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An energy conservation algorithm for numerically solving nonlinear multidegree-of-freedom
(MDOF) dynamic equations is proposed. Firstly, by Taylor expansion and Duhamel integration,
an integral iteration formula for numerically solving the nonlinear problems can be achieved.
However, this formula still includes a parameter that is to be determined. Secondly, through
some mathematical manipulations, the original dynamical equation can be further converted into
an energy conservation equation which can then be used to determine the unknown parameter.
Finally, an accurate numerical result for the nonlinear problem is achieved by substituting this
parameter into the integral iteration formula. Several examples are used to compare the current
method with the well-known Runge-Kutta method. They all show that the energy conservation
algorithm introduced in this study can eliminate algorithm damping inherent in the Runge-Kutta
algorithm and also has better stability for large integral steps.

1. Introduction

Numerical stability and algorithmic damping have been long recognized as two important
aspects that need to be carefully handled in time integration algorithms for solving dynamic
problems. Indeed, many works have been done in this area. For instance, to improve the
stability, the Generalized-α method of Chung and Hulbert [1], the HHT-α method of Hilber
et al. [2], and the WBZ-α method of Wood et al. [3] all demonstrate very good dissipation
property either at low-frequency or high-frequency ranges. In references [4–8], Fung presents
a series of time-step algorithms that are based on different mathematical and mechanical
principles and can be used to deal with linear dynamical problems. Recent works on
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numerical methods have been focusing on modeling long-term qualitative properties and
stabilities in the numerical solutions of nonlinear dynamic problems. In the past, the feature
of the energy conservation of a system has been widely used in various numerical integration
methods to achieve satisfactory results. Since the property of exact energy conservation
enables the numerical scheme to be stable without resorting to high-frequency numerical
dissipation [9], the feature of the energy conservation appears particularly attractive in
numerically solving nonlinear dynamic systems. Consequently, much effort has gone into
the development of energy conserving time-stepping schemes. By adding an additional
constraint through the energy conservation equation between adjacent time steps, Bui
proposed a modified Newmark family for nonlinear dynamic analysis [10]. Similar works
are also reported by LaBudde and Greenspan [11], Hughes et al. [12], Greespan [13], Simo
and Tarnow [14], Simo et al. [15], Greenspan [16], and Fung and Chow [17]. Interestingly,
all works cited above derived their algorithms starting with the finite difference method, and
most of them were based on Hamilton’s canonical equations of motion.

Though energy conservative methods have showed some advantages, they also might
suffer from some drawbacks in practical applications. In an attempt to obtain a stable large-
step integration, Simo and Gonzalez [9] used the energy-momentum algorithm, which was
obtained from the modification of midpoint scheme. By doing this, they risked to wrongly
approximate slowly varying solution quantities in highly oscillatory systems, which was
especially significant when fast and low modes are tightly coupled [18]. Moreover, with the
addition of the constraint on the energy conservation, one has an overdetermined system that
the exact solution has to satisfy. However, once the system is discretized and approximated in
order to solve it numerically, the overdetermined systemmay not have a solution anymore. In
other words, difficulties may occur in the multidimensional root finding of the corresponding
nonlinear system of equations [19].

In this paper, the authors proposed a time integration formula and scheme which
can maintain the system energy conservation constraint automatically. However, this
method is also different from the energy conservative methods developed previously in the
following four aspects. Firstly, the solution of the nonlinear dynamic equation was presented
analytically by Duhamel integral in the current method. Secondly, the current method
used the Taylor expansion to approximate the exact solution of the nonlinear equation.
During this process, an undetermined parameter was introduced. Thirdly, substituting the
approximate solution into the analytical solution, an iterative formula with the undetermined
parameter was derived. Finally, the energy conservation equation was established and
the undetermined parameter was obtained. In practice, how to introduce and obtain the
undetermined parameter should be carefully considered case by case, especially when the
right hand term of the nonlinear equation includes functions of velocity and time. Another
merit of the current algorithm was that it behaved very stable under large time steps.
Comparisons with the Rounge-Kutta method showed that the proposed method had much
better stabilities in solving different types of nonlinear equations.

The remainder of this paper is arranged as follows. In Section 2, a detailed process
of deriving the integral iteration formula is presented. In the iteration formula, we will
show that how an undetermined parameter is introduced into the formula. In Section 3,
the energy conservation equation is established for obtaining the algebraic expression
of the undetermined parameter. Section 4 focuses on the calculation of the multinomial
interpolation used in Section 2. Section 5 shows some representative numerical examples
which compare the current method with the popular Runge-Kutta method in terms of
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algorithmic damping and stability. Finally, some discussions and conclusions are given in
Section 6.

2. Derivation of the Integral Iteration Formula

Step-by-step time-integration algorithms are commonly used to solve dynamic equations
which mostly come from actual engineering problems. By spatial discretization using the
finite element method, a nonlinear system may be represented by a second order nonlinear
ordinary differential equation as

Mẍ +Kx = f(x, ẋ, t), (2.1)

where M, K are n-by-n constant mass and stiffness matrices, respectively. x, ẋ, ẍ, f are
vectors with rank n representing the displacement, velocity, and acceleration, respectively.
t is time. The right hand term in (2.1), f(x, ẋ, t), is the force vector that includes all external
forces such as the damping forces and the nonlinear forces. Using the matrix decomposition,
the mass matrix M can be expressed as

M = L · LT M−1 = L−T · L−1. (2.2)

Substituting (2.2) into (2.1) and multiplying by L−1, we can obtain

LT ẍ + L−1KL−T · LTx = L−1f. (2.3)

Knowing that L, L−1, LT , L−T are all constant matrices, a variable substitution can be
executed as

y = LTx, ẏ = LT ẋ, ÿ = LT ẍ. (2.4)

Substituting (2.4) into (2.3), a new dynamic systemwhich is equivalent to the original system
can be obtained as

ÿ +Ky = F(t), F(t) = L−1f(t), K = L−1KL−T . (2.5)

Let

K = K0 +D, (2.6)

where D is a diagonal matrix and its diagonal elements are the diagonal elements of matrix
K. K0 is a matrix whose diagonal elements are zero, and other elements are equal to those in
K. Note that Dii ≥ 0 forMwhich is a positive definite matrix and K is a semipositive definite
matrix. Let

Dii = d2
i . (2.7)
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Then (2.5) can be rewritten as

ÿ +Dy = F(t) −K0y. (2.8)

The separate form of the above matrix equation can be expressed as follows:

ÿi + d2
i yi = Fi(t) − ki

0y, i = 1, 2, . . . , n, (2.9)

where ki
0 is the ith row of the matrixK0. From (2.9), it is easy to see that the analytical solution

of the displacement and the velocity can be obtained by the Duhamel integral as

yi(t) = yi(tk) cosdi(t − tk) + ẏi(tk)
sindi(t − tk)

di

+
1
di

∫ t

tk

Fi(ς) sindi(t − ς)dς − 1
di

∫ t

tk

ki
0y(ς) sindi(t − ς)dς,

(2.10)

ẏi(t) = −yi(tk)di sindi(t − tk) + ẏi(tk) cosdi(t − tk)

+
∫ t

tk

Fi(ς) cosdi(t − ς)dς −
∫ t

tk

ki
0y(ς) cosdi(t − ς)dς.

(2.11)

In order to derive the time integral formula, let t = tk + τ in (2.10) and (2.11), where τ
is the integral time step, then we have

yi(tk + τ) = yi(tk) cosdiτ + ẏi(tk)
sindiτ

di
+

1
di

∫ tk+τ

tk

Fi(ς) sindi(tk + τ − ς)dς

− 1
di

∫ tk+τ

tk

ki
0y(ς) sindi(tk + τ − ς)dς,

(2.12)

ẏi(tk + τ) = −yi(tk)di sindiτ + ẏi(tk) cosdiτ +
∫ tk+τ

tk

Fi(ς) cosdi(tk + τ − ς)dς

−
∫ tk+τ

tk

ki
0y(ς) cosdi(tk + τ − ς)dς.

(2.13)

Inspecting (2.12) and (2.13), it can be found that there are still some unknown
parameters that need to be identified before the time integral formula can be carried out
numerically. They are the right hand side terms consisting of the undetermined variables
y(t) and Fi(t). The latter one may also be a function of y(t) and ẏ(t). To proceed, the Taylor
expansion formula is used to expand y(t) on the interval (tk ≤ t ≤ tk + τ) as

y(t) = y(tk) + (t − tk)ẏ(tk) +
(t − tk)2

2
ÿ(tk) +

(t − tk)3

6
a. (2.14)

In (2.14), y(t) is expanded to the third order term following exactly the Taylor
expansion process, while in calculating the fourth order term, a new variable vector a is
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introduced. It should be pointed out that although the Taylor expansion is an approximation
to the original variable y(t), (2.14) is still an exact expression of the variable y(t). This
is because the last term in (2.14) which includes the newly introduced vector a can be
interpreted to compensate for the difference between y(t) and the summation of the first three
terms in (2.14). In order to express the vector a by the variable y(t), let y1 = y(t = tk + τ), y0 =
y(t = tk). From (2.14), it can be obtained that

a =
6
τ3

(
y1 − y0 − τ ẏ0 − τ2

2
ÿ0

)
,

y(t) = N1(t)y0 +N2(t)ẏ0 +N3(t)ÿ0 +N4(t)y1,

(2.15)

where:

N1(t) = 1 − (t − tk)3

τ3
, N2(t) = t − tk − (t − tk)3

τ2
,

N3(t) =
(t − tk)2

2
− (t − tk)3

2τ
, N4(t) = β(t − tk)3(t − tk − τ) +

(t − tk)3

τ3
,

(2.16)

where an undetermined parameter β has been introduced inN4(t) to regulate the stability of
the algorithm andwill be determined by the energy conservation equation in the next section.
By t = tk, t = tk + τ in (2.14), we can obtain

y(tk) = y0, ẏ(tk) = ẏ0, ÿ(tk) = ÿ0, y(tk + τ) = y1. (2.17)

By means of multinomial interpolation, f(t) (tk ≤ t ≤ tk + τ) can be written as

f(t) = r0 + (t − tk)r1 + (t − tk)2r2 + (t − tk)3r3 + o
(
(t − tk)4

)
. (2.18)

Here we use the third order interpolation, and generally one can choose the order
of interpolation discretionarily based on solely the algorithm accuracy order that is needed.
Different interpolation order will lead to different integration formulas. Now, we will derive
the integration formulas first, and the discussion of the interpolation will be addressed
at Section 4. Using (2.5) and (2.14), the last two terms of the right hand of (2.11) can be
expressed separately as

1
di

∫ tk+τ

tk

ki
0y(ς) sindi(tk + τ − ς)dς = αi

0k
i
0y0 + αi

1k
i
0ẏ0 + αi

2k
i
0ÿ0 + αi

3k
i
0y1,

1
di

∫ tk+τ

tk

L−1
i f(ς) sindi(tk + τ − ς)dς = γi0L

−1
i r0 + γi1L

−1
i r1 + γi2L

−1
i r2 + γi3L

−1
i r3,

(2.19)
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where αi
k, γ ik, k = 0, 1, 2, 3 are scalar and can be obtained by follow polynomials

αi
0 = −

(
6 sindiτ + d3

i τ
3 cosdiτ − 6diτ

)
d5
i τ

3
,

αi
1 =

(
6diτ − d2

i τ
2 sindiτ − 6 sindiτ

)
d5
i τ

2
,

αi
2 =

(2diτ − 3 sindiτ + diτ cosdiτ)
d5
i τ

,

αi
3 =

(
6 sindiτ + d3

i τ
3 − 6diτ

)
d5
i τ

3
− β
(
d2
i τ

2 − 4 + 4 cosdiτ + diτ sindiτ
)

d6
i τ

4
,

γ i0 =
(1 − cosdiτ)

d2
i

,

γ i1 =
(diτ − sindiτ)

d3
i

,

γ i2 =

(
d2
i τ

2 − 2 + 2 cosdiτ
)

d4
i

,

γ i3 =

(
d3
i τ

3 − 6diτ + 6 sindiτ
)

d5
i

.

(2.20)

Substituting (2.20) into (2.12), we have

yi(tk + τ) = yi(tk) cosdiτ + ẏi(tk)
sindiτ

di
+ γi0L

−1
i r0 + γi1L

−1
i r1 + γi2L

−1
i r2

+ γi3L
−1
i r3 −

(
αi
0k

i
0y0 + αi

1k
i
0ẏ0 + αi

2k
i
0ÿ0 + αi

3k
i
0y1
)

(i = 1, 2, . . . , n).
(2.21)

Knowing that y1 = y(t = tk + τ), so we can write the above equation in a matrix form:

y1 = U0y0 +U1ẏ0 + γ0L
−1r0 + γ1L

−1r1 + γ2L
−1r2

+γ3L
−1r3 − α0K0y0 − α1K0ẏ0 − α2K0ÿ0 − α3K0y1,

(2.22)

where U0, U1, αk, γk (k = 0, 1, 2, 3) are diagonal matrices and their diagonal elements are
cosdiτ , sindiτ/di, αi

k
, γi

k
(i = 1, 2, . . . , n, k = 0, 1, 2, 3), respectively. From (2.22), the iterative

solution y1 can be expressed as

(I + α3K0)y1 = (U0 − α0K0)y0 + (U1 − α1K0)ẏ0 − α2K0ÿ0 + γ0L
−1r0

+ γ1L
−1r1 + γ2L

−1r2 + γ3L
−1r3.

(2.23)
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Multiplying (2.23) by Lα−1
3 , we have

L
(
α−1
3 +K0

)
y1 = Lα−1

3 (U0 − α0K0)y0 + Lα−1
3 (U1 − α1K0)ẏ0

− Lα−1
3 α2K0ÿ0 + Lα−1

3 γ0L
−1r0 + γ1L

−1r1 + γ2L
−1r2 + γ3L

−1r3.
(2.24)

Note that K0 is a matrix whose diagonal elements are zero, and other elements are
equal to those in K and αk is a diagonal matrix, so L(α−1

3 + K0) is a symmetrical matrix. The
left hand side of (2.24) can be written as

L
(
α−1
3 +K0

)
LTL−Ty1 =

(
Lα−1

3 LT + LK0LT
)
L−Ty1. (2.25)

From (2.5) and (2.6), we have

LK0LT = L ·
(
K −D

)
· LT = L · L−1KL−T · LT − LDLT = K − LDLT . (2.26)

From (2.3) and (2.26), the left hand of (2.24) can be written as

L
(
α−1
3 +K0

)
y1 =

[
K + L

(
α−1
3 −D

)
LT
]
· x1. (2.27)

All the terms in the right hand side of (2.24) can be expressed separately as

Lα−1
3 (U0 − α0K0)y0 =

[
L
(
α−1
3 U0 + α−1

3 α0D
)
LT − Lα−1

3 α0L−1K
]
· x0,

Lα−1
3 (U1 − α1K0)ẏ0 =

[
L
(
α−1
3 U1 + α−1

3 α1D
)
LT − Lα−1

3 α1L−1K
]
· ẋ0,

Lα−1
3 α2K0ÿ0 = Lα−1

3 α2L−1LK0LTL−T ÿ0 = Lα−1
3 α2L−1

(
K − LDLT

)
· ẍ0.

(2.28)

After substituting proper variables, the iteration formula in terms of the original variables
can be expressed as

[
K + L

(
α−1
3 −D

)
LT
]
· x1

=
[
L
(
α−1
3 U0 + α−1

3 α0D
)
LT − Lα−1

3 α0L−1K
]
· x0

+
[
L
(
α−1
3 U1 + α−1

3 α1D
)
LT − Lα−1

3 α1L−1K
]
· ẋ0 − Lα−1

3 α2L−1
(
K − LDLT

)
· ẍ0

+ Lα−1
3 γ0L

−1r0 + Lα−1
3 γ1L

−1r1 + Lα−1
3 γ2L

−1r2 + Lα−1
3 γ3L

−1r3.

(2.29)
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In (2.29), there is a term consisting of a double derivative. According to (2.3), the
term with the double derivative ẍ0 can be replaced by −L−TL−1Kx0 + L−TL−1f0. Finally, the
displacement iteration formula can be obtained as

[
K + L

(
α−1
3 −D

)
LT
]
· x1

= L ·
[(

α−1
3 U0 + α−1

3 α0D
)
LT − α−1

3 α0L−1K + α−1
3 α2L−1

(
K − LDLT

)
L−TL−1K

]
· x0

+ L ·
[(

α−1
3 U1 + α−1

3 α1D
)
LT − α−1

3 α1L−1K
]
· ẋ0

+ L ·
[
α−1
3 γ0L

−1 − α−1
3 α2L−1

(
K − LDLT

)
· L−TL−1

]
r0

+ Lα−1
3 γ1L

−1r1 + Lα−1
3 γ2L

−1r2 + Lα−1
3 γ3L

−1r3.

(2.30)

Substituting (2.14) and (2.15) into (2.13) and through some mathematical manipula-
tions, the velocity iteration formula can be obtained as

ẋ1 = Rτx1 + R0x0 + R1ẋ0 + L−T
[
η0L

−1 −
(
c2L−1K − c2DLT

)
L−TL−1

]
r0

+ L−Tη1L
−1r1 + L−Tη2L

−1r2 + L−Tη3L
−1r3,

(2.31)

where η0, η1, η2, η3 are diagonal matrices with diagonal elements ηi
0, η

i
1, η

i
2, η

i
3, respectively.

cm is also a diagonal matrix and its diagonal elements are cim (m = 0, 1, 2, 3). Every term in
the right hand side of (2.31) is given as bellow:

R0 = L−T
[(

V0LT + c0DLT − c0L−1K
)
+ c2L−1K − c2DLT

)
L−TL−1 ·K,

R1 = L−T
(
V1LT + c1DLT − c1L−1K

)
,

Rτ = −L−Tc3
(
L−1K −DLT

)
,

ci0 =

(
d3
i τ

3 sindiτ − 6 cosdiτ − 3d2
i τ

2 + 6
)

d4
i τ

3
,

ci1 = −
(
d2
i τ

2 cosdiτ + 6 cosdiτ + 2d2
i τ

2 − 6
]

d4
i τ

2
,

ci2 = − (1/2)
(
2diτ sindiτ + 6 cosdiτ + d2

i τ
2 − 6

)
d4
i τ

,

ci3 =

(
6 cosdiτ + 3d2

i τ
2 − 6

)
d4
i τ

3
− β
(
6diτ cosdiτ − 24 sindiτ − d2

i τ
2 + 18

)
d5
i τ

4
,

ηi
0 =

sindiτ

di
ηi
1 =

1 − cosdiτ

d2
i

ηi
2 =

2diτ − 2 sindiτ

d3
i

,

ηi
3 =
∫ tk+τ

tk

(ς − tk)3 cosdi(tk + τ − ς)dς,

(2.32)

where V0, V1 are diagonal matrices with diagonal elements −di sindiτ , cosdiτ , respectively.
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3. Energy Conservation Equation

One reason of expressing the dynamic equation in the form of (2.1) is to establish the energy
conservation equation more conveniently and more directly. The following steps illustrate
the construction of the energy conservation equation. Multiplying ẋT to both sides of (2.1),
we have

ẋTMẍ + ẋTKx = ẋT f(x, ẋ, t). (3.1)

Integrating (2.32) from tk to tk+1, we can obtain

∫ tk+1

tk

ẋTMẍdt +
∫ tk+1

tk

ẋTKxdt =
∫ tk+1

tk

ẋT fdt k = 0, 1, 2, 3, . . . , (3.2)

namely,

1
2
ẋTMẋ

∣∣∣∣
tk+1

tk

+
1
2
xTKx

∣∣∣∣
tk+1

tk

=
∫ tk+1

tk

ẋT fdt k = 0, 1, 2, 3, . . . . (3.3)

Simplifying (3.3), we can obtain an energy conservation equation between tk and
tk+1 as follows:

Tk+1 − Tk + Vk+1 − Vk =
∫ tk+1

tk

ẋT fdt k = 0, 1, 2, 3, . . . , (3.4)

where

Tk+1 =
1
2
ẋTk+1Mẋk+1, Tk =

1
2
ẋTkMẋk, V k+1 =

1
2
xTk+1Kxk+1, V k =

1
2
xTkKxk. (3.5)

Substituting (2.30) and (2.31) into the left hand side of (3.4), a polynomial of the
undermined parameter β can be easily achieved. For the right hand side of (3.4), the integral
term can be firstly decomposed into two parts as follows:

f1 =
∫ tk+1

tk

ẋTq1(x)dt, f2 =
∫ tk+1

tk

ẋTq2(ẋ, t)dt, (3.6)

where the term f1 is an integral of an autonomous system and can be integrated easily.
The ẋ(t) in term f2 can be expressed as a polynomial of time using the relationship in
(2.4) and taking the derivative of (2.15) with respect to time. Two predictive methods are
recommended for determining the unknown term y1 in (2.15). One is to let y1 = y0 + ẏ0τ and
the other is to let β = 1 in (2.23).

Then through (3.5), an algebraic equation with an undetermined parameter β can be
established and β can be numerically obtained by the Newton iteration method or other
algebraic methods. Finally, substituting β into (2.30) and (2.31), a numerical result can then
be achieved.
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4. Calculations of the Interpolation

Before giving some numerical examples, choosing the proper interpolation form of (2.18)
must be discussed because it will affect the accuracy and stability of the proposed
algorithm. In the current study, the authors use the Hermite interpolation to approximate
the r1, r2, r3, r4 in (2.18), that is,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ri0

ri1

ri2

ri3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

− 1
τ

0
1
τ

0

− 3
τ2

− 2
τ

3
τ2

− 1
τ

2
τ3

1
τ2

− 2
τ3

1
τ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fi(0, xi(0), ẋi(0))

f ′
i(0, xi(0), ẋi(0))

fi(t, xi(τ), ẋi(τ))

f ′
i(t, xi(τ), ẋi(τ))

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
. (4.1)

It should be noted that there are unknowns in the right hand term of (4.1) which are
xi(τ), ẋi(τ). The prediction of the two unknowns is shown below. For example, we can let

xi(τ) = xi(0) + ẋi(0) · τ,
ẋi(τ) = ẋi(0) + ẍi(0) · τ.

(4.2)

Then at every iteration of (3.4), the parameter β can be updated. Submitting β into
(2.30) and (2.31), a new prediction of the displacement and velocity can therefore be obtained.

5. Numerical Examples

In this section we give some numerical examples to verify the effectiveness of the proposed
algorithm, in particular, the advantage in stability of the proposed algorithm. Since (2.14)
is a fourth order Taylor expansion, the energy conservation algorithm has fourth order
accuracy. So we choose the Rounge-Kutta method as a numerical comparison. The numerical
results show the advantages of the proposed energy conservation algorithm in terms of
its integration stability and the ability to eliminate the algorithm damping inherent in the
Rounge-Kutta method.

5.1. The Oscillation of a Nonlinear Simple Pendulum

The dynamic equation of a nonlinear single pendulum without damping can be written as

ẍ +ω2
0 sinx = 0, ω2

0 = 1.0, x(0) = 1.57, (5.1)

where x denotes the angular displacement. The numerical solutions are shown in Figure 1.
From the figure we can see that the proposed energy conservation method (ECM) can keep
the numerical stability and have no computing damping under large-step comparingwith the
Rounge-Kutta (RK)method. The numerical result of parameter β is shown in Figure 2. Table 1
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Figure 1: Angular Displacement comparison between the proposed energy conservation method (ECM)
and the RK method.
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Figure 2: Value of parameter β (time step = 1.0 s).

gives the comparison of the computing efficiency. The efficiency of the proposed method is
not as good as the RK method due to the iteration of parameter β and the time needed to
compute the associated matrices. Figure 3 gives the error analysis between the ECM and the
RK under time step 1.0 s.

5.2. The Unforced Linear Vibration of the Cuboid Rigid Body with Two DOF

The structural diagram of the system is shown in Figure 4. The mass of the rigid body is m
and the length of the hemline is a. The center of mass is collocated at the geometry center
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Figure 3: The log-log plot of the error between the ECM and RK.

Table 1: Comparison of computing efficiency.

CPU Memory Integrations Steps End time Time elapsed

RK Intel core2 2.26G 2G 500000 0.001 s 500 s 5.736 s
ECM Intel core2 2.26G 2G 500 1.0 s 500 s 1m7.123 s

(point C). The mass moment of inertia around the center of mass is J and the stiffness of
the spring is k. The deformations of the two springs are x1, x2. The displacement in vertical
direction of the center of mass is xc. The angular displacement of the rigid body about the
mass center is φ. Using the above parameters, the equation of motion of the system can be
written as

⎡
⎢⎢⎣
m

4
+

J

a2

m

4
− J

a2

m

4
− J

a2

m

4
+

J

a2

⎤
⎥⎥⎦
{
ẍ1

ẍ2

}
+
[
k 0
0 k

]{
x1

x2

}
=
{
0
0

}
. (5.2)

Let m = 8, a = 1, k = 2, J = 1, x1 = 1, and x2 = −1. Figures 5 and 6 compare the
displacement (x1) and velocity (x2-dot) results predicted by the proposed method and the
RK method. It can be seen that even with a big time step 1.0 s, the proposed method still has
an accurate numerical solution but the RK method does not. Table 2 gives the comparison
of the computing efficiency. Again, the efficiency of the proposed method is lower than that
of the RK method in calculating these two degrees of freedom problem. Furthermore, it is
noticed that the RK method almost keeps the same efficiency in Sections 5.1 and 5.2.

Figure 7 gives the error analysis between the ECM and the RK under time step 1.0 s.
As Figure 7 already shows that the accuracy of the ECM is almost same as the result of RK
with a 0.001 time step, the comparison does not use the RK with a small time step.
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Figure 4: Structural diagram of the cuboid rigid body.
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Figure 5: Comparison of displacement.

5.3. The Unforced Nonlinear Oscillation of a Spring Pendulum with
Two DOF

The dynamic equation of the spring pendulum can be written as

ẍ1 + 2c1ẋ1 +ω2
1x1 − b1x1x2 = 0,

ẍ2 + 2c2ẋ2 +ω2
2x2 − b2x

2
1 = 0.

(5.3)

Figures 8 and 9 show the numerical solution under different damping. Parameters and
initial condition are given as follows:

ω1 = 1.0, ω2 = 1.5, b1 = b2 = 1.0, x1 = x2 = 0.1, ẋ1 = ẋ2 = 0.0. (5.4)



14 Journal of Applied Mathematics

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

RK time step = 1
ECM time step = 1
RK time step = 0.001

−1

−0.8

−0.6

−0.4

−0.2
d
x

2

t

Figure 6: Comparison of velocity.

10−4

10−3

10−2

10−1

100

100 101 102

t

ab
s(

d
el

t(
x
))

Figure 7: The log-log plot of the error between the ECM and RK with time step 1.0 s.

Figure 10 shows the comparison of the numerical results between ECM and RK
methods under large time steps. It is obvious that the proposed method can eliminate
algorithm damping better and provides better stability than the RK scheme. Parameters and
initial conditions used in the calculation are as follows:

c1 = c2 = 0.0, ω1 = 1.0, ω2 = 1.5,

b1 = b2 = 1.0, x1 = x2 = 0.1, ẋ1 = ẋ2 = 0.0.
(5.5)
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Figure 9: Velocity trajectory.

Table 2: Comparison of computing efficiency.

CPU Memory Integrations Steps End time Time elapsed

RK Intel core2 2.26G 2G 500000 0.001 s 500 s 5.849 s
ECM Intel core2 2.26G 2G 500 1.0 s 500 s 1m 11.741 s
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Figure 11: Displacement trajectory.

Figure 11 shows long-time response of (5.2). Parameter and initial condition is as same
as (5.4). From this figure we can see that after long-term iteration the proposed method still
keeps numerical stability under a relatively large time step. But the algorithm dampingmakes
the RK lose accuracy. Table 3 gives the comparison of the computing efficiency between RK
and the ECM algorithms. It is shown that, in solving the two degrees of freedom nonlinear
problem, the efficiency of the EMC is lower than the RK method. Moreover, comparing the
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Table 3: Comparison of computing efficiency.

CPU Memory Integrations Steps End time Time consuming

RK Intel core2 2.26G 2G 500000 0.001 s 500 s 6.655 s
ECM Intel core2 2.26G 2G 500 1.0 s 500 s 4m 18.263 s

elapsed time by the ECM in Table 2 and Table 3, it also can be seen that the computation
efficiency of the ECM is worse for calculating nonlinear problems than for linear problems.
Figure 12 shows the error analysis between the ECM and the RK under time step 1.0 s.

6. Conclusion

(1) The energy conservation algorithm has the advantage in stability and time step compared
with some numerical means because the numerical solution has been corrected by the energy
conservation equation.

(2) All examples have shown that the energy conservation method can eliminate
algorithm damping. It is also an effective means for calculating the long-term characteristics
of nonlinear dynamic systems.

(3) The proposed method conserves the angular momentum automatically. Although
the efficiency of the energy conservation method is not as good as the RK algorithm as well as
some other numerical methods discussed in the literature, the integration step is large enough
to implement long-term integration with good numerical stability.

(4) The reason of the low efficiency of the proposed method is because the iterations
need to calculate the parameter β and the time consumed in matrix computing needed by the
algorithm. The efficiency of the EMC is lower in dealing with nonlinear problems compared
with linear problems.
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