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The aim of the present paper is to study the flow of nanofluid and heat transfer characteristics
between two horizontal plates in a rotating system. The lower plate is a stretching sheet and the
upper one is a solid porous plate. Copper (Cu) as nanoparticle and water as its base fluid have
been considered. The governing partial differential equations with the corresponding boundary
conditions are reduced to a set of ordinary differential equations with the appropriate boundary
conditions using similarity transformation, which is then solved analytically using the homotopy
analysis method (HAM). Comparison between HAM and numerical solutions results showed
an excellent agreement. The results for the flow and heat transfer characteristics are obtained
for various values of the nanoparticle volume fraction, suction/injection parameter, rotation
parameter, and Reynolds number. It is shown that the inclusion of a nanoparticle into the base
fluid of this problem is capable of causing change in the flow pattern. It is found that for both
suction and injection, the heat transfer rate at the surface increases with increasing the nanoparticle
volume fraction, Reynolds number, and injection/suction parameter and it decreases with power
of rotation parameter.

1. Introduction

The fluid dynamics due to a stretching sheet are important from theoretical as well as
practical point of view because of their various applications to polymer technology and
metallurgy. During many mechanical forming processes, such as extrusion, melt-spinning,
cooling of a large metallic plate in a bath, manufacture of plastic and rubber sheets, glass
blowing, continuous casting, and spinning of fibers, the extruded material issues through a
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die. Provoked by the process of polymer extrusion in which extradite emerges from a narrow
slit, Crane [1] first analyzed the two-dimensional fluid flow over a linearly stretching surface.
Later, this problem has been extensively studied in various directions, for example, for non-
Newtonian fluids, porous space, and magneto-hydrodynamics [2–5]. It is worth mentioning
that, in recent years, interests in flow and heat transfer through porous media have grown
considerably, due largely to the demands of such diverse areas such as geophysics, chemical
and petroleum industries, building construction, and nuclear reactors [6, 7]. There are very
few studies in which authors have considered the channel flow. Borkakoti and Bharali [8]
studied the two-dimensional channel flows with heat transfer analysis of a hydromagnetic
fluid where the lower plate was a stretching sheet. The flow between two rotating disks
has many important technical applications such as in lubrication. Keeping this fact in mind
Vajravelu and Kumar [9] studied the effects of rotation on the two-dimensional channel
flows. They solved the governing equations analytically and numerically. Fluid heating and
cooling are important in many industries fields such as manufacturing and transportation.
Effective cooling techniques are absolutely needed for cooling any sort of high-energy device.
Common heat transfer fluids such as water, ethylene glycol, and engine oil have limited heat
transfer capabilities due to their low heat transfer properties. In contrast, metals thermal
conductivities are up to three times higher than the fluids, so it is naturally desirable to
combine the two substances to produce a heat transfer medium that behaves like a fluid
but has the thermal conductivity of a metal.

Recently, due to the rising demands of modern technology, including chemical
production, power station, and microelectronics, there is a need to develop new types of
fluids that will be more effective in terms of heat exchange performance. Nanofluids are
produced by dispersing the nanometer-scale solid particles into base liquidswith low thermal
conductivity such as water, ethylene glycol, oils, etc. The term “nanofluid” was first coined
by Choi [10] to describe this new class of fluids. The characteristic feature of nanofluids
is thermal conductivity enhancement, a phenomenon observed by Masuda et al. [11].
Nanofluids are envisioned to describe fluids in which nanometer-sized particles (usually
less than 100 nm in size) are suspended in convectional heat transfer basic fluids. Numerous
methods have been taken to improve the thermal conductivity of these fluids by suspending
nano/microsized particles in liquids. There have been published several numerical studies
on the modeling of natural convection heat transfer in nanofluids recently such as [12–14].
Most scientific problems and phenomena are inherently in form of nonlinearity. Except a
limited number of these problems, most of them do not have exact solution. Therefore, these
nonlinear equations should be solved using the other methods. Liao [15, 16] proposed a
new asymptotic technique for nonlinear ordinary differential equations (ODEs) and partial
differential equations (PDEs), named the homotopy analysis method (HAM). Based on
the homotopy in topology, the homotopy analysis method contains obvious merits over
perturbation techniques: its validity does not depend on small/larger parameters. Thus,
the HAM method can be applied to analyze more of the nonlinear problems in science
and engineering. Another advantage of the homotopy analysis method is that it provides
larger freedom to select initial approximations, auxiliary linear operators, and some other
auxiliary parameters. This method does not need small parameters such as the Adomian
decomposition method [17] and homotopy perturbation method [18] so it can overcome the
restrictions and limitations of perturbation methods. These Analytical methods have already
been successfully applied to solve some engineering problems [19–22].

