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Let {T;} Y, be N strictly pseudononspreading mappings defined on closed convex subset C of a real
Hilbert space H. Consider the problem of finding a common fixed point of these mappings and

introduce cyclic algorithms based on general viscosity iteration method for solving this problem.
We will prove the strong convergence of these cyclic algorithm. Moreover, the common fixed point

is the solution of the variational inequality ((yf — uB)x*,v - x*) <0,Vov € nfﬁl Fix (T3).

1. Introduction

Throughout this paper, we always assume that C is a nonempty, closed, and convex subset
of a real Hilbert space H. Let B : C — H be a nonlinear mapping. Recall the following
definitions.

Definition 1.1. B is said to be

(i) monotone if

(Bx-By,x-y) >0, Vx,yeC, (1.1)

(ii) strongly monotone if there exists a constant a > 0 such that
(Bx-By,x-y) Za”x—y”z, Vx,y €C, (1.2)

for such a case, B is said to be a-strongly-monotone,
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(iii) inverse-strongly monotone if there exists a constant & > 0 such that
(Bx - By,x-y) Za”Bx—By”z, Vx,y €C, (1.3)

for such a case, B is said to be a-inverse-strongly monotone,

(iv) k-Lipschitz continuous if there exists a constant k > 0 such that

|Bx - By|| < k||x-vy| VxyeC (1.4)

Remark 1.2. Let F = uB — y f, where B is a k-Lipschitz and #7-strongly monotone operator on
H with k > 0 and f is a Lipschitz mapping on H with coefficient L > 0,0 <y < un/L.Itis a
simple matter to see that the operator F is (u7 — yL)-strongly monotone over H, that is:

? V(x,y) e HxH. (1.5)

(Fx-Fy,x-y)> (un-yL)|[x -y

Following the terminology of Browder-Petryshyn [1], we say that a mapping T :
D(T)CH — His

(1) k-strict pseudocontraction if there exists k € [0, 1) such that

ITx =Tyl < Jlx -yl + kllx-Tx- (-Ty)|P, ¥xyeD@®,  (16)

(2) k-strictly pseudononspreading if there exists k € [0,1) such that
ITx = Ty| < lx = y|* + kllx = Tx = (y - Ty)|* + 2x - T,y = Ty), (A7)

forall x,y € D(T),
(3) nonspreading in [2] if

||Tx—Ty||2 < ||Tx—y||2+ |Ty - x 2 Vx,y € C. (1.8)
It is shown in [3] that (1.8) is equivalent to
Tx —Ty|]* < ||x = y||* + 2 x-Tx,y-Ty), VYx,yeC. (1.9)
y y y-1y Yy

Clearly every nonspreading mapping is O-strictly pseudononspreading. Iterative
methods for strictly pseudononspreading mapping have been extensively investigated; see
[2, 4-6].

Let C be a closed convex subset of H, and let {T;}~, be n k;-strictly pseudocontractive
mappings on C such that ﬂf\zjl Fix(T}) #0. Let x; € C and {a, },-; be a sequence in (0,1). In 7],
Acedo and Xu introduced an explicit iteration scheme called the followting cyclic algorithm
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for iterative approximation of common fixed points of {T;}%, in Hilbert spaces. They define
the sequence {x,} cyclically by

x1 = apxo + (1 — ag) Toxo;

X =a1x1 + (1 —aq)Thxy;

(1.10)
XN = an-1XN-1 + (1 — an-1)Tn-1XN-1;
xn+1 = anxn + (1 —an)Toxn;
(1.11)
In a more compact form, they rewrite x,.; as
XN+1 = ANXN T+ (1 - [XN)TNJCn, (112)

where Ty = T;, with i = n (mod N), 0 <i < N — 1. Using the cyclic algorithm (1.12), Acedo
and Xu [7] show that this cyclic algorithm (1.12) is weakly convergent if the sequence {a,,}
of parameters is appropriately chosen.

Motivated and inspired by Acedo and Xu [7], we consider the following cyclic algo-
rithm for finding a common element of the set of solutions of k;-strictly pseudononspreading
mappings {T;}~,. The sequence {x,}?, generated from an arbitrary x; € H as follows:

x1 = agy f(x0) + (I = paoB)Top,X0;
x =y f(x1) + (I — par B) Ty x3;

(1.13)
xn = anayf(xn-1) + (I = pan-1B) Ty XN-1;
xn+1 = any f(xn) + (I - panB) Ty xn;
(1.14)
Indeed, the algorithm above can be rewritten as
Xni1 = anY f(xn) + (I = pty B) Ty, X, (1.15)
where Ty, = (I = wu)I + W Tin), Ty = Ty mod N; Namely, TNy is one of T1,Ty, ..., TN

circularly.
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2. Preliminaries

Throughout this paper, we write x, — x to indicate that the sequence {x,} converges weakly
to x. x, — x implies that {x,} converges strongly to x. The following definitions and lemmas
are useful for main results.

