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Some new Kantorovich-type inequalities for Hermitian matrix are proposed in this paper. We
consider what happens to these inequalities when the positive definite matrix is allowed to be
invertible and provides refinements of the classical results.

1. Introduction and Preliminaries

We first state the well-known Kantorovich inequality for a positive definite Hermite matrix
(see [1, 2]), let A € M, be a positive definite Hermitian matrix with real eigenvalues A; <
Ay <+ <Ay Then

(A +4)2

RS 1.1
4hr, 1)

1< x*Axx* A lx <

for any x € C", ||x|| = 1, where A* denotes the conjugate transpose of matrix A. A matrix
A € M, is Hermitian if A = A*. An equivalent form of this result is incorporated in

()‘n - )‘1)2

1.2
40, 12

0<x*Axx*Alx-1<

for any x € C", ||x|| = 1.
Attributed to Kantorovich, the inequality has built up a considerable literature.
This typically comprises generalizations. Examples are [3-5] for matrix versions. Operator
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versions are developed in [6, 7]. Multivariate versions have been useful in statistics to assess
the robustness of least squares, see [8, 9] and the references therein.

Due to the important applications of the original Kantorovich inequality for matrices
[10] in Statistics [8, 11, 12] and Numerical Analysis [13, 14], any new inequality of this type
will have a flow of consequences in the areas of applications.

Motivated by the interest in both pure and applied mathematics outlined above
we establish in this paper some improvements of Kantorovich inequalities. The classical
Kantorovich-type inequalities are modified to apply not only to positive definite but also to
invertible Hermitian matrices. As natural tools in deriving the new results, the recent Griiss-
type inequalities for vectors in inner product in [6, 15-19] are utilized.

To simplify the proof, we first introduce some lemmas.

2. Lemmas

Let B be a Hermitian matrix with real eigenvalues p; < po < --- < p,, if A - B is positive
semidefinite, we write

A>B, (2.1)

thatis, \; > p;,i=1,2,...,n. On C", we have the standard inner product defined by (x,y) =
Sty xiy;, where x = (x1,...,x,)" € C"and y = (y1,...,yn)" € C".

Lemma 2.1. Lef a, b, ¢, and d be real numbers, then one has the following inequality:
<a2 - b2> <c2 - d2> < (ac - bd)>. (2.2)

Lemma 2.2. Let A and B be Hermitian matrices, if AB = BA, then

2
AB < M (2.3)
4
Lemma 2.3. Let A>0,B >0, if AB = BA, then
AB>0. (2.4)

3. Some Results

The following lemmas can be obtained from [16-19] by replacing Hilbert space (H, (-, -)) with
inner product spaces C", so we omit the details.

Lemma 3.1. Let u, v, and e be vectors in C", and |le|| = 1. If a, B, 6, and y are real or complex
numbers such that

Re(fe —u,u—ae) >0, Re(be —v,v—ye) >0, (3.1)
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then

[(u,0) — (u,e)(e,v)| < jI(ﬁ —a)(6-7) - [Re(fe —u,u—ae)Re(6e —v,v-ye)]/*. (32)

Lemma 3.2. With the assumptions in Lemma 3.1, one has

5
(1, 0) - (u,e)(e,v)| < }I(ﬁ—a)(y—(ﬁ) —|(u,e) - “ZLﬂ”(v,@ - %‘ (3.3)

Lemma 3.3. With the assumptions in Lemma 3.1, if Re(fa) > 0, Re(6Yy) > 0, one has

p-alls-vl
s[Re(pm) Re(or)|

[(u,v) = (u,e){e,v)| < u,e)(e,v)l|. (3.4)

Lemma 3.4. With the assumptions in Lemma 3.3, one has

|(ulv> - (u/e><elv>|

(3.5)
1/2
<{(Ja+pl-2[Re(B@)]"*) (16 + v -2[Re(67)]*) } " Tl(u,e)(e, 0}
4. New Kantorovich Inequalities for Hermitian Matrices
For a Hermitian matrix A, as in [6], we define the following transform:

C(A) = (M = A)Y(A - M4I). 4.1)

When A is invertible, if A1A,, > 0, then,

C(A‘1> = <%11 - A‘1> (A-l - %1) (4.2)

Otherwise, A1, <0, then,

C<A’1> = < A:HI - A’1> (A’l - i]) (4.3)

where

M <S4 <0< Agyr €00 S e (4.4)

From Lemma 2.3 we can conclude that C(A) > 0and C(A™!) > 0.
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For two Hermitian matrices A and B, and x € C", ||x|| = 1, we define the following

functional:
G(A,B;x) = (Ax,Bx) - (Ax,x)(x, Bx).
When A = B, we denote
G(A;x) = [|Ax|* - (Ax, x)?,

forx € C", ||x|| = 1.