The objective of the present paper is to study the nanofluid flow and heat transfer due
to a stretching cylinder with uniform suction/injection. The nanofluid model proposed by
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Figure 1: Schematic theme of the problem geometry.

Tiwari and Das [23] is used. Copper (Cu) as nanoparticle and water as its base fluid have
been considered. The reduced ordinary differential equations are solved analytically using
the homotopy analysis method (HAM). The effects of the parameters governing the problem
are studied and discussed.

2. Flow Analysis

2.1. Governing Equations

Consider the steady flow of a nanofluid between two horizontal parallel plates when the fluid
and the plates rotate together around the axis, which is normal to the plates with a constant
angular velocity of Ω.

A Cartesian coordinate system (x, y, z) is considered as follows: the x-axis is along the
plate, the y-axis is perpendicular to it, and the z-axis is normal to the x-y plane (see Figure 1).
The origin is located at the lower plate, and the plates are located at y = 0 and y = h. The lower
plate is being stretched by two equal opposite forces so that the position of the point (0, 0, 0)
remains unchanged. The upper plate is subjected to a constant wall suction with velocity
of v0 (<0) or a constant wall injection with velocity of v0 (>0), respectively. The lower and
upper plates are maintained at constant hot (Th) and cold (T0) temperature, respectively.

The fluid is a water-based nanofluid containing Cu (copper). The nanofluid is a two-
component mixture with the following assumptions:

(i) incompressible,

(ii) no-chemical reaction,

(iii) negligible viscous dissipation,

(iv) negligible radiative heat transfer,

(v) nano-solid-particles and the base fluid are in thermal equilibrium and no slip occurs
between them.

The thermophysical properties of the nanofluid are given in Table 1 [25].
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Table 1: Thermophysical properties of water and nanoparticle [25].

ρ (kg/m3) Cp (j/kgk) k (W/m·k) β × 105 (K−1)
Pure water 997.1 4179 0.613 21
Copper (Cu) 8933 385 401 1.67

Under these assumptions and using the nanofluid model proposed by Tiwari and Das
[23], the governing equations of motion in a rotating frame of reference are

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.1)

u
∂u

∂x
+ ν

∂u

∂y
+ 2Ωw = − 1

ρnf

∂p∗

∂x
+ υnf

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.2)

u
∂v

∂y
= − 1

ρnf

∂p∗

∂y
+ υnf

(
∂2v

∂x2
+
∂2v

∂y2

)
, (2.3)

u
∂w

∂x
+ ν

∂w

∂y
− 2Ωw = υnf

(
∂2w

∂x2
+
∂2w

∂y2

)
, (2.4)

where u,v, andw denote the fluid velocity components along the x, y, and z directions, p∗ is
the modified fluid pressure, and the physical meanings of the other quantities are mentioned
in the Nomenclature. The absence of ∂p∗/∂z in (2.4) implies that there is a net cross-flow
along the z-axis. The corresponding boundary conditions of (2.1)–(2.4) are

u = ax, v = 0, w = 0 at y = 0,

u = 0, v = v0, w = 0 at y = h.
(2.5)

The effective density ρnf, the effective dynamic viscosity μnf, the effective heat capacity
(ρCp)nf, and the effective thermal conductivity knf of the nanofluid are defined as [26]

ρnf =
(
1 − φ

)
ρf + φρs, μnf =

μf(
1 − φ

)2.5 ,(
ρCp

)
nf =

(
1 − φ

)(
ρCp

)
f
+ φ

(
ρCp

)
s
,

knf
kf

=
ks + 2kf − 2φ

(
kf − ks

)
ks + 2kf + 2φ

(
kf − ks

) ,
(2.6)

where φ is the solid volume fraction of the nanoparticles.
The nondimensional variables are introduced as follows:

