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We use the auxiliary principle technique to suggest and analyze an implicit method for solving
the equilibrium problems on Hadamard manifolds. The convergence of this new implicit method
requires only the speudomonotonicity, which is a weaker condition than monotonicity. Some
special cases are also considered.

1. Introduction

Recently, much attention has been given to study the variational inequalities, equilibrium and
related optimization problems on the Riemannian manifold and Hadamard manifold. This
framework is a useful for the developments of various fields. Several ideas and techniques
form the Euclidean space have been extended and generalized to this nonlinear framework.
Hadamard manifolds are examples of hyperbolic spaces and geodesics, see [1–8] and the
references therein. Németh [9], Tang et al. [7], M. A. Noor and K. I. Noor [5], and Colao et al.
[2] have considered the variational inequalities and equilibrium problems on Hadamard
manifolds. They have studied the existence of a solution of the equilibrium problems under
some suitable conditions. To the best of our knowledge, no one has considered the auxiliary
principle technique for solving the equilibrium problems on Hadamard manifolds. In this
paper, we use the auxiliary principle technique to suggest and analyze an implicit method
for solving the equilibrium problems on Hadamard manifold. As a special case, our result
includes the recent result of Noor and Oettli [10] for variational inequalities on Hadamard
manifold. This shows that the results obtained in this paper continue to hold for variational
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inequalities on Hadamard manifold, which are due to M. A. Noor and K. I. Noor [5], Tang
et al. [7], and Németh [9]. We hope that the technique and idea of this paper may stimulate
further research in this area.

2. Preliminaries

We now recall some fundamental and basic concepts needed for reading of this paper. These
results and concepts can be found in the books on Riemannian geometry [1–3, 6].

Let M be a simply connected m-dimensional manifold. Given x ∈ M, the tangent
space of M at x is denoted by TxM and the tangent bundle ofM by TM = ∪x∈MTxM, which
is naturally a manifold. A vector field A on M is a mapping of M into TM which associates
to each point x ∈ M, a vector A(x) ∈ TxM. We always assume that M can be endowed with
a Riemannianmetric to become a Riemannianmanifold.We denote by 〈, ·, 〉 the scalar product
on TxM with the associated norm ‖ · ‖x, where the subscript x will be omitted. Given a
piecewise smooth curve γ : [a, b] → M joining x to y (i.e., γ(a) = x and γ(b) = y,) by using
the metric, we can define the length of γ as L(γ) =

∫b
a ‖γ ′(t)‖dt. Then, for any x, y ∈ M, the

Riemannian distance d(x, y), which includes the original topology on M, is defined by
minimizing this length over the set of all such curves joining x to y.

Let Δ be the Levi-Civita connection with (M, 〈·, ·〉). Let γ be a smooth curve in M. A
vector field A is said to be parallel along γ if Δγ ′A = 0. If γ ′ itself is parallel along γ , we say
that γ is a geodesic and in this case ‖γ ′‖ is constant. When ‖γ ′‖ = 1, γ is said to be normalized.
A geodesic joining x to y in M is said to be minimal if its length equals d(x, y).

A Riemannian manifold is complete, if for any x ∈ M all geodesics emanating from x
are defined for all t ∈ R. By the Hopf-Rinow Theorem, we know that if M is complete, then
any pair of points in M can be joined by a minimal geodesic. Moreover, (M,d) is a complete
metric space and bounded closed subsets are compact.

Let M be complete. Then the exponential map expx : TxM → M at x is defined by
expxv = γv(1, x) for each v ∈ TxM, where γ(.) = γv(., x) is the geodesic starting at x with
velocity v (i.e., γ(0) = x and γ ′(0) = v). Then expxtv = γv(t, x) for each real number t.

A complete simply-connected Riemannian manifold of nonpositive sectional curva-
ture is called aHadamard manifold. Throughout the remainder of this paper, we always assume
that M is an m-manifold Hadamard manifold.

We also recall the following well-known results, which are essential for our work.

Lemma 2.1 (See [6]). Let x ∈ M. Then expx : TxM → M is a diffeomorphism, and, for any two
points x, y ∈ M, there exists a unique normalized geodesic joining x to y, γx,y, which is minimal.

