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Very recently, Ahmad and Yao (2009) introduced and considered a system of generalized resolvent
equations with corresponding system of variational inclusions in uniformly smooth Banach spaces.
In this paper we introduce and study a general system of generalized resolvent equations with
corresponding general system of variational inclusions in uniformly smooth Banach spaces. We
establish an equivalence relation between general system of generalized resolvent equations and
general system of variational inclusions. The iterative algorithms for finding the approximate
solutions of general system of generalized resolvent equations are proposed. The convergence
criteria of approximate solutions of general system of generalized resolvent equations obtained
by the proposed iterative algorithm are also presented. Our results represent the generalization,
improvement, supplement, and development of Ahmad and Yao corresponding ones.

1. Introduction and Preliminaries

It is well known that the theory of variational inequalities has played an important role in
the investigation of a wide class of problems arising in mechanics, physics, optimization
and control, nonlinear programming, elasticity, and applied sciences and so on; see, for
example, [1-7] and the references therein. In recent years variational inequalities have been
extended and generalized in different directions. A useful and significant generalization
of variational inequalities is called mixed variational inequalities involving the nonlinear
term [8], which enables us to study free, moving, obstacle, equilibrium problems arising
in pure and applied sciences in a unified and general framework. Due to the presence of
the nonlinear term, the projection method and its variant forms including the technique of
the Wiener-Hopf equations cannot be extended to suggest the iterative methods for solving
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mixed variational inequalities. To overcome these drawbacks, Hassouni and Moudafi [9]
introduced variational inclusions which contain mixed variational inequalities as special
cases. They studied the perturbed method for solving variational inclusions. Subsequently,
M. A. Noor and K. I. Noor [10] introduced and considered the resolvent equations by virtue of
the resolvent operator concept and established the equivalence between the mixed variational
inequalities and the resolvent equations. The technique of resolvent equations is being used
to develop powerful and efficient numerical techniques for solving mixed (quasi)variational
inequalities and related optimization problems. At the same time, some iterative algorithms
for approximating a solution of some system of variational inequalities are also introduced
and studied in Verma [11]. Pang [12], Cohen and Chaplais [13], Binachi [14], Ansari and
Yao [15] considered a system of scalar variational inequalities and Pang showed that the
traffic equilibrium problem, the Nash equilibrium, and the general equilibrium programming
problem can be modeled as a system of variational inequalities. As generalizations of system
of variational inequalities, Agarwal et al. [16] introduced a system of generalized nonlinear
mixed quasi-variational inclusions and investigated the sensitivity analysis of solutions for
the system of generalized mixed quasi-variational inclusions in Hilbert spaces. In 2007,
Peng and Zhu [17] considered and studied a new system of generalized mixed quasi-
variational inclusions with (H,#)-monotone operators and Lan et al. [18] studied a new
system of nonlinear A-monotone multivalued variational inclusions. Furthermore, for more
details in the related research work of this field, we invoke the readers to see, for instance,
[19-30]. Very recently, Ahmad and Yao [31] introduced and considered a new system of
variational inclusions in uniformly smooth Banach spaces, which covers the system of
variational inclusions in Hilbert spaces considered by [18]. They established an equivalence
relation between this system of variational inclusions and a system of generalized resolvent
equations, proposed a number of iterative algorithms for this system of variational inclusions,
and also gave the convergence criteria.

Let E be a real Banach space with its norm || - ||, E* the topological dual of E, and d the
metric induced by the norm || - ||. Let CB(E) (resp., 2F) be the family of all nonempty closed
and bounded subsets (resp., all nonempty subsets) of E and D(:,-) the Hausdorff metric on
CB(E) defined by

D(A,B) = max{supd(x,B),supd(A,y)}, (1.1)

X€EA y€B

where d(x,B) = inf,cgd(x,y) and d(A,y) = infyead(x,y). We write by ] : E — 2F" the
normalized duality mapping defined as

Jx)={feE: (x.f)=IlxIP = [ fI*}, Vxe€E, (12)

where (:,-) denotes the duality pairing between E and E*.
The uniform convexity of a Banach space E means that for any € > 0, there exists 6 > 0,
such that forany x,y € E, ||x|| <1, |lyll £1, ||x — y|| = € ensure the following inequality:

[|x+y| <2(1-6). (1.3)
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The function

) X+
6E(e) = mf{l - w el =1yl =1 |lx -y = e} (1.4)

is called the modulus of convexity of E.
The uniform smoothness of a Banach space E means that for any given e > 0, there
exists 6 > 0 such that

[l +yll + llx -~ vl

V<) (1.5
holds. The function
x+ vyl +|[x-
TE(t) = sup{ I+ vl 5 lx -l -1: x|l =1,y = t} (1.6)

is called the modulus of smoothness of E.

It is well known that the Banach space E is uniformly convex if and only if 6g(e) > 0
for all € > 0, and it is uniformly smooth if and only if lim;_,o7g(¢) /t = 0. All Hilbert spaces,
L, (or I,) spaces (p > 2), and the Sobolov spaces wh, (p > 2) are 2-uniformly smooth, while,
for1<p<2, L, (orl,) and W}, spaces are p-uniformly smooth.

Proposition 1.1 (see [15]). Let E be a uniformly smooth Banach space. Then the normalized duality
mapping | : E — 2F is single-valued, and for any x,y € E there holds the following:

@) llx+ Yl < %l +2(y, J (x + y)),
(iD) (x ~y, J(x) = J () < 2C*7e(4llx ~ ylI/C), where C = \/|lx|* + |yl* /2.

Definition 1.2 (see [32]). A mapping g : E — E is said to be

(i) k-strongly accretive, k € (0,1), if for any x,y € E, there exists j(x —y) € J(x - y)
such that

(g(x)-g(W),j(x-y)) 2 kllx-y|* (1.7)

(i) Lipschitz continuous if for any x, y € E, there exists a constant A, > 0, such that

I8¢) =g (W)l < Agllx = wll- (1.8)

Definition 1.3 (see [13]). A set-valued mapping A : E — 2F is said to be

(i) accretive, if for any x, y € E, there exists j(x—vy) € J(x—y) such that for all u € A(x)
and v € A(y),

(u-v,j(x-y))20; (1.9)
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(ii) k-strongly accretive, k € (0,1), if for any x,y € E, there exists j(x —y) € J(x - y),
such that for all u € A(x) and v € A(y),

(u-v,j(x-y)) >kl|lx-y|* (1.10)

(iii) m-accretive if A is accretive and (I + pA)(E) = E, for every (equivalently, for some)
p > 0, where [ is the identity mapping (equivalently, if A is accretive and (I +
A)(E) = E). In particular, it is clear from [9] that if E = H is a Hilbert space, than
A : E — 2F is an m-accretive mapping if and only if it is a maximal monotone

mapping.
Definition 1.4 (see [31]). Let M : E — 2F be an m-accretive mapping. For any p > 0, the
mapping J 1’:4 : E — E associated with M defined by

Jo(x)=(I+pM) ' (x), Vx€E (1.11)

is called the resolvent operator.

Definition 1.5 (see [33]). The resolvent operator J f/f : E — E is said to be a retraction if
(T+pM) o (I+pM)7'(x) = (I+pM)"'(x), VxeE. (1.12)

It is well known that J#, is a single-valued and nonexpansive mapping.

Definition 1.6 (see [10]). A set-valued mapping H : E — CB(E) is said to be D-Lipschitz
continuous if for any x, y € E, there exists a constant Ap,, > 0 such that

D(H(x), H(y)) < A, [lx - y|- (1.13)

Let E; and E; be two real Banach spaces, S : Ey xE;, — Eiand T : E{ xE, — E;
single-valued mappings,and G : E; — 2B, F: E;, — 25, H:E; — 2Biand V: E, — 2B
any four multivalued mappings. Let M : E; — 2Fi and N : E; — 2F2 be any nonlinear
mappings, m : E; — Ey, n: E; — E,, f:Ey — Ejand g: E; — E; nonlinear mappings
with f(E;) N D(M) #0 and g(E>) N D(IN) #0, respectively. Then we consider the problem of
finding (x,y) € E1 x E5, (s,v) € G(x) x F(y), (u,t) € H(x) x V(y) such that

m(y) € S(s,v) + M(f (%)), (1.14)
n(x) € T(u,t) + N(g(y)), |

which is called a general system of variational inclusions. In particular, if m(y) = 0 €
Ei, n(x) =0 € E;, G(x) = p(x) and V(y) = q(y), wherep : Ey — Ejandgq: E;, — E;
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are single-valued mappings, then the general system of variational inclusions (1.14) reduces
to the following system of variational inclusions

0€5(p(x),v) + M(f(x)),

0 € T(u,q(y)) + N(3(¥)), (19

which was considered by Lan et al. [18] in Hilbert spaces and studied by Ahmad and Yao
[31] in Banach spaces, respectively.

Proposition 1.7 (see [31, Lemma 2.1]). (x,y) € E; x E;, u € H(x), v € F(y) is a solution of
the system of variational inclusions (1.15) if and only if (x,y, u, v) satisfies

fx) =T (f(x) - pS(p(x),v)), p>0,

§() = I\ (8() ~yT(wq(v))), y>0. (116)

Proposition 1.8 (see [31, Proposition 3.1]). The system of variational inclusions (1.15) has a
solution (x,y,u,v) with (x,y) € E1 x Ey, u € H(x) and v € F(y) if and only if the following
system of generalized resolvent equations

S(p(x),0) +p 'R, (2) =0, R\, =1-J, p>0, 17
T(u,q(y)) +y 'Ry (z") =0, Ry =I-J%, y>0, '

has a solution (2, 2", x,y,u,v) with (x,y) € Ey xE;, u€ H(x), ve€ F(y), 2 € Eyand 2" € E;,
where f(x) = J5(2), g(y) = JN(2") and 2’ = f(x) - pS(p(x),v), 2" = g(y) - yT(u,q(y)).

Based on the above Propositions 1.7 and 1.8, Ahmad and Yao [31] presented
the following algorithm and established the following strong convergence result for the
sequences generated by the algorithm.

Algorithm 1.9 (see [31, Algorithm 3.1]). For given (xo,v0) € Ei x Ep, up € H(xp), vg €
F(y), z, € E1 and zj € E,, compute {z, },{z]}, {xx}, {yx}, {ux}, and {ovy} by the iterative
scheme:

fxx) = Jhi(2),
g(yw) = I\ (z0),

u € H(xx) : |uga — ukll < D(H (x41), H(xk)),
vk € F(yi) © lvke — okll < D(F (yia1), F (i),
Ziar = f(x6) = pS(p(xk), vk),

20 = g(yk) = YT (uk, q(yx)), k=0,1,2,....

(1.18)

Theorem 1.10 (see [31, Theorem 3.1]). Let E; and E; be two real uniformly smooth Banach spaces
with modulus of smoothness Tg, (t) < C1t? and T, () < Cot? for C1,Ca > 0, respectively. Let H :
Ey — CB(Ey), F : E; — CB(Ey) be D-Lipschitz continuous mappings with constants Ap,, and
Ap,, respectively, and let M : E; — 251, N : E — 2F2 be m-accretive mappings such that the
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resolvent operators associated with M and N are retractions. Let f : Ey — E1, §: E, — E; be both
strong accretive with constants a and f, respectively, and Lipschitz continuous with constants 61 and
0y, respectively. Let p : Ey — E1, q: Eo — Ej be Lipschitz continuous with constants A, and A,,
respectively, and let S : Ey x E; — E;, T : Ey x Ey — Ej be Lipschitz continuous in the first and
second arquments with constants As,, As, and Ar,, \r,, respectively.

If there exist constants p > 0 and y > 0, such that

<B’+VE+V@<1’

0
1-B
(1.19)
"
0< % < 1,

where B' = \/1-2a+64C152, B" = \/1-2p+64C,6% and 6, = (1 + pAs,Ap)/ (1 - p(As, Ay +
As,Ap;)), 02 = (1 + pAs,Ap,)/(1 = p(As, Ay + As,Ap;)), 03 = (1 + yApAg)/(1 = y(AnApy, +
A1, Ag)), 014 =yAr,Ap, /(1 = y(Ar, Ap,;, + A1y Ag)), then there exist (x,y) € E1 x E;, u € H(x), v €
F(y) and (2, 2") € Ey x E, satisfying the system of generalized resolvent equations (1.17) (in this
case, (x,y,u,v) is a solution of system of variational inclusions (1.15)), and the iterative sequences
{zi ) Az} (e Ayw ), {uk ), and {or ) generated by Algorithm 1.9 converge strongly to ', 2", x, y, u,
and v, respectively.

In this paper we introduce and study a general system of generalized resolvent
equations with corresponding general system of variational inclusions in uniformly smooth
Banach spaces. Motivated and inspired by the above Proposition 1.8, we establish an
equivalence relation between general system of generalized resolvent equations and general
system of variational inclusions. By using Nadler [34] we propose some new iterative
algorithms for finding the approximate solutions of general system of generalized resolvent
equations, which include Ahmad and Yao’s corresponding algorithms as special cases to
a great extent. Furthermore, the convergence criteria of approximate solutions of general
system of generalized resolvent equations obtained by the proposed iterative algorithm are
also presented. There is no doubt that our results represent the generalization, improvement,
supplement, and development of Ahmad and Yao corresponding ones [31].

2. Main Results

Let E; and E; be two real Banach spaces, let S: E; xE, — Ejand T : E; x E; — Ej be single-
valued mappings, and let G : E; — 251, F: E;, — 2B:, H: E; — 2Biand V : E, — 2B
be any four multivalued mappings. Let M : E; — 2Fi and N : E; — 2F2 be any nonlinear
mappings, m : E;, — E;, n: Ey — E;, f: E; — Ejand g: E; — E; nonlinear mappings
with f(E;) N D(M) #0 and g(E>) N D(IN) #0, respectively. Then we consider the problem of
finding (x,y) € E1 xEy, (s,v) € G(x) xF(y), (u,t) € H(x)xV(y), z' € E;, 2" € E; such that

S(s,v) +p'RY(Z) =m(y), p>0,
@2.1)
T(ut)+y 'R (z") =n(x), y>0,

where R‘;VI =1- ]5\7/1, RL =1- ]]Y\] and ]]’Z,I, ]]Y\] are the resolvent operators associated with M
and N, respectively.
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The corresponding general system of variational inclusions of (2.1) is the problem
(1.14), that is, find (x,y) € E1 x E3, (s,v) € G(x) x F(y), (u,t) € H(x) x V(y) such that

m(y) € S(s,v) + M(f(x)),

2.2
n(x) € T(u,t) + N(g(y)). 22)

Proposition 2.1. (x,y) € E1 x Ey, (s,v) € G(x) x F(y), (u,t) € H(x) x V(y) are solutions of
general system of variational inclusions (1.14) if and only if (x,y,u, v, s, t) satisfies

f@0) =Ty lf () - p(S(s,0) -m(y))],  p>0,

2.3
¢ = L[ ) - YT -n(x)], 1 >0. 23

Proof. The proof of Proposition 2.1 is a direct consequence of the definition of resolvent
operator, and hence, is omitted. O

Next we first establish an equivalence relation between general system of generalized
resolvent equations (2.1) and general system of variational inclusions (1.14) and then prove
the existence of a solution of (2.1) and convergence of sequences generated by the proposed
algorithms.

Proposition 2.2. The general system of variational inclusions (1.14) has a solution (x,y,u,v,s,t)
with (x,y) € E1 x Ey, (s,v) € G(x) x F(y) and (u,t) € H(x) x V(y) if and only if general
system of generalized resolvent equations (2.1) has a solution (z',z",x,y,u,v,s,t) with (x,y) €
E1 x Ey, (s,v) € G(x) x F(y), (u,t) € H(x) xV(y), (2/,2") € E1 x Ep, where

fx) =Ty (2),

(2.4)
g(y) =J ("),

and z' = f(x) — p(S(s,v) —m(y)) and 2" = g(y) — y (T (u, t) — n(x)).

Proof. Let (x,y) € E1 x E3, (s5,v) € G(x) x F(y), (u,t) € H(x) x V(y) be a solution of general
system of variational inclusions (1.14). Then, by Proposition 2.1, it satisfies the following
system of equations

fx) =Ty [f(x) = p(S(s,0) -m(y))],

2.5
8(v) = L[5 () YT w5 ~n(x))]. =
Letz' = f(x) - p(S(s,v) —m(y)) and 2" = g(y) — y(T(u, t) — n(x)). Then we have
_7° d
f) =Tu(2), 26)

8(y) =Jn (2",
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and hence z' = ]]F(,I(z’) -p(S(s,v) -m(y)) and z" = ]IY\,(Z”) —v(T(u,t) — n(x)). Thus it follows
that

(1-15) @) ==p(SGs,0)=m(y)),  (I-14)(E) =—rT@wh-nE), @7

that is,
S(s,0) +p 'Ry (Z) =m(y), 28)
T(u,t) +y 'Ry (2") = n(x).
Therefore, (z',z",x,y,u,v,s,t) is a solution of general system of generalized resolvent
equations (2.1).
Conversely, let (z',z",x,y,u,v,s,t) be a solution of general system of generalized
resolvent equations (2.1). Then
p(S(s,0) = m(y)) = R}, (2), o)
Y(T(u,t) - n(x)) = Ry (2").
Now observe that
p(S(s,v) -m(y)) = -Rj, (2)
=—(1-7° !
(1-13) =) (2.10)
- () -2
= Julf () = p(S(s,0) =m(y))] = [f(x) = p(S(s,0) - m(y))],
which leads to
f@x) = I [f ) = p(S(s,0) = m(y))], (2.11)
and also that
y(T(u,t) = n(x)) = =Ry (2")
=—(I- Y "
< I N> (=) (2.12)
— ]I}:](ZU) _ ZI/

= JN[8(W) —y(T(w t) - n(x))] - [g(y) - y(T(w t) - n(x))],
which leads to

g(v) =N [8@) - y(T(w,t) - n(x))]. (2.13)
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Consequently, we have

fx) =T [f () = p(S(s,0) - m(y))],

2.14
8 () = I [3(v) - Y(T(w,t) - n(2)]. 1

Therefore, by Proposition 2.1, (x,y,u,v,s,t) is a solution of general system of variational
inclusions (1.14). O

Proof (Alternative). Let
Z' = f(x) - p(S(s,v) -m(y)), z" = g(y) = y(T(u, t) - n(x)). (2.15)
Then, utilizing (2.4), we can write

Z=Tu(F) -p(S(s0)—m(y)),  Z'=Jx(z") -y(Twt)-nx)  (216)

which yield that
S(s,0) +p 'R, (2 = m(v),
(50 + 7R3 () = () o1
T(u,t)+y~ RIY\](Z") =n(x),
the required general system of generalized resolvent equations. O

Algorithm 2.3. For given (xo,y0) € Ei x Ey, (so,v0) € G(xo) x F(yo), (uo,to) € H(xg) x
V(vo), (2, zy) € E1 x E;, compute

z1 = f(x0) — p(S(s0,v0) = m(y0)), z1 = g(yo) = y(T (uo, to) — n(x)). (2.18)

For (z},Z]) € E1 x E3, we take (x1,y1) € E1 x E; such that f(x;) = ]]’Z,I(z’l) and g(y1) = ]IY\,(Z’l’).
Then, by Nadler [34], there exist (s1,v1) € G(x1) x F(y1), (u1,t1) € H(x1) x V(1) such that

llur — uoll < (1 +1)D(H (x1), H(x0)),
o1 = voll < (1 + 1)D(F(y1), F(y0)),
l[s1 = soll < (1+1)D(G(x1), G(x0)),
It = toll < (L +1)D(V(y1), V(v0)),

(2.19)

where D(:, ) is the Hausdorff metric on CB(E;) (for the sake of convenience, we also denote
by D(:,-) the Hausdorff metric on CB(E;)). Compute

zy = f(x1) = p(S(s1,01) —=m(y1)), 2y = &(y1) —y(T(ua, tr) — n(x1)). (2.20)
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By induction, we can obtain sequences (xk, yx) € E1 x Ez, (s, vk) € G(xk) x F(yk), (uk, tx) €
H(xx) x V(yx), (z;,z;) € E1 x E3 by the iterative scheme:

) =T (21),

(2.21)
g(yr) = JN(Z

Uy € H(xk) : ||uk+1 - uk|| < <1 + ] >D(H(xk+1) H(xk))

e € F(yi) : 1ot — vell < <1+ ! )D(P(ka) F(y)),
(2.22)

Sk € G(xk) : |Isk+1 — skl < ( 1 + >D(G(xk+1),G(xk)),

e V() st -t < (14 ﬁ)n(vwm,vwk»
Zpy = f(x1) = p(S(si,vk) —=m(yx)), (2.23)

Zi = 8 (k) — v (T (uk, tr) — n(xