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The order of simultaneous approximation and Voronovskaja-type results with quantitative
estimate for complex g-Kantorovich polynomials (g > 0) attached to analytic functions on compact
disks are obtained. In particular, it is proved that for functions analyticin {z € C: |z| < R}, R> g,

the rate of approximation by the g-Kantorovich operators (q > 1) is of order g versus 1/n for the
classical Kantorovich operators.

1. Introduction

For each integer k > 0, the g-integer [k] q and the g-factorial [k] 4! are defined by

1-— k
—T, ifgeRr\ (1),
[Kk], = 1 for ke N, [0], =0,
(1.1)
k, ifg=1,
(k] !t:=[1],[2], - [k], forkeN, [0]!=1.
For integers 0 < k < n, the g-binomial coefficient is defined by
n [n]q!
= (1.2)
k P 9 P L
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For fixed 1# g > 0, we denote the g-derivative D, f (z) of f by

f(az) - f(2)
ICEDER

D;f(z) = (1.3)
£(0), z=0.

Let Dg be a disc Dg := {z € C : |z| < R} in the complex plane C. Denote by H (D) the
space of all analytic functions on Dg. For f € H(Dg) we assume that f(z) = >, ;»_) amz™.

In several recent papers, convergence properties of complex g-Bernstein polynomials,
proposed by Phillips [1], defined by

Buq(fiz) = Zf< >[k] xknkl 1- qu>=Zn]f<: >Pnk(qu) (1.4)

j=0 k=0

and attached to an analytic function f in closed disks, were intensively studied by many
authors; see [2] and references their in. It is known that the cases 0 < g < 1 and g > 1 are
not similar to each other. This difference is caused by the fact that, for 0 < g < 1, B, ; are
positive linear operators on C[0, 1] while for g > 1, the positivity fails. The lack of positivity
makes the investigation of convergence in the case g4 > 1 essentially more difficult than
that for 0 < g < 1. There are few papers [3-6] studying systematically the convergence of
the g-Berntsein polynomials in the case g > 1. If g > 1 then qualitative Voronovskaja-type
and saturation results for complex g-Bernstein polynomials were obtained in Wang and
Wu [5]. Wu [6] studied saturation of convergence on the interval [0, 1] for the g-Bernstein
polynomials of a continuous function f for arbitrary fixed g > 1. On the other hand, Gal
[7, 8], Anastassiou and Gal [9, 10], Mahmudov [11-13], and Mahmudov and Gupta [14]
obtained quantitative estimates of the convergence and of the Voronovskaja’s theorem in
compact disks, for different complex Bernstein-Durrmeyer type operators.

The goal of the present note is to extend these type of results to complex Kantorovich
operators based on the g-integers, in the case g > 0, defined as follows:

Kea(572) = Spte) [ (st ) 15

Notice that in the case g = 1, these operators coincide with the classical Kantorovich
operators. For 0 < g < 1 the operator K,,; : C[0,1] — CJ[0,1] is positive and for g > 1,
it is not positive. The problems studied in this paper in the case g = 1 were investigated in
[2,9].

We start with the following quantitative estimates of the convergence for complex g-
Kantorovich-type operators attached to an analytic function in a disk of radius R > 1 and
center 0.
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Theorem 1.1. Let f € H(Dg).

(i) Let 0<q<1and1<r <R Forall z € D, and n € N, one has

Z|am|m(m+ 1)r™. (1.6)

q m=1

|K"‘7(f Z) f(z)l— 2[

(ii) Lt 1 <g<R<ooand1<r <R/q. Forall z €D, and n € N, one has

0

|Kng(f;2) = f(2)] < Z aplm(m +1)g"r™. (1.7)

m=

Remark 1.2. (i) Since [n], — (1- q)’1 as n — oo in the estimate in Theorem 1.1(i) we do
not obtain convergence of K, 4(f; z) to f(z). But this situation can be improved by choosing
0<q=gn<1withg, / 1asn — oo. Since in this case [n], — o asn — oo, from
Theorem 1.1(i) we get uniform convergence in ID,.

(ii) Theorem 1.1(ii) says that for functions analytic in Dg, R > g, the rate of
approximation by the g-Kantorovich operators (g > 1) is of order 47" versus 1/n for the
classical Kantorovich operators.

Let f € H(IDg). Let us define

- 1- D, ’
12 222f’(z) a-=) fﬂﬂ (Z)), if |z| < g, R>g>1,
Ly(fiz) = 1 (1.8)
%f’(z)+¥f”(z), if |z <R, 0<qg<1.
It is not difficult to show that
© [Tl’l] _m ©
Li(fi2) = 40-2) 3, an—
m=1 q - m=1
(1.9)
=g, an([l,+-+[m-1],)z"(1 - mlg> 1
m=1
Here we used the identity
[m]q -m
e e (1.10)

The next theorem gives Voronovskaja-type result in compact disks, for complex g-
Kantorovich operators attached to an analytic function in D, R > 1 and center 0.
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Theorem 1.3. Let f € H(Dg).
(i) Let 0<qg<1land1<r <R Forall ze€ D, and n € N one has

1 ) 28+q71 &
Kug(f;2) = f(2) - 1]f( - f()‘ *qq 3 anlm =171
(1.11)
(ii) Letl<q<R<ooand1Sr<R/q2.ForallzE]DrandneN,onehas
Kuq(fi2) = f(2) - [n+1] Ly(fiz)| < —]ng a|m?(m —1)*q"" 1™, (1.12)

Remark 1.4. (i) In the hypothesis on f in Theorem 1.3(i) choosing 0 < g, < 1 with g, /' 1 as
n — oo, it follows that

lim [n +1], NKng, (fi2) - f(z)]_1 2z (Z)+Z(12—Z)

n— oo

£(2) (1.13)

uniformly in any compact disk included in the open disk Dx.

(ii) Theorem 1.3(ii) gives explicit formulas of Voronovskaja-type for the g-Kantorovich
polynomials for g > 1.

(iii) Obviously the best order of approximation that can be obtained from the estimate
Theorem 1.3(i) is O(1/ [n]én) and O(1/n?) for g = 1, while the order given by Theorem 1.3(ii)
is O(1/ qZ”), q > 1, which is essentially better.

Next theorem shows that L,;(f;z), g > 1, is continuous about the parameter g for
f € H(]D)R),R> 1.

Theorem 1.5. Let R > 1and f € H(Dg). Then foranyr, 0 <r <R,

Jim Ly (fr2) = La(f;2) (1.14)

uniformly on D,.

As an application of Theorem 1.3, we present the order of approximation for complex
g-Kantorovich operators.

Theorem 1.6. Let1<g< R, 1<r <R/q2 (or0<q<1, 1<r<R)and f € H(Dg). If fisnota
constant function then the estimate

[ Knq (f) = fIIr— Crq(f), meN (1.15)

+1

holds, where the constant C,4(f) depends on f, q and r but is independent of n.
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2. Auxiliary Results

Lemma 2.1. Let g > 0. Foralln € N, m € NU {0}, z € C one has

L &/m g [nl] ,
Kantens2) = 22 ) riyrm 1y @2 @1

where e, (z) = z™.

Proof. The recurrence formula can be derived by direct computation.

- N qf[k]]tm—l n Sk
Kug(em; z) = %Pn,k(@}ZI( > e 177 kank(z)Z< >[n+1] o D)
q[nl} (k1)
]=0< )[n+1 1" (m - ]+1>Z Pnk()

r q'[nl} ‘
]_ZO< )[n+1] "m-j+1) Bua(ej;2).

Ms

(2.2)
O
Lemma 2.2. Forall z€D,, r > 1 one has
|Knq(em;z)| <™, n,meN. (2.3)
Proof. Indeed, using the inequality |B,, 4(ej; z)| < 7l (see [3]), we get
z /m ¢/ [n]]
K, ms < . B, i
Kaseni| < 27 Grrigrg 7y Boa(er )
(2.4)
1 m<m> o T+q[n],\"
< - Vg nlr = ———2 ) =
[+ 1] ]z(; j )7 < [n+1],
O

Lemma 2.3. Foralln,meN, z e C,1#q > 0 one has

z(1-z)
[n],

& ml 1 jin+1], _
[1’l+1 m+1 Z( > qm<1_ q(m_’_—l)[n]q>Bnlq(€er).

(2.5)

Knﬂ(emﬂ;z) = DqKn,q (em; z) + ZKn,q(em; z)
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Proof. We know that (see [2])

z(1-2z)

[n] DB, 4 (ej;z) =Bng (ej+1;z) —2zByq (ej;z). (2.6)
q

Taking the derivative of the formula (2.1) and using the above formula we have

2(1 - 2) L &/m g [nl] z(1-z) )

[n—]quKn,q(em/ Z) - ]Z()(] > 71 N 1 (m ] 4 1) [n]q Danﬂ(el’Z)
= (m [”]]
- ;é(]) FES. ey (Bug(ejs1;2) - 2Bug(eiz))  (2.7)

m+1 j—l [Tl]j_l . '
= 2 <] 1> e 17 (m ]+ 2) By4(ej; z) — 2Ky q(em; 2).
It follows that
Ky g(ems1;z) = Z([ln—LZ)DqKn,q (em; z) + zKy 4(em; z)

j

[+ 1];"+1(m -j+2)

31(’”) s Buatei)
= -1/ [n+1] (m j+2) Buqlesi

z(1-2z2) 1

B e R PR T e 3)
™ m+1 g [nll" (m+1)q[n], - j[n+1], .
+§( j )[n+1];”(m—j+2) (m+1)[n+1]q n,q(ej,z)
1-
= Z([n—]qZ)DqKn,q (em; z) + ZKn,q(em; z)
& (m+1 gmlt (m+1)gn], - jln+1], |
+]ZO< j >[n+1]q (m ]+2) (m+1)[n+1]q n,q(ejrz).
Here we used the identity
m\ [(m+1 j
<i—1>_< j )(m+1)' (2.9)
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For m € NU {0} define

2) — 12z 2422y me
Knglem:2) =em(z) = 51 mq], ™" 7 gy, M0 DET HO<a <l
En,m(z) =
' 1-2z gz" (1 -z) _
Kn,q(Em; Z) - €m(Z) - m []] Tl]q, if q> 1.
(2.10)
Here it is assumed that Z?:l [jl,=0.
Lemma 2.4. Let n, m € N,
a) If 0 < q < 1, one has the following recurrence formula:
z(1 - z)
En,m(z) = —Dq (Kn,q(em—li Z) - em—l(z)) + ZEn,m—l(Z)
[,
m-—1 [m—l]q 1 1-2z m—1
" <[n+1]q ", )7 TR (2.11)
ifn], mg[n], -jln+1
3 Gy B e
[n+1]q j=0 (m_]+1) mq[n]q
b) If g > 1, one has
()—Z(1 Z)D(K (em-1;2) = em-1(2)) + zE ()+¥m1(1 )
nm [ ]q q nq €m-1,2 Em-1\Z ZEynm-1(Z [ ] [11+1] z
1-2z i gnly  mqlnl, - jln+1],
_ ZM B, .(ei;z).
2[n+1], [n+1 g:j( )(m j+1) mq[n], 1(€j;2)
(2.12)

Proof. We give the proof for the case q > 1. The case 0 < g < 1 is similar to that of g > 1.
(b) It is immediate that E,, ,,,(z) is a polynomial of degree less than or equal to m and
that E, 0(z) = E;,1(z) =0
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Using the formula (2.5), we get

z(1-2z2) [m_]']q 1
Enm(z) = ——=——=D;(Kpqs(em-1;z) — em-1(z)) + zZ"(1-z
( ) [n]q q( q( 1 ) 1( )) [n]q ( )
1-2z m2, z"2(1-z)
+z <En,m_1(Z) + m(m — ].)Z Zl n+—1]q
(2.13)
_1-22 ”’Z gz"1(1-z)
2[n+1]q = q [n+1]q
m in j mg[n] —j[n+1
Z( )(mq[ L 1 el ]an,q(ei/'Z)-
= j+1) mq(n],
A simple calculation leads us to the following relationship:
z(1-2z2) [m_l]q 4
Enm(z) = ————=D (K (em-1;2) —em-1(2)) + zEym-1(z) + ————z""" (1 -z
_ m in j mg[n], —jn+1
S 1722w Z( ) a'lnly atnl, 1 ]an,q(e,-;z),
2[n+1], n+1 = (m-j+1) mq[n],
(2.14)
which is the desired recurrence formula. ]

Remark 2.5. Lemmas 2.3 and 2.4 are true in the case g = 1. In the formulae, we have to replace
g-derivative by the ordinary derivative.

3. Proofs of the Main Results

We give proofs for the case g > 1. The case 0 < g <1 and g = 1 are similar to that of g > 1.

Proof of Theorem 1.1. The use of the above recurrence we obtain the following relationship:

z(1-z)
[n],

Kiq(emiz) —em(2) = DKy q(emr1;2) + 2(Kyg(em-r1;2) — em-1(2))
1 N q [n]j mq[n], —jln+1] (3.1)
(m) 9 9 q Bn,q (ej; z).

MUEREE (m—-j+1)  mqln],

LM
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We can easily estimate the sum in the above formula as follows:

&ttt (1 ..
["+1];"7_Zo<j>q][n]q(m—j+1)(1 m mq[n]q>B”'q(e”Z)

m-1 B Tl . . m=114, m-1
<1 <m_ 1)LL’.”" 1LY |Bug(e )+ T
[n+1]7 = j m—-jm-j+1 m  mgq[n], [n+1]7
m-1
<2m<q[n]q+1> +qm_1[n];n_1 mo 2m+l
= [+ 117 TSI

(3.2)

It is known that by a linear transformation, the Bernstein inequality in the closed unit disk
becomes

Viz| <gr, r>1, (3.3)

m
[Pn(@)] < 1Pl

(where ||P|| gr = max{|P,(z)| : |z| £ gr}) which combined with the mean value theorem in
complex analysis implies

Pn(qz) — Pu(2)
|Dg(Pm; z)| = % o S g (3.4)

m
<[Pl < %”Pm”

for all |z| < r, where P, (z) is a complex polynomial of degree < m. From the above recurrence
formula (3.1), we get

zl[l -z 2m+1
|Kng(em: 2) — em(2)| < Bl l%n]q ||DqKn,q(em—1;Z)| 12l Kng(em-1;2) — em-1(2)| + [n+ 1]qrm
r(l+r)ym-1 2m+1
Koglem-1)| . +7|Kng(em-1;z) — em-1(z)| + "
g, ar naCCm )l Knateni2) = ena @l gy
2(m-1) ,,4 2m +1
< K > _ : N 7 m m m
< r| n,q(em 1/Z) €m 1(Z)| + [n]q [7’1 + 1]qr

4m
< r|Kn,q(em—l; Z) — em_l(z)l + _qmrm'

[n],
(3.5)
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By writing the last inequality for m = 1,2, ..., we easily obtain, step by step, the following:

dm dm-1) 1 ma 24(m—2) o o 1 4
Kulem;2) —en(2)| < ——qg"r"+r————=g" """ +r" ———2g" " 1 r
| < ], ], T,
= iqmrm(m+m—1+-~+1) < 2m(m+ 1)
[n]q [n]q
(3.6)
Since K, 4(f; z) is analytic in Dg, we can write
Kng(f;z) = D, amKnq(em;z), z€Dg, (3.7)
m=0

which together with (3.6) immediately implies for all |z| < r

|Kn,q(ff' Z) - f(z)l Z|am| |an(em/ z) - em(z i] Z |Cin|m(m + 1) (qr)m (3.8)
m=0 m=1 O

Proof of Theorem 1.3. A simple calculation and the use of the recurrence formula (2.5) lead us
to the following relationship:

m-1],

z(1-2z) [
[l ln+ 1],

[,

L om . 1 q" [y .
e, e ) (1 ey >B’”(e’"’ !

m—1 m-1
! q [n]q . 1 . m-1
T2+, < e 1>B"'q‘em-1fz> + m@w(em-ﬂ) -="7)

(m—1)q"2[n])"?
21y

z™ (1 - z)

Eym(z) = Dq (Kn,q(em—l; Z) — em-1 (Z)) +zE, m1(z) +

n, (emfl} Z)
q

m2<> gnl, malnl, -jln+1],

(m-j+1) mq(n], Buq(ej;z)

j=0

(3.9)
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Firstly, we estimate I3, Is. It is clear that
[m_l]q
Ll < ———— "1 +7),
SR EEST]
(3.10)
m-—1 m-—1
|IS| < ( )2 |Bn,q(3m—1} Z)| < —( )
2[n+1]q 2[n +1]
Secondly, using the known inequality
[Txr <D 0-x0), 0<xe<1 (3.11)
k=1 k=1
to estimate Is, I, I9.
|Is| < 1- |Brg(em; 2)| < m-1 m
o= n+1 [n+1] P T A
qm™ '[n ]m ! m-—1
< 1- B, o(emr1;2)| < ———— ™1
el < 2[n+1]q [n+1]7" >| a(en-1;2)| 2[n+1];
(3.12)
m-2 j n j . . .
bl < o Z(m 2) i (ALY R N,
= (m-j)y(m-j-1) (m-j+1) m  mq[n],
2m(m -1)[n+1]772 _2mm-1) ,
[n+1]7" [n+1];
Finally, we estimate I3, I;. We use [2, Theorem 1.1.2]
|Iy] + |I7] < ! |z = Buq(e ‘z)|+;B (em-1;z) — 2™
T [n+1], A 2[n+1], 17"
(3.13)

2[m - 1]q(m -1 .
[l [n+ 11,

[m-2l,m-2) |
[n],[n+1],
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Using (3.6), (3.10), (3.12), and (3.13) in (3.9) finally we have (m > 3)

-1
Eun] £ 11Dy (Ko 2) e (3) | B (G + %W(l +n)
+2[m—1]q(m—1)rm+ Mol me1 ., mo2med)
[n],[n+1], [n+1]2 2[n+1]2 [n],[n+1],
(m 1) o1, 2m(m — 1)
2[n+1] [n+1]
r(l+rym-1 10m[m —1]
[n]q qr ”Kn,q(em—l) — €m-1 ”qr + rlEn,m—l (2)] + [n—];qr
(m =1)(1+7) 20m =) o) - 10m[m-1],
< [n] [n] q2 1 14 r|Epm-1(z)| + —[n]f, r
4m(m—1)2 2m._.m 10m(m_1) m.m
< rlEn,mfl (Z)l + [1’1]5 [n];;
14m?(m-1)* ,
< rlEn,m—l (Z)l + [1’1]5
(3.14)
As a consequence, we get
20 1\2
Ep(2)] < 22" oy (3.15)
[n];
This inequality combined with
Kng(fi2) = £(2) - n+1 Ly(/.2)| < Slanl|Enn(z) (3.16)

immediately implies the required estimate in statement.

Note that since f® = 3%, a,,m(m —1)(m - 2)(m - 3)z™* and the series is absolutely
convergent for all |z| < R, it easily follows the finiteness of the involved constants in the
statement. O

Proof of Theorem 1.6. For all z € Dg and n € N, we get

Kna(172) 1) = G| B 072) e (K (9 = 0 a9 ) |
(3.17)
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We apply
IF +Gll, 2 [IIFll, = IGII,| > [IF]l, = IGII, (3.18)
to get
K0 C) =11, 2 g W), = 01l K2 - - o) |
(3.19)

Because by hypothesis f is not a constant in Dy, it follows ||L;(f; z)||, > 0. Indeed, assuming
the contrary, it follows that L,(f;z) =0 forall z € Dg that is

m-1

i am<% - z)mzm_1 + i am [j]qzm‘l(l —z) =

m=1 m=1 j=1

(3.20)

j=1 =1

m m-1
_a1+a1+z< (m+1)am - am+am+1z g~ am []']q>zm:0

for all z € Dg \ {0}. Thus a,, =0, m =1,2,3,.... Thus, f is constant, which is contradiction
with the hypothesis.
Now, by Theorem 1.3, we have

[+ 1]y | Kng(f;2) = f(2) = Ly(fi2)

+1

(3.21)
% ] i| am|m?(m —1)2g*""r™ — 0 as n — co.
q q m=2

Consequently, there exists n; (depending only on f and r) such that for all n > n; we have

ILq(fr 2N, = [+ 10 || Kug (f3:2) = f(2) = [+1] q(fz> %IIL(fz)II,, (3.22)

which implies

1 Knqg(f) = £, 2 IIL (£, ¥Ynxm. (3.23)

n+1

For1<n<mn;-1,wehave

1
n+1

1Kna(H =11l 2 ]([n+11 1Knq(F) = £1I,) = Mou(f)>0,  (3.24)
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which finally implies that

1
| Kng(f) = £, 2 [n+—1]qC"‘7(f)’ (3.25)
for all n, with C, 4(f) = min{M,1(f), ..., Myn-1(f), (1/2)|ILg(f; 2, }- O
Proof of Theorem 1.5. Proof is similar to that of Theorem 1.3 [5]. O
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