So from now on, when referring to the geodesic joining two points, we mean the
unique minimal normalized one. Lemma 2.1 says that M is diffeomorphic to the Euclidean
space Rm. Thus M has the same topology and differential structure as Rm. It is also known
that Hadamard manifolds and euclidean spaces have similar geometrical properties. Recall
that a geodesic triangle 	(x1, x2, x3) of a Riemannian manifold is a set consisting of three
points x1, x2, x3 and three minimal geodesics joining these points.

Lemma 2.2 (See [2, 3, 6] (comparison theorem for triangles)). Let 	(x1, x2, x3) be a geodesic
triangle. Denote, for each i = 1, 2, 3(mod3), by γi : [0, li] → M, the geodesic joining xi to xi+1, and
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αi;= L(γ ′i(0),−γ ′l (i − 1)(li − 1)), the angle between the vectors γ ′i(0) and −γ ′i−1(li−1), and li;= L(γi).
Then,

α1 + α2 + α3 ≤ π, (2.1)

l2l + l2i+1 − 2Lili+1 cosαi+1 ≤ l2i−1. (2.2)

In terms of the distance and the exponential map, the inequality (2.2) can be rewritten
as

d2(xi, xi+1) + d2(xi+1, xi+2) − 2
〈
exp−1

xi+1
xi, exp−1

xi+1
xi+2

〉
≤ d2(xi−1, xi), (2.3)

since

〈
exp−1

xi+1
xi, exp−1

xi+1
xi+2

〉
= d(xi, xi+1)d(xi+1, xi+2) cosαi+1. (2.4)

Lemma 2.3 (See [23]). Let	(x, y, z) be a geodesic triangle in a Hadamard manifoldM. Then, there
exist x′, y′, z′ ∈ R2 such that

d
(
x, y

)
=
∥∥x′ − y′∥∥, d

(
y, z

)
=
∥∥y′ − z′

∥∥, d(z, x) =
∥∥z′ − x′∥∥. (2.5)

The triangle 	(x′, y′, z′) is called the comparison triangle of the geodesic triangle 	(x, y, z), which is
unique up to isometry of M.

From the law of cosines in inequality (2.3), we have the following inequality, which is
a general characteristic of the spaces with nonpositive curvature [6]:

〈
exp−1

x y, exp−1
x z

〉
+
〈
exp−1

y x, exp−1
y z

〉
≥ d2(x, y

)
. (2.6)

From the properties of the exponential map, we have the following known result.

Lemma 2.4 (See [6]). Let x0 ∈ M and {xn} ⊂ M such that xn → x0. Then the following assertions
hold.

(i) For any y ∈ M,

exp−1
xn
y −→ exp−1

x0
y, exp−1

y xn −→ exp−1
y x0. (2.7)

(ii) If {vn} is a sequence such that vn ∈ TxnM and vn → v0, then v0 ∈ Tx0M.

(iii) Given the sequences {un} and {vn} satisfying un, vn ∈ TxnM, if un → u0 and vn → v0,
with u0, v0 ∈ Tx0M, then

〈un, vn〉 −→ 〈u0, v0〉. (2.8)
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A subsetK ⊆ M is said to be convex if for any two points x, y ∈ K, the geodesic joining
x and y is contained in K, K that is, if γ : [a, b] → M is a geodesic such that x = γ(a) and
y = γ(b), then γ((1 − t)a + tb) ∈ K, for all t ∈ [0, 1]. From now on K ⊆ M will denote a
nonempty, closed, and convex set, unless explicitly stated otherwise.

A real-valued function f defined onK is said to be convex, if, for any geodesic γ ofM,
the composition function f ◦ γ : R → R is convex, that is,

(
f ◦ γ)(ta + (1 − t)b) ≤ t

(
f ◦ γ)(a) + (1 − t)

(
f ◦ γ)(b), ∀a, b ∈ R, t ∈ [0, 1]. (2.9)

The subdifferential of a function f : M → R is the set-valuedmapping ∂f : M → 2TM

defined as

∂f(x) =
{
u ∈ TxM :

〈
u, exp−1

x y
〉
≤ f

(
y
) − f(x), ∀y ∈ M

}
, ∀x ∈ M, (2.10)

and its elements are called subgradients. The subdifferential ∂f(x) at a point x ∈ M is a closed
and convex (possibly empty) set. Let D(∂f) denote the domain of ∂f defined by

D
(
∂f

)
=
{
x ∈ M : ∂f(x)/= ∅}. (2.11)

The existence of subgradients for convex functions is guaranteed by the following
proposition, see [8].

Lemma 2.5 (See [6, 8]). Let M be a Hadamard manifold and let f : M → R be convex. Then, for
any x ∈ M, the subdifferential ∂f(x) of f at x is nonempty. That is, D(∂f) = M.

For a given bifunction F(·, ·) : K ×K → R, we consider the problem of finding u ∈ K
such that

F(u, v) ≥ 0, ∀v ∈ K, (2.12)

which is called the equilibrium problem on Hadamard manifolds. This problem was con-
sidered by Colao et al. [2]. They proved the existence of a solution of the problem (2.12) using
the KKMmaps. Colao et al. [2] have given an example of the equilibrium problem defined in
a Euclidean space whose set K is not a convex set, so it cannot be solved using the technique
of Blum and Oettli [11]. However, if one can reformulate the equilibrium problem on a
Riemannian manifold, then it can be solved. This shows the importance of considering these
problems on Hadamard manifolds. For the applications, formulation, and other aspects of
the equilibrium problems in the linear setting, see [4, 9–22].

If F(u, v) = 〈Tu, exp−1
u v〉, where T is a single valued vector filed T : K → TM, then

problem (2.12) is equivalent to finding u ∈ K such that

〈
Tu, exp−1

x v
〉
≥ 0, ∀v ∈ K, (2.13)

which is called the variational inequality on Hadamard manifolds. Németh [9], Colao et al.
[2], Noor and Oettli [10], and M. A. Noor and K. I. Noor [5] studied variational inequalities
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on Hadamard manifold from different point of views. In the linear setting, variational ine-
qualities have been studied extensively, see [5, 10, 11, 13–28] and the references therein.

Definition 2.6. A bifunction F(·, ·) is said to be speudomonotone, if and only if

F(u, v) ≥ 0,=⇒ F(v, u) ≤ 0, ∀u, v ∈ K. (2.14)

3. Main Results

We now use the auxiliary principle technique of Glowinski et al. [23] to suggest and analyze
an implicit iterative method for solving the equilibrium problems (2.12).

For a given u ∈ K satisfying (2.12), consider the problem of finding w ∈ K such that

ρF(w,v) +
〈
exp−1

u w, exp−1
w v

〉
≥ 0, ∀v ∈ K, (3.1)

which is called the auxiliary equilibrium problem on Hadamard manifolds. We note that, if
w = u, then w is a solution of (2.12). This observation enables to suggest and analyze the
following implicit method for solving the equilibrium problems (2.12). This is the main moti-
vation of this paper.

Algorithm 3.1. For a given u0, compute the approximate solution by the iterative scheme

ρF(un+1, v) +
〈
exp−1

un
un+1, exp−1

un+1
v
〉
≥ 0, ∀v ∈ K. (3.2)

Algorithm 3.1 is called the implicit (proximal point) iterative method for solving the equi-
librium problem on the Hadamard manifold. Algorithm 3.1 can be written in the following
equivalent form.

Algorithm 3.2. For a given u0 ∈ K, find the approximate solution un+1 by the iterative scheme:

ρF(un, v) +
〈
exp−1

un
yn, exp−1

yn
v
〉
≥ 0, ∀v ∈ K,

ρF
(
yn, v

)
+
〈
exp−1

yn
un+1, exp−1

un+1
v
〉
≥ 0, ∀v ∈ K.

(3.3)

Algorithm 3.2 is a two-step iterative method for solving the equilibrium problems on
Hadamard manifolds. This method can be viewed as the extragradient method for solving
the equilibrium problems.

If K is a convex set in Rn, then Algorithm 3.1 collapses to the following.

Algorithm 3.3. For a given u0 ∈ K, find the approximate solution un+1 by the iterative scheme:

ρF(un+1, v) + 〈un+1 − un, v − un+1〉 ≥ 0, ∀v ∈ K, (3.4)

which is known as the implicit method for solving the equilibrium problem. For the con-
vergence analysis of Algorithm 3.2, see [16, 19, 20].
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If F(u, v) = 〈Tu, exp−1
u v〉, where T is a single valued vector filed T : K → TM, then

Algorithm 3.1 reduces to the following implicit method for solving the variational inequali-
ties.

Algorithm 3.4. For a given u0 ∈ K, compute the approximate solution un+1 by the iterative
scheme

〈
ρTun+1 +

(
exp−1

un
un+1

)
, exp−1

un+1
v
〉
≥ 0, ∀v ∈ K. (3.5)

Algorithm 3.4 is due according to Tang et al. [7] and M. A. Noor and K. I. Noor [5]. We can
also rewrite Algorithm 3.4 in the following equivalent form.

Algorithm 3.5. For a given u0 ∈ K, compute the approximate solution un+1 by the iterative
scheme

〈
ρTun + exp−1

un
yn, exp−1

yn
v
〉
≥ 0, ∀v ∈ K,

〈
ρTyn + exp−1

un+1
un, exp−1

un+1
v
〉
≥ 0, ∀v ∈ K,

(3.6)

which is the extragradient method for solving the variational inequalities on Hadamard
manifolds and appears to be a new one.

In a similar way, one can obtain several iterative methods for solving the variational
inequalities on the Hadamard manifold.

We now consider the convergence analysis of Algorithm 3.1 and this is the motivation
of our next result.

Theorem 3.6. Let F(·, ·) be a speudomonotone bifunction. Let un be the approximate solution of the
equilibrium problem (2.12) obtained from Algorithm 3.1, then

d2(un+1, u) + d2(un+1, un) ≤ d2(un, u), (3.7)

where u ∈ K is a solution of the equilibrium problem (2.12).

Proof. Let u ∈ K be a solution of the equilibrium problem (2.12). Then, by using the speudo-
monotonicity of the bifunction F(·, ·), we have

F(v, u) ≤ 0, ∀v ∈ K. (3.8)

Taking v = un+1 in (3.9), we have

F(un+1, u) ≤ 0. (3.9)

Taking v = u in (3.2), we have

ρF(un+1, u) +
〈
exp−1

un
un+1, exp−1

un+1
u
〉
≥ 0. (3.10)
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From (3.10) and (3.9), we have

〈
exp−1

un+1
un, exp−1

un+1
u
〉
≤ 0. (3.11)

For the geodesic triangle 	(un, un+1, u), the inequality (2.3) can be written as

d2(un+1, u) + d2(un+1, un) −
〈
exp−1

un+1
un, exp−1

un+1
u
〉
≤ d2(un, u). (3.12)

Thus, from (3.12) and (3.11), we obtained the inequality (3.8), the required result.

Theorem 3.7. Let u ∈ K be solution of (2.12) and let un+1 be the approximate solution obtained from
Algorithm 3.1, then limn→un+1 = u.

Proof. Let û be a solution of (2.12). Then, from (3.8), it follows that the sequence {un} is
bounded and

∞∑

n=0

d2(un+1, un) ≤ d2(u0, u), (3.13)

then it follows that

lim
n→∞

d(un+1, un) = 0. (3.14)

Let û be a cluster point of {un}. Then there exists a subsequence {uni} such that {uui} con-
verges to û. Replacing un+1 by uni in (3.2), taking the limit, and using (3.14), we have

〈F(û, v) ≥ 0, ∀v ∈ K. (3.15)

This shows that û ∈ K solves (2.12) and

d2(un+1, û) ≤ d2(un, û) (3.16)

which implies that the sequence {un} has unique cluster point and limn→∞un = û is a solution
of (2.12), the required result.

4. Conclusion

In this paper, we have suggested and analyzed an implicit iterative method for solving the
equilibrium problems on Hadamard manifold. It is shown that the convergence analysis of
this methods requires only the speudomonotonicity, which is a weaker condition than mono-
tonicity. Some special cases are also discussed. Results proved in this paper may stimulate
research in this area.
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