η =
y

h
, u = axf ′(η), ν = −ahf(η), w = axg

(
η
)
, (2.7)
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where the prime denotes differentiation with respect to η. Substituting (2.7) into (2.2)–(2.4),
we obtain

− 1
ρnfh

∂p∗

∂x
= a2x

((
f ′)2 − ff ′′ − f ′′′

RA1
(
1 − φ

)2.5 +
2Kr
R

g

)
,

− 1
ρnfh

∂p∗

∂η
= a2h

(
ff ′ +

f ′′

RA1
(
1 − φ

)2.5
)
,

(2.8)

g ′′ − RA1
(
1 − φ

)2.5(
f ′g − fg ′) + 2KrA1

(
1 − φ

)2.5
f ′ = 0. (2.9)

The dimensionless quantities in these equations are the following: A1 is the nanofluid
parameter, R is the Reynolds number, and Kr is the rotation parameter, and they are defined
as

A1 =
(
1 − φ

)
+ φ

ρs
ρf

, R =
ah2

νf
, Kr =

Ωh2

νf
. (2.10)

Eliminating the pressure gradient terms from (2.8), these equations can be reduced to

f ′′′ − RA1
(
1 − φ

)2.5(
f

′2 − ff ′′
)
− 2KrA1

(
1 − φ

)2.5
g = A, (2.11)

where A is constant. Differentiation of (2.11) with respect to η gives

fiv − RA1
(
1 − φ

)2.5(
f ′f ′′ − ff ′′′) − 2KrA1

(
1 − φ

)2.5
g ′ = 0 (2.12)

Therefore, the governing momentum equations for this problem are given in the dimension-
less form by

fiv − RA1
(
1 − φ

)2.5(
f ′f ′′ − ff ′′′) − 2KrA1

(
1 − φ

)2.5
g ′ = 0,

g ′′ − RA1
(
1 − φ

)2.5(
f ′g − fg ′) + 2KrA1

(
1 − φ

)2.5
f ′ = 0

(2.13)

and are subjected to the boundary conditions

f(0) = 0, f ′(0) = 0, g(0) = 0,

f(1) = λ, f ′(1) = 0, g(1) = 0,
(2.14)

where λ = v0/(ah) is the dimensionless suction/injection parameter.
The physical quantity of interest in this problem is the skin friction coefficientCf along

the stretching wall, which is defined as

Cf =
τw

ρfu
2
w

, (2.15)
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where τw is the shear stress or skin friction along the stretching wall, which is given by

τw = μnf

(
∂u

∂y

)
y=0

. (2.16)

Using (2.7), (2.15), and (2.16), we get

C̃f =
1

A1
(
1 − φ

)2.5 f ′′(0), (2.17)

where C̃f = (Rx/h)Cf .

2.2. Heat Transfer Analysis

The energy equation of the present problem with viscous dissipation neglected is given by

u
∂T

∂x
+ v

∂T

∂x
+ w

∂T

∂z
= αnf

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
, (2.18)

where αnf is the thermal diffusivity of the nanofluids and is defined as

αnf =
knf(

ρCp

)
nf

. (2.19)

We look for a solution of (2.18) of the following form:

θ
(
η
)
=

T − T0
Th − T0

, (2.20)

where T0 and Th are temperatures at the lower and upper plates, respectively. Substituting the
similarity variables (2.7) and (2.20) into (2.18), we obtain the following ordinary differential
equation:

θ′′ + Pr
RA2

A3
fθ′ = 0 (2.21)

subject to the boundary conditions

θ(0) = 1, θ(1) = 0. (2.22)
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Here, A2 and A3 are dimensionless constants given by

A2 =
(
1 − φ

)
+ φ

(
ρCp

)
s(

ρCp

)
f

, A3 =
knf
kf

=
ks + 2kf − 2φ

(
kf − ks

)
ks + 2kf + 2φ

(
kf − ks

) , (2.23)

and Pr = μfCp/kf is the Prandtl number.
The Nusselt number at the lower plate is defined as