Lemma 4.1. With notations above, and for x € C", ||x|| = 1, then

0 < (C(A)x,x) < (*;—*1)2
if Ly > 0,
0< <C(A-1)x,x> < %,
if ki <0,

. Mt = )’
0 (C(a)xx) s QR

Proof. From C(A) > 0, then
(C(A)x,x) > 0.
While, from Lemma 2.2, we can get

()Ln - /\1)2
4

C(A) = (M — A)(A - M) < L.

Then (C(A)x,x) < (A, — A1)?/4is straightforward. The proof for C(A™) is similar.

Lemma 4.2. With notations above, and for x € C", ||x|| = 1, then

x*Axx Ay - 1|2 < G(A; x)G<A’1;x>.

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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Proof. Thus,

x*Axx*Alx - 1|2 = x*((x*A_1x>I - A’1>((x*Ax)I - A)x ’

) (4.13)
< ” ((x*A*1x>I— A*1>x|| ((x* Ax)I — A)x]|?,
while
((x* Ax) - A)x]|? = x* <(x*Ax)2I ~2(x*Ax)A + A2>x
= x*A%x - (x* Ax)*
(4.14)
= || Ax|[* - (Ax, x)?
= G(A;x).
Similarly, we can get ||((x*A™'x)] — A™})x||> = G(A™}; x), then we complete the proof. O

Theorem 4.3. Let A, B be two Hermitian matrices, and C(A) > 0, C(B) > 0 are defined as above,
then

(GCA Bix)| < 0= 40) (o = ) = [(C(A), ) (CBYx, 0],

IG(A, B; x)| < }L(An—h)(#n - 1) - |<<A— & ;An>x1x>”<<3— M ;”")x,x>

7

(4.15)
forany x € C", ||x|| = 1.
If Ay >0, ppy > 0, then
Ay = A1) (pn —
G, B < Sn U 4 B,
4 [()‘n-}‘l) (,un,ul)]
1/2
G| < { (14 + Al = 200" ) (12 + aa| = 2(uapa) ") } 7 [1( A, ) (Bx, x) 17,
(4.16)

forany x € C*, ||x|| = 1.

Proof. The proof follows by Lemmas 3.1, 3.2, 3.3, and 3.4 on choosing u = Ax, v = Bx, and
e=x,p=Ay, a=1,6=p,,and y = 1, x € C", ||x|| = 1, respectively. O
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Corollary 4.4. Let A be a Hermitian matrices, and C(A) > 0 is defined as above, then

G ) € 3 (= 11)? -~ (C(A)x ), (4.17)
2

Gl < (-7 = |( (4= 25221 x) [ (4.18)
forany x € C*, ||x|| = 1.
If MAy, >0, then

(= 1a)? 2

< 419

|G(A/x)| — 4(.)\‘")‘1) |<Ax1x>| 4 ( )

IG(A; 01 < (1M + Aal = 2V/A1k, ) [(Ax, )1, (4.20)
forany x € C*, ||x|| = 1.

Proof. The proof follows by Theorem 4.3 on choosing A = B, respectively. O

Corollary 4.5. Let A be a Hermitian matrices and C(A™') > 0 is defined as above, then one has the
following.
If MA, > 0, then

- Ay = Ay)? .
|G(A 1;x)| < W - <C(A 1)x,x>, (4.21)
ECEVIE e (Gl
6(a )|« S| (4 42
|G(ax)| < <M;x"| -2 ;An>|<A-1x,x>|, (4.24)

forany x € C", ||x|| = 1.
If A, <O, then

6(a752)] € ST (e (4, ), 4.2
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where C(A™Y) = ((1/ A1) — AV (AT = (1/ M), and
B 2 2
|G<A—1;x)| < M - K(A—1 - M1>x,x> ) (4.26)
4(AgAks1) 2hedes
forany x € C", ||x|| = 1.
Proof. The proof follows by Corollary 4.4 by replacing A with A~!, respectively. O
Theorem 4.6. Let A be an nxn invertible Hermitian matrix with real eigenvalues .y < Ay <--- < Ay,
then one has the following.
If \A, >0, then
B An = Ap)?
At ALy 1| « K= M)” -1 427
x*Axx* A lx 1| < V{(C(A)x,x)(C(A)x, x), (4.27)
. Au—Ap)? A+ PR PRy |
I = (S (R
x*Axx*A T x 1|_ 2000 | A 5 I)x,x A ZJ\n)LlI x,x )|,
(4.28)
Y
x*Axx* A x — 1| < M(Ax,x) <A‘1x,x>, (4.29)
4()Ln~)tl)
2
VAl = VIl
x*Axx* A x - 1' < < ) \/(Ax,x)(A*lx,x), (4.30)
VA
forany x € C", ||x|| = 1.
If \Ay, <O, then
B An = A1) (bt = M)
* * 1, < ( 1 _ 1 )
X*Axx*A'x - 1| < ] \/(C(A)x,x)(C(A )x, x), (4.31)
where C(A™") = (1/ M) T = AT (AT = (1/M0)]),
_ (A = M) (Mes1 = Aie)
X*Axx*Alx -1 <
| a 4| A A |
L Ll (4.32)
+An - k t Akl
(o (- o
' < < 2 2M1 Ak
Proof. Considering
2
x*Axx*Alx -1| < G(4; x)G<A’1;x>. (4.33)




8 Journal of Applied Mathematics

When A4, > 0, from (4.17) and (4.21), we get

X" Axx* A x - 1|2 < {}I(An — )2 - (C(A)x,x)}{% - <C(A-1>x,x>}. (4.34)
nil

From (a2 — b?)(c? - d?) < (ac - bd)?, we have

(-)Ln - -)Ll )2

2
200 VI(CA)x, x)(C(A)x,x)] } , (4.35)

2
xX*Axx* A x - 1| < {

then, the conclusion (4.27) holds.
Similarly, from (4.18) and (4.22), we get

2 2
x*Axx*Alx - 1| < {}L(An — )% - ‘<<A _h ;)L"I>x,x> }
12 2
e (R =Ty
4(Anhr) 2An 1

S (o (R

I

(4.36)
then, the conclusion (4.28) holds.
From (4.19) and (4.23), we get
e Axx Ay 1 < G =) e O = ) (A7) ? (4.37)
T 4(h) ' 4(Anh1) AN

then, the conclusion (4.29) holds.
From (4.20) and (4.24), we get

x*Axx*A’lx—liz < (I + Al —2\/J\1/\n>|(Ax,x)|<M;LJ;)L"' o1 >|<A1x,x>,
vV
1 1 (4.38)

then, the conclusion (4.30) holds.
When A1, <0, from (4.17) and (4.25), we get

x*Axx*Alx - 1|25 { 111(1,1 — )2 = (C(A)x, x) } {Z‘("T):‘ll)f - <C(A-1)x,x>}, (4.39)

then, the conclusion (4.31) holds.
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)

From (4.18) and (4.26), we get

2
x*Axx* A x - 1| < {}L(An - )Ll)z - |<<A - 4 ;A"I)x,x>

{()Lk—/\kﬂ) '<<A_1_)Lk+1+)tk1>x/x> 2}
4()‘k}lk+1) 2hed e (4.40)
< { (A = A1) (Mgee1 — Ak)
- 4N e a1 ]
A+ A, PERR IR 2
A((a- 2w [( (a7 - i )w)] |

then, the conclusion (4.32) holds. O

Corollary 4.7. With the notations above, for any x € C", ||x|| = 1, one lets

1A = {0 = 1) = (C(A)x, ),

. Ll , (4.41)
Ga(4; )] = = (= A1) - K(A— 1t "I>x,x>
4 2
If A, > 0, one lets
(-)‘n_)ll)2 2
IG3(A; x)| = —————[(Ax, x)[",
Ga(A;0] = (I + Al =201k, ) [(Ax, )]
IF A, >0
1 1. _ ()‘n - )ll)z _ -1
|G (A ,x>| = —4()»71)»1)2 <C<A )x,x>,
2 2
|G2<A_1;x>| = A= i) 1\1)2 - ‘<<A‘1 _Ahth +A"I>x,x> ,
4(A,01) 20, M
(4.43)

2

4

6 (a)| = % (A%

_ M+, _
ot (asa)] = (B -2 Y ()
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If A, <O, then

o2 (am)] = S (o(a ) x), (449

where C(A™Y) = (1/ M) = AN (A = (1/0)]), and

_ 2 2
|Ge<A—1,.x>|:M_‘<<A-1_M1)x,x> (445)
4()Lk/\k+l) 2hedest
Then, one has the following.
If A, >0,
x Axx A7x - 1] <4/GH (A1) GH (A ), (4.46)
where
G*"(A; x) =min{G1(A;x),G2(A; x),G3(A;x),Gs(A; x)},
(4.47)
G'(A;x) = min{ G <A‘11; x>, G? (A‘l; x>, G? (A‘l; x>, G* (A‘l; x> }
If A, <0
x* Axx ATl - 1] £4/G(4;1)G* (A x), (4.48)
where
G°(A;x) = min{G1(4A; x), G2(A; x)},
(4.49)

G*(A;x) = min{G5 (A‘l;x>, G <A‘1;x> }

Proof. The proof follows from that the conclusions in Corollaries 4.4 and 4.5 are independent.
O

Remark 4.8. 1t is easy to see that if 11 > 0, A, > 0, our result coincides with the inequality
of operator versions in [6]. So we conclude that our results give an improvement of the
Kantorovich inequality [6] that applies to all invertible Hermite matrices.

5. Conclusion

In this paper, we introduce some new Kantorovich-type inequalities for the invertible
Hermitian matrices. Inequalities (4.27) and (4.31) are the same as [4], but our proof is simple.
In Theorem 4.6, if A; > 0, A, > 0, the results are similar to the well-known Kantorovich-type
inequalities for operators in [6]. Moreover, for any invertible Hermitian matrix, there exists a
similar inequality.
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