, which solves
the following optimization problem (OP):

. E * % 1 * 2 _ *
min = (Ax", x") + o [lx" —ull” - h(x"), (3.80)

and (x*,y*) is a solution of the general system of variational inequality problem (1.20) such that
y* = Pc(x* - 6Dx™).

Proof. Taking N =1 in Theorem 3.1. Hence, the conclusion follows. This completes the proof.
O

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H which C +C C C
and let f be a contraction of C into itself with a« € (0,1). Let S = {S(s) : 0 < s < oo} bea
nonexpansive semigroup on C and let {t,} be a positive real divergent sequence. Let {V; : C — C}Z;
be a countable family of uniformly k-strict pseudo-contractions, let {T; : C — C}iZ; be the countable
family of nonexpansive mappings defined by Tix = tx + (1 —t)Vix, forall x € C, forall i > 1,t €
[k, 1), let W), be the W-mapping defined by (2.12), and let W be a mapping defined by (2.13) with
F(W)#@. Let A be a strongly positive linear bounded operator on H with coefficient ¥ > 0 and
let 0 <y < A+puy)/a, B: H — H bea Lg-Lipschitz continuous and relaxed (c, d)-cocoercive
mapping with d > cl:, andlet D : H — Hbea Lp-Lipschitz continuous and relaxed (c’,d')-
cocoercive mapping with d' > ¢'L%. Suppose that Q := F(S) N F(W) nSVI(C,B,D) #0. Let pu > 0
and y > 0, which are constants. For given x1 € H arbitrarily and fixed u € H, suppose {x,}, {ya},
and{z,} are the sequences generated iteratively by

zy = Pe(xy — 6Dxy),

Yy = Pc(z, — TBz,), (3.81)

tn
Xni1 = [U+ Y f(Waxn)] + Buxn + [(1 = )] — an (I + pA)] % J‘o S(s)Wyynds,

where {a,} and {p,} are two sequences in (0,1) for all n € N. If the sequence {x,} satisfy the
conditions (C1)-(C6) as given in Theorem 3.1, then {x,} converges strongly to x* € Q, which solves
the following optimization problem (OP):

.M * % 1 x 2 *
min 2(Ax , XY + 2||x ul|” = h(x"), (3.82)

and (x*,y*) is a solution of the general system of variational inequality problem (1.20) such that
y* = Pc(x* — 6Dx™).

Proof. Put ©(x,y) = ¢(x) =0 for all x,y € H and r = 1. Take K(x) = ||x||*/2 and 75(y, x) =
y —x, forall x,y € H. Then, we get u, = Pcx, = x, in Corollary 3.3. Hence, the conclusion
follows. This completes the proof. O

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H and let f be a
contraction of H into itself with a € (0,1). Let S = {S(s) : 0 < s < oo} be a nonexpansive semigroup
on C and let {t,} be a positive real divergent sequence. Let A be a strongly positive linear bounded
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operator on H with coefficient y > O and let 0 <y < (1 + py)/a, B: H — H be a Lp-Lipschitz
continuous and relaxed (c, d)-cocoercive mapping with d > cL%. Suppose that Q := F(S) N B~ 10 # 0.
Let p > 0 and y > 0, which are constants. For given x1 € H arbitrarily and fixed u € H, suppose the
{xn}, {yn}, and {z,} are the sequences generated iteratively by

Zn = X, — TBx,,

=z, —TB
Yn = Zn = T0Zn, (3.83)

tn
X1 = O [U+ Y f(X0)] + Brxn + [(1 = )] — (I + pA)] é jo S(s)ynds,

where {a,} and {P,} are two sequences in (0,1) for all n € N. If the sequence {x,} satisfy the
conditions (C1)—(C6) as given in Theorem 3.1, then {x,} converges strongly to x* € Q.

Proof. Setting T =6,C = H, D = Band W, = Py = I in Corollary 3.4, it follows from the proof
of Theorem 4.1 in [25] that B'0 = VI(H, B). Hence, the conclusion follows. This completes
the proof. O
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