Nu = − hqw
kf(T0 − Th)

, (2.24)

where qw is the heat flux from the lower plate and is given by

qw = − knf

(
∂T

∂y

)
y=0

. (2.25)

Using (2.24), (2.25), and (2.26), it can be obtained

Nu = −
(

knf
kf

)
θ′(0), (2.26)

3. The HAM Solution of the Problem

According to some previous works like [27], we choose the initial approximate solutions of
f(η), g(η), and θ(η) as follows:

f0
(
η
)
= (1 − 2λ)η3 + (3λ − 2)η2 + η,

g0
(
η
)
= 0,

θ0
(
η
)
= 1 − η,

(3.1)

and the auxiliary linear operators are

L1
(
f
)
= fiv,

L2
(
g
)
= g ′′,

L3(θ) = θ′′.

(3.2)

These auxiliary linear operators satisfy

L1

(
C0 + C1η + C2η

2 + C3η
3
)
,

L2
(
C4 + C5η

)
,

L3
(
C6 + C7η

)
,

(3.3)
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where Ci (i = 0, 1, 2, 3, 4, 5, 6, 7) are constants. Introducing nonzero auxiliary parameters �1,
�2, and �3, we develop the zeroth-order deformation problems as follows:

(
1 − p

)
L
[
f
(
η; p

) − f0
(
η
)]

= p�1N1
[
f
(
η; p

)
, g

(
η; p

)
, θ
(
η; p

)]
, (3.4)

f
(
0; p

)
= 0, f

(
1; p

)
= λ, f ′(0; p) = 0, f ′(1; p) = 1, (3.5)(

1 − p
)
L
[
g
(
η; p

) − g0
(
η
)]

= p�2N2
[
f
(
η; p

)
, g

(
η; p

)
, θ
(
η; p

)]
, (3.6)

g
(
0; p

)
= 0, g

(
1; p

)
= 0, (3.7)(

1 − p
)
L
[
θ
(
η; p

) − θ0
(
η
)]

= p�3N3
[
f
(
η; p

)
, g

(
η; p

)
, θ
(
η; p

)]
, (3.8)

θ
(
0; p

)
= 1, θ

(
1; p

)
= 0, (3.9)

where nonlinear operators N1,N2, and N3 are defined as

N1
[
f
(
η; p

)
, g

(
η; p

)
, θ
(
η; p

)]
=

∂4f
(
η; p

)
∂η4

− RA1
(
1 − φ

)2.5((
∂f

(
η; p

)
∂η

)(
∂2f

(
η; p

)
∂η2

)
f
(
η; p

)∂3f(η; p)
∂η2

)

− 2KrA1
(
1 − φ

)2.5 ∂g
(
η; p

)
∂η

,

N2
[
f
(
η; p

)
, g

(
η; p

)
, θ
(
η; p

)]
=

∂2f
(
η; p

)
∂η2

− RA1
(
1 − φ

)2.5((
∂f

(
η; p

)
∂η

)
g
(
η; p

) −
(

∂g
(
η; p

)
∂η

)
f
(
η; p

))

+ 2KrA1
(
1 − φ

)2.5 ∂f(η; p)
∂η

,

N3
[
f
(
η; p

)
, g

(
η; p

)
, θ
(
η; p

)]
=

∂2θ
(
η; p

)
∂η2

+ Pr
RA2

A3

(
∂θ

(
η; p

)
∂η

)
f
(
η; p

)
.

(3.10)

For p = 0 and p = 1, we, respectively, have

f
(
η; p

)
= f0

(
η
)
, f

(
η; 1

)
= f

(
η
)
,

g
(
η; p

)
= g0

(
η
)
, g

(
η; 1

)
= g

(
η
)
,

θ
(
η; p

)
= θ0

(
η
)
, θ

(
η; 1

)
= θ

(
η
)
.

(3.11)
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As p increases from 0 to 1, f(η; p), g(η; p), and θ(η; p) vary, respectively, from f0(η),
g0(η), and θ0(η) to f(η), g(η), and θ(η). By Taylor’s theorem and using (3.11), f(η) and
θ(η) can be expanded in a power series of p as follows:

f
(
η; p

)
= f0

(
η
)
+

∞∑
m=1

(
fm

(
η
)
pm

)
,

fm(τ) =
1
m!