Definition 2.1. A mapping T is said to be demiclosed, if for any sequence {x,}which weakly
converges to y, and if the sequence {Tx,} strongly converges to z, then T(y) = z.

Definition 2.2. T : H — H is called demicontractive on H, if there exists a constant a < 1
such that

||Tx—q||2 < ||x—q||2+cx||x—Tx||2, V(x,q) € H x Fix(T). (2.1)

Remark 2.3. Every k-strictly pseudononspreading mapping with a nonempty fixed point set
Fix(T) is demicontractive (see [8, 9]).

Remark 2.4 (See [10]). Let T be a a-demicontractive mapping on H with F;(T) #0 and T, =
(1-w)I + wT for w € (0, 00):

(Al) Ta-demicontractive is equivalent to
1
(x-Tx,x—q) > S -a)x- Tx|*, Y(x,q) € H x Fir(T), (2.2)

(A2) Fix(T) = Fix(To) if w #0.

Remark 2.5. According to I — T,, = w(I — T) with T being a k-strictly pseudononspreading
mapping, we obtain

w(l-k)
2

(x=Tox,x—q) > lx - Tx|?>, V(x,q) € H x Fix(T). (2.3)

Proposition 2.6 (see [2]). Let C be a nonempty closed convex subset of a real Hilbert space H, and
letT : C — C bea k-strictly pseudononspreading mapping. If Fi,(T) # @, then it is closed and convex.

Proposition 2.7 (see [2]). Let C be a nonempty closed convex subset of a real Hilbert space H, and
let T: C — C bea k-strictly pseudononspreading mapping. Then (I — T) is demiclosed at 0.

Lemma 2.8 (see [11]). Let {T,} be a sequence of real numbers that does not decrease at infinity, in
the sense that there exists a subsequence {TCy, }j>0 of {Ty} which satisfies Ty, < Tyy4q forall j > 0.

Also consider the sequence of integers {6(n)},5,, defined by

6(n) = max{k <n| Tk < Ty} (2.4)

Then {6(n)},5,, is a nondecreasing sequence verifying lim, ,,6(n) = oo, Yn > ny; it holds that
Cs(n) < CTs(my+1 and we have

T < Comy+1- (2.5)



Journal of Applied Mathematics 5

Lemma 2.9. Let H be a real Hilbert space. The following expressions hold:

() lltx + A =yl = tllx)* + A= B)lyl> - tA - t)llx-yl>, Vx,yeH, Vte[0,1],
(ii) llx + yl* < Ixl* +2(y, x +y), Vx,y € H.

Lemma 2.10 (see [6]). Let C be a closed convex subset of a Hilbert space H, and let T : H — H be
a k-strictly pseudononspreading mapping with a nonempty fixed point set. Let k < w < 1 be fixed and
define T,C — C by

Tp(x)=(1-w)(x)+wT(x), VxeC. (2.6)

Then Fix (Tw) = sz(T)
Lemma 2.11. Assume C is a closed convex subset of a Hilbert space H.

(a) Given an integer N > 1, assume, T; : H — H is a k;-strictly pseudononspreading
mapping for some k; € [0,1), (i1 =1,2,..., N). Let {A;}~, be a positive sequence such that
SN Xi = 1. Suppose that {T;} N, has a common fixed point and (N, Fix(T;) # 0. Then,

N N
Fix <Z)tiTi> = ﬂFix(Ti)- (2.7)
io1 i=1

(b) Assuming T; : H — H is a k;-strictly pseudononspreading mapping for some k; € [0,1),
(i=1,2,...,N), let T, = (1 - w)I +wT;, 1<i<N.IFOY, Fix(T;) #0, then

N
Fix (T, T, -+ Tuoy) = [ VFix(Tw,)- (2.8)
i=1

Proof. To prove (a), we can assume N = 2. It suffices to prove that Fix(F) C Fix(T1) N Fix(T2),
where F = (1-M)T; + A\T, withO <A < 1. Letx € Fi(F) and write Vi = I -Tyand V, = I — T>.
From Lemma 2.9 and taking z € Fi,(T1) N Fix(T2) to deduce that

2= x| = [[(1 = ) (z = Tyx) + A(z - To)|
= (1= W)l|z = Tyx|* + Al|z = Tox|[* = A(1 = )| Tyx - Tox|
< (=) (llz = x|+ kllx = Tix|?) + A(l1z = x> + Kl = Tox|”) (29)
— (1= )|Tix - Tox]?

= [|z = x|+ k[ (1= DIVl + MVax]?] = A(1 = )lIVax = Vo],

it follows that

A1 = )|[Vix - Vax|® < k [(1 ~ V)IVix|? + A||V2x||2]. (2.10)
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Since (1 - A)Vix + AVLox = 0, we obtain
(1= DIVixl + 4 Vx| = M1 = V) |[Vix = Vax| . (211)
This together with (2.10) implies that

(1-k)A(1 = V)|[Vix - Vax|? 0. (2.12)

Since 0 < A < 1and k < 1, we get ||Vix — Vox|| = 0 which implies Tix = Tox which in turn
implies that Tix = Tox = x since (1 — A)T1x + ATox = x. Thus, x € Fix(T1) N Fix(13).

By induction, we also claim that Fi (3N, LiTi) = NN, Fix(T;) with {1;}7, is a positive
sequence such that Zf\ll A=1,(i=1,2,...,N).

To prove (b), we can assume N = 2.Set T,,, = (1-w1)I+wT1 and Ty, = (1-w2) I +wi Ty,
0<ki<wi<1/2,i=1,2.Obviously

Fix(Tw1) N Fix (Twz) C Fix(Tw1 Twz)' (213)

Now we prove

Fix(Tw,) N Fix(Tyw,) D Fix(Teo, Twsy ), (2.14)

for all g € Fix(Ty,Tw,) and To, Tu,g = gq. If Top,q = g, then T,,,q = g; the conclusion holds.
From Lemma 2.10, we can know that Fix(Te,) N Fix(Tw,) = Fix(T1) N Fix(T2) #0. Taking p €
Pix (Twl) m Pix (T(UZ)/ then

lp = all* = Ip - T T |l” = llp = [(1 = 1) (Tuyq) + r Ti Tuq] ||
= |1 = 1) (P =~ Tnq) + 1 (p = Ti Tu) ||”
= (1= @)l = Tund|l” + @rlp = Ti T || = 01 (1 = 01) | Tunq = T Tunq|*
< (1= @)|lp = Tund||” = €1(1 = 1) || Tung = i Turq
+@n[[lp - Tundl* + k1| Tenq = TiTendl|” + 2(p = TiTenp, T - TiTun)|  (2.15)
= (1=@)||p = Twnll” = 01 (1 = @) || Tenqg = Ti T ||”
+n|[lp = Teoudll” + k1| Tenq ~ i Tunq|]
<P = Twnll” = 01 (1 = @01 = k)| Tunqg = Ti T ||®
<|lp-all” - wi1(1 - wi = k1)|| Tung — T1 Tunng ||

Since 0 < k1 < w; < 1/2, we obtain

I Te.q = T Trq|* < 0. (2.16)
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Namely, T,y,q = T1Tw,q, that is:

Tw,q € Fix(T1) = Fix(Tw,),  Twnq = Tu, T g- (2.17)

By induction, we also claim that the Lemma 2.11(b) holds. O

Lemma 2.12. Let K be a closed convex subset of a real Hilbert space H, given x € H and y € K.
Then y = Pxx if and only if there holds the inequality

(x-y,y—-2z)>0, VzeK. (2.18)

3. Cyclic Algorithm

In this section, we are concerned with the problem of finding a point p such that

N N
p€(Fix(T) =(Fix(T:), N=>1, (3.1)

i=1 i=1

where Ty, = (1 - w;)I + w;T;, {w,-}fﬁ1 €(0,1/2] and {T; }f\il are k;-strictly pseudononspreading
mappings with k; € [0,w;), (i = 1,2,...,N), defined on a closed convex subset C in Hilbert
space H. Here Fix(T.,) = {q € C : T,,,,q = q} is the set of fixed points of T;, 1 <i < N.