∂mf
(
η; p

)
∂pm

,

g
(
η; p

)
= g0

(
η
)
+

∞∑
m=1

(
gm

(
η
)
pm

)
,

gm(τ) =
1
m!

∂mg
(
η; p

)
∂pm

,

θ
(
η; p

)
= θ0

(
η
)
+

∞∑
m=1

(
θm

(
η
)
pm

)
,

θm(τ) =
1
m!

∂mθ
(
η; p

)
∂pm

.

(3.12)

In which �1, �2, and �3 are chosen in such a way that these series are convergent at p = 1.
Convergence of the series (3.12) depends on the auxiliary parameters �1, �2, and �3.

Assume that �1 and �2 are selected such that the series (3.12) is convergent at p = 1,
then due to (3.12)we have

f
(
η
)
= f0

(
η
)
+

∞∑
m=1

(
fm

(
η
))
,

g
(
η
)
= g0

(
η
)
+

∞∑
m=1

(
gm

(
η
))
,

θ
(
η
)
= θ0

(
η
)
+

∞∑
m=1

(
θm

(
η
))
.

(3.13)

Differentiating the zeroth-order deformation (3.4), (3.6), and (3.8) m times with respect to p
and then dividing them by m! and finally setting p = 0, we have the following mth-order
deformation problem:

L1
[
fm

(
η
) − χmfm−1

(
η
)]

= �1R
f
m

(
η
)
,

f
(
0; p

)
= 0, f

(
1; p

)
= λ, f ′(0; p) = 0, f ′(1; p) = 1,

R
f
m

(
η
)

= fIV
m−1

−RA1
(
1 − φ

)2.5((
m−1∑
n=0

fm−1−nf ′′
n

)
−
(

m−1∑
n=0

fm−1−nf ′′′
n

))
− 2KrA1

(
1 − φ

)2.5
g ′
m−1,

L2
[
gm

(
η
) − χmgm−1

(
η
)]

= �2R
g
m

(
η
)
,

g
(
0; p

)
= 0, g

(
1; p

)
= 0,
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R
g
m

(
η
)

= g ′′
m−1

−RA1
(
1 − φ

)2.5((
m−1∑
n=0

gm−1−nf ′
n

)
−
(

m−1∑
n=0

fm−1−ng ′
n

))
+ 2KrA1

(
1 − φ

)2.5
f ′
m−1,

L3
[
θm

(
η
) − χmθm−1

(
η
)]

= �3R
θ
m

(
η
)
,

g
(
0; p

)
= 0, g

(
1; p

)
= 0,

Rθ
m

(
η
)
= θ′′

m−1 + Pr
RA2

A3

(
m−1∑
n=0

fm−1−nθ′
n

)
.

(3.14)

We use MAPLE software to obtain the solution of these equations. We assume �1 = �2 = �3 =
�, for instance, when φ = 0.1, Kr = 0.5, R = 0.5, λ = 0.5, and Pr = 6.2 (Cu-water). First,
deformations of the coupled solutions are presented as follows:

f1
(
η
)
= −0.0009583529265�η6 + 0.00570117560�η5 + 0.0160093065�η4

− 0.04543500228�η3 + 0.024634207�η2,

g1
(
η
)
= 0.690014107�η2 − 0.2300047024�η3 − 0.46000094046�η,

θ1
(
η
)
= 0.08477232594�η4 − 0.3390893037�η3 + 0.2543169778�η.

(3.15)

The solutions f2(η), g2(η) and θ2(η) were too long to be mentioned here, therefore, they are
shown graphically.

4. Convergence of the HAM Solution

As pointed out by Liao [28], the convergence and the rate of approximation for the HAM
solution strongly depend on the values of auxiliary parameter �. This region of � can be
found by plotting f ′′′(0), g ′(0), and θ′(0) for � (�-curve) and choosing �, where f ′′′(0), g ′(0),
and θ′(0) are constant. It is worthwhile to be mentioned that for different values of flow
parameters (φ,Kr, R, λ) a new h-curve should be plotted as using a unique �-curve for all
cases may lead to a considerable error. Therefore, in this study, we have obtained admissible
values of � for all cases but only depicted the �-curves of f ′′′(0), g ′(0), and θ′(0) for one case
in Figure 2 for brevity.

5. Results and Discussions

The governing equations and their boundary conditions are transformed to ordinary
differential equations that are solved analytically using the homotopy analysis method
(HAM) and the results compared with numerical method (fourth-order Runge-Kutta) [29].
The results obtained by the homotopy analysis method were well matched with the results
carried out by the numerical solution obtained by the four-order Runge-kutta method as
shown in Figure 3. In order to test the accuracy of the present results, we have compared the
results for the temperature profiles θ(η)with those reported by Mehmood and Ali [24]when
φ = 0 (regular or Newtonian fluid) and different values of the Prandtl number.
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0

−2

−4
−2 −1.5 −1 −0.5 0

f
′′′
(0
)

Cu-water

ħ

(a)

1

0.5

0

g
′ (

0)

Cu-water

ħ

−2 −1.5 −1 −0.5 0

(b)

−0.9

−1

−1.1

−1.2

−1.3

−1.4

−1.5

θ
′ (

0)

Cu-water

ħ

−2 −1.5 −1 −0.5 0

10th approximation
11th approximation
12th approximation

(c)

Figure 2: The � curve of (a) f ′′′(0), (b) g ′(0), and (c) θ′(0) (a) for different orders of approximation when
φ = 0.1, Kr = 0.5, R = 0.5, λ = 0.5, and Pr = 6.2, (b) for different values of φ when Kr = 0.5, R = 0.5, λ =
0., 5 and Pr = 6.2 at the 12th order of approximation and for different values of λ when Kr = 0.5, R = 0.5,
and Pr = 6.2 at the 12th order of approximation.

After this validity, results are given for the velocity, temperature distribution, wall
shear stress, and Nusselt number for different nondimensional numbers.

Figure 4 shows the effect of nanoparticle volume fraction (φ) on (a) velocity profile
and (b) temperature distribution when Kr = 0.5, R = 1, λ = 0.5, and Pr = 6.2. Effects of
suction/injection parameter (λ) on (a) velocity profile, (b) Temperature distribution, (c) skin
friction coefficient, and (d) Nusselt number when Kr = 0.5, R = 1, φ = 0.1, and Pr = 6.2
are shown in Figure 5. It has been found that when the volume fraction of the nanoparticle
increases from 0 to 0.2, the thickness of themomentum boundary and thermal boundary layer
increases (Figure 4). Figures 5(a) and 5(b) show that all boundary layer thicknesses decrease
as λ increases from negative (injection) to positive (suction) values. We know that the effect
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Figure 3: Comparison between numerical results and HAM solution results for (a) g(η) and (b) θ(η)
when Pr = 6.2; (c) temperature profiles with Mehmood and Ali [24] for φ = 0 (regular fluid), Kr = 0
(nonrotating fluid)when ϕ = 0, λ = 0.5, M = 1, R = 0.5, and Kr = 0.5.
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Figure 4: Effect of nanoparticle volume fraction (φ) on (a) velocity profile and (b) temperature distribution
when Kr = 0.5, R = 1, λ = 0.5, and Pr = 6.2.

of suction is to bring the fluid closer to the surface and, therefore, to reduce the thermal
boundary layer thickness, while for injection opposite trend is observed. As suction/injection
parameter (λ) increases, the magnetic skin friction coefficient decreases and Nusselt number
increases (Figures 5(c) and 5(d)). The sensitivity of thermal boundary layer thickness to
volume fraction of nanoparticles is related to the increased thermal conductivity of the
nanofluid. In fact, higher values of thermal conductivity are accompanied by higher values
of thermal diffusivity. The high value of thermal diffusivity causes a drop in the temperature
gradients and accordingly increases the boundary thickness as demonstrated in Figure 4(b).
This increase in thermal boundary layer thickness reduces the Nusselt number; however,
according to (2.26), the Nusselt number is a multiplication of temperature gradient and the
thermal conductivity ratio (conductivity of the of the nanofluid to the conductivity of the
base fluid). Since the reduction in temperature gradient due to the presence of nanoparticles
is much smaller than thermal conductivity ratio, an enhancement in Nusselt takes place by
increasing the volume fraction of nanoparticles as it can be seen in Figures 5(c) and 5(d).
Also Figure 5(c) indicates that increasing nanoparticle volume fraction leads to decrease in
magnitude of the skin friction coefficient.

Figure 6 displays the effects of Reynolds number (R) on (a) velocity profile, (b)
temperature distribution, (c) skin friction coefficient, and (d) Nusselt number when Kr =
0.5, λ = 0.5, φ = 0.1, and Pr = 6.2. It is worth to mention that the Reynolds number indicates
the relative significance of the inertia effect compared to the viscous effect. Thus, both
velocity and temperature profiles decrease as Re increase and in turn increasing Reynolds
number leads to increase in the magnitude of the skin friction coefficient and Nusselt number
(Figure 6).

Figure 7 shows the effects of rotation parameter (Kr) on (a) velocity profile, (b)
temperature distribution (c) skin friction coefficient, and (d) Nusselt number when R =
1, λ = 0.5, φ = 0.1, and Pr = 6.2. Increasing rotation parameter leads to Coriolis force
increase that causes both velocity and temperature profiles to increase. Also increasing
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Figure 5: Effect of suction/injection parameter (λ) on (a) velocity profile, (b)temperature distribution, (c)
skin friction coefficient, and (d) Nusselt number when Kr = 0.5, R = 1, φ = 0.1, and Pr = 6.2.

rotation parameter leads to decreasing the magnitude of the skin friction coefficient and
Nusselt number.

6. Conclusions

In the present paper the three-dimensional nanofluid flow between two horizontal parallel
plates in which plates rotate together is considered. The problem is solved analytically
using the homotopy analysis method (HAM). The results compared with numerical method
(fourth-order Runge-Kutta) results. Effects of nanoparticle volume fraction, suction/injection
parameter, Reynolds number, and rotation parameter on the flow and heat transfer
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Figure 6: Effect of Reynolds number (R) on (a) velocity profile, (b) temperature distribution, (c) skin
friction coefficient, and (d) Nusselt number when Kr = 0.5, λ = 0.5, φ = 0.1, and Pr = 6.2.

characteristics have been examined. Some conclusions obtained from this investigation are
summarized as follows.

(a) The magnitude of the skin friction coefficient increases as the rotation parameter
increases, but it decreases as each of nanoparticle volume fraction, Reynolds
number, and injection/suction parameter increases.

(b) Nusselt number has direct relationship with nanoparticle volume fraction,
Reynolds number, and injection/suction parameter, while it has reverse relation-
ship with power of rotation parameter.
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Figure 7: Effect of rotation parameter (Kr) on (a) velocity profile, (b) temperature distribution, (c) skin
friction coefficient, and (d) Nusselt number when R = 1, λ = 0.5, φ = 0.1, and Pr = 6.2.

Nomenclature

A1, A2, A3: Dimensionless constants
Cp: Specific heat at constant pressure
Cf , C̃f : Skin friction coefficients
f(η), g(η): Similarity functions
L1, L2, L3: Auxiliary linear operators
�: Nonzero auxiliary parameter
h: Distance between the plates
k: Thermal conductivity
Kr: Rotation parameter
N1,N2,N3: Nonlinear operators
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Nu: Nusselt number
p∗: Modified fluid pressure
Pr: Prandtl number
qw: Heat flux at the lower plate
R: Reynolds number
u,v,w: Velocity components along x, y, and z

axes, respectively
uw(x): Velocity of the stretching surface
v0: Suction/injection velocity.

Greek Symbols

α: Thermal diffusivity
η: Dimensionless variable
θ: Dimensionless temperature
ρ: Density
φ: Nanoparticle volume fraction
λ: Dimensionless suction/injection

parameter
μ: Dynamic viscosity
υ: Kinematic viscosity
σ: Electrical conductivity
τw: Skin friction or shear stress along the

stretching surface
Ω: Constant rotation velocity.

Subscripts

∞: Condition at infinity
nf: Nanofluid
f: Base fluid
s: Nano-solid-particles.
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