Let H be a real Hilbert space, and let B : H — H be #5-strongly monotone and p-
Lipschitzian on H with p > 0,77 > 0. Let 0 < u < 2n/p?, 0 <y < pu(n - (up*/2))/L = /L. Let
N be a positive integer, and let T; : H — H be a k;-strictly pseudononspreading mapping
for some k; € [0,1), (i = 1,2,...,N), such that ﬂf\zjl Fix(T;) #0. We consider the problem of
finding p € N, Fix(T;) such that

N
((yf - uB)p,v-p) <0, VYoe(Fiu(T)). (3.2)

i=1

Since MY, Fix(T;) is a nonempty closed convex subset of H, VI (3.2) has a unique
solution. The variational inequality has been extensively studied in literature; see, for
example, [12-16].

Remark 3.1. Let H be a real Hilbert space. Let B be a p-Lipschitzian and #-strongly monotone
operator on H with p > 0, 7 > 0. Leting 0 < p < 21/p* and leting S = (I - tuB) and
u(n — (up*/2)) = 7, then for Vx,y € H and t € (0,min{1,1/7}), S is a contraction.

Proof. Consider

lISx = Syl|* = (T~ tuB)x - (I - tuB)y||*
= ((I - tpuB)x = (I - tuB)y, (I - tuB)x - (I - tuB)y)

= |lx - y|I* + 242||Bx - By||”* - 2tp(x - y, Bx - By)
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< lx =yl + Pp2p?||x — y||* - 2tun||x - ||

2
<12 (a1 |-

= (1-2t7)||x — y|°

< (1-t7)%|x -y

(3.3)

It follows that
[[Sx = Sy|| < (1~ t7)]]x - y]|. (3.4)
So S is a contraction. O

Next, we consider the cyclic algorithm (1.15), respectively, for solving the variational
inequality over the set of the common fixed points of finite strictly pseudononspreading

mappings.

Lemma 3.2. Assume that {x,} is defined by (1.15); if p is solution of (3.2) withT : H — H being
strictly pseudononspreading mapping and demiclosed and {y,} C H is a bounded sequence such that
ITyn — yull — O, then

liminf((y f - uB)p, yn - p) < 0. (3.5)

Proof. By [Ty, — yull — Oand T : H — H demi-closed, we know that any weak cluster
point of {y,} belongs to nfﬁl Fix(T;). Furthermore, we can also obtain that there exists i and
a subsequence {yy, } of {y,} such thaty,, = yasj — oo (hencey € N, Fix(Ti)) and

liminf((yf = uB)p, yn = p) = lim ((rf = 1B)P, Y, ~P)- (3.6)
From (3.2), we can derive that
liminf((yf - uB)p,yn —p) = ((yf —~uB)p.¥ - p) < 0. (3.7)

It is the desired result. In addition, the variational inequality (3.7) can be written as

N
(I-pB+yf)p-p,y-p) <0, e[ \Fu(Tp). (3.8)
i=1
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So, by Lemma 2.12, it is equivalent to the fixed point equation

Py pory (I =B +yf)p = p. (3.9)
0

Theorem 3.3. Let C be a nonempty closed convex subset of H and for 1 <i < N.LetT;: H — H
be ki-strictly pseudononspreading mappings for some k; € [0,w;), w; € (0,1/2), (i =1,2,...,N),
and k = max{k; : 1 <i < N}. Let f be L-Lipschitz mapping on H with coefficient L > 0, and let
B : H — H be n-strongly monotone and p-Lipschitzian on H with p > 0, > 0. Let {a,} being a
sequence in (0, min{1,1/7}) satisfying the following conditions:

(c1) lim, _, ax,, =0,
(€2) >y an = co.

Given xo € C, let {x,},., be the sequence generated by the cyclic algorithm (1.15). Then {x,}
converges strongly to the unique element p in (Y, Fix (T;) verifying

P =Py k.- uB+Yf)p, (3.10)

which equivalently solves the variational inequality problem (3.2).

Proof. Takeap € nfﬁl Fix(T;). Let Tpyx = (1 —w)x + wTxand 0 < k <w <1/2. ThenVx,y € C,
we have

1T = Tuyll? = w||x = y||* + (1 - )| Tx = Ty||* - (1 - @) ||x - Tx = (y - Ty) |
<wllx - y|P+ (1 - w)|llx -yl +kllx - Tx - (y - Ty) | +2(x - Tx,y - Ty)]
~w(l-w)|x=Tx=(y-Ty)|
= =yl +20 - wXx = Tx,y = Ty) = (1 - w)(@ = K)||x - Tx - (y - Ty)||*

<> - y||2+2(1 —w)x-Tx,y-Ty)

2(1 - w)
=llx -yl + =5 (x - Tox,y - Tuy).

(3.11)
From p € Fi(T) and (3.11), we also have
I Texn =Pl < [lxn = pll- (3.12)
Using (1.15) and (3.12), we obtain
a1 = pll = llny (f Gen) = £ (P)) + @n (v f (p) = P) + (I = pnB) (T X = p) | 613)

<any||f(xa) = fF(P)|| + anlly f(p) = pll + (1 = anT) || 20 = p|,



10 Journal of Applied Mathematics

which combined with (3.12) and || f(x,) — f(p)|l < L||x, — p|| amounts to
w1 = pll < (1= an(z = yL)) lxn = Pl + @nlly £ (P) - PII- (3.14)

Putting M; = max{||xo — p||, llyf(p) — pll}, we clearly obtain ||x, — p|| < M;. Hence {x,} is
bounded. We can also prove that the sequences { f (x)} and {T,,, x} are all bounded.
From (1.15) we obtain that

Xns1 = Xn + n (UBxy = Y f () = (I = payB) (T X — Xn), (3.15)

hence

(Xne1 = Xn + n (UBxy =Y f (%)), Xu — p)
= (1= ) (T Xn = Xny X = P) + @ { (I = uB) (Toopy X = Xn), X = P)
(1= @) (T o~ 2050~ ) + |1~ 4B) (T~ x) 50— pll (316)
(1= @) (T %o = s % =)+ 00 (1= ) [Ty 0 = 5l 0~

= (1= an) (T Xn = Xn, Xn = P) + W) & (1 = 7) || Ti 20 — 2 || || 60 = |-
Moreover, by p € nfﬁl Fix(T;) and using Remark 2.5, we obtain

2 (3.17)

7

1
(% = Ty Xns X0 = P) 2 50001 (1= i) | % = Ty 2

which combined with (3.16) entails

(Xns1 = Xn + @ (UB = Y f) X, Xn = p) < —%ww (1= ki) (1 = @) |60 = Tpa | 10
+ Winan (1= 7) | Ty xn = x| || 0 = P
or equivalently
—(Xn = Xps1, X0 = p)
< —an((UB =y f)Xn, Xn —p) - %W[n] (1= Fepay) (1 = @) [| % = Tpg | (319)

+in) ot (1 = 7) || Ty 2n = x| |0 = p||-
Furthermore, using the following classical equality

1 1 1
(w,0) = 5l = Sl + S ll0l?, Vu,0eC, (3:20)
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and setting T, = 1/2||x,, — p||2, we have
1 2
<xn — Xn+l,Xn — P> =C - Cun + E”xn = Xpa1 |l (3.21)
So (3.19) can be equivalently rewritten as

1
Ci1-C,— E“xn - xn-*—l”2 < _an<(#B - Yf)x"’x" _p>

1 3.22
- s (1 =kp) (=) [0 = TP O
+ @i (1= )| Ty 20 = x| = |-
Now using (3.15) again, we have
l%ns1 = xull> = || (y f (xn) = pBxn) + (I = prety B) (T X — x,,)||2. (3.23)

Since B : H — H is y-strongly monotone and k-Lipschitzian on H, hence it is a classical
matter to see that

%1 = xnll* < 202y f (x0) = yan”z +2(1- anT)2||TW[n]xn - xn||2, (3.24)
which by || T, Xn — Xnll = Wnyl|xn — Ty xa|l and (1 - a,7)* < (1 - a,7) yields
S = 3l < Iy f Gen) B[P+ (1= @)ty s - Tl (3:25)
Then from (3.22) and (3.25), we have

1
Tt~ Cut w2 (1= k) (1= ) = wpy (1 = ant) ) || 20 - T[n]xn”2
2

<an(anllyf (ea) = pBa|* = (1B =y £)2%n, X = p)+e0pu (1 = DT = 2 lben — ).
(3.26)

The rest of the proof will be divided into two parts.

Case 1. Suppose that there exists ny such that {C,},,, is nonincreasing. In this
situation, {C,} is then convergent because it is also nonnegative (hence it is bounded from
below), so that lim,, _, . (Ty+1 — T,) = 0; hence, in light of (3.26) together with lim,, _, ,a, = 0
and the boundedness of {x,}, we obtain

lim ||x = Tp2cu| = 0. (327)

n—oo
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It also follows from (3.26) that

T =Tt 2 (=aul|yf (n) = B |* + ((UB = Yf )%, X = )

(3.28)
00y (1= 7) | T X = | |60 = ).
Then, by >.;7, a, = oo, we obviously deduce that
tim infat, (~atu | f (Xn) = pBal|* + (4B =y £) %n, %0 = )
(3.29)
0 (1=7) | o = x| 2 - p|]) <0,
or equivalently (as a, ||y f (x,) — yan||2 — 0)
lir{rligf((yB —yf)xXn, X —p) <0. (3.30)
Moreover, by Remark 1.2, we have
2(pun =yL)Tu+ ((UB = f)P,%n = p) < ((UB = V) Xn, % ~p), (3.31)
which by (3.30) entails
hﬂg}f(z(m ~yL)Tu+ (UB~yf)p, xu —p) <0, (3.32)
hence, recalling that lim,, _, ., C,, exists, we equivalently obtain
2(pm - yL) im T, + iminf((uB -y f)p, x» —p) <0, (3.33)
namely
2(pn - yL) im T, < ~liminf((uB —y f)p, xn = p)- (3.34)
From (3.27) and Lemma 3.2, we obtain
lir?ligf((yB -y )p,xn—p) 20, (3.35)

which yields lim,, ., C, = 0, so that {x,} converges strongly to p.
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Case 2. Suppose there exists a subsequence {Cy, } ;5o of {Ty},5 such that T,, < T,
for all k > 0. In this situation, we consider the sequence of indices {6(n)} as defined in

Lemma 2.8. It follows that Tgs(u+1) — Cs(my > 0, which by (3.26) amounts to

1 2
Wl <§ (1= Fpa) (1 = a5n)) = wpa (1~ a5<n)7)> [12¢5n) = T s |

< ason) (@sin |1y f (<o) = 1Bxsn |I* = ( (4B =¥ )Xoy, X500 = P)

+@in) (1 = T)[| T Xom) = X || 1250 = |-
By the boundedness of {x,} and lim, _, ,a, = 0, we immediately obtain
Jim [[x¢s(n) = TimXsm || =0
Using (1.15), we have

lx5(my+1 = X5l < a5 ||V f (X5m)) = uBxsm || + (1 = @) T) || Teogy X50m) = X5 ||

< s ||vf (Xom)) = uBxs) || + wpm (1 - a5 )
which together with (3.37) and lim,, _, ., = 0 yields
Tim | x5n)41 = X || = 0.
Now by (3.36) we clearly have

a5 || f (Xem) = #Bxsny || + iy (1 = 7) | T Xsny = Xom || || X6 — |

2 ((HB =Y f)Xs(m) X5 ~ P),
which in the light of (3.31) yields

2(un — yL)To(my + (4B = Y f)P, X5(n) — P)

< a5y |1 f (xsm) = pBxem||” + @in) (1= 7) | Ty X6y = Xp || || Xom) — P

hence (as limy, . o5 |y f (X5(n)) = #BX50m |I* = 0 and (3.37)) it follows that

2(pun = yL)lim supTs(ny < ~liminf((uB —yf)p, X5(n) — P)-

n— oo
From (3.37) and Lemma 3.2, we obtain

Jlim ((uB = yf)p, X5 —p) 20,

Tin Xs(n) = X5 ||,

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)
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which by (3.42) yields limsup, ,  Tswm = 0, so that lim, ., Tsy = 0. Combining (3.39),
we have lim, ., Csm+1 = 0. Then, recalling that T, < Ts)«1 (by Lemma 2.8), we get
lim, ., C, =0, so that x,, — p strongly. O

Taking k; = 0, we know that k;-strictly pseudononspreading mapping is nonspreading
mapping and i = n (mod N), 0 < i < N — 1. According to the proof Theorem 3.3, we obtain
the following corollary.

Corollary 3.4. Let C be a nonempty closed convex subset of H. Let T; : C — C be nonspreading
mappings and w; € (0,1/2), (i = 1,2,...,N). Let f be L-Lipschitz mapping on H with coefficient
L>0andlet B: H — H be n-strongly monotone and p-Lipschitzian on H with p > 0, 1 > 0. Let
{an} be a sequence in (0, min{1,1/7}) satisfying the following conditions:

(c1) lim, , ax, =0,
(€2) X5l an = o0.

Given xg € C, let {x, },-, be the sequence generated by the cyclic algorithm (1.15). Then {x,}
converges strongly to the unique element p in (X, Fix(T;) verifying

P =Poy romy (I-uB+yf)p, (3.44)

which equivalently solves the variational inequality problem (3.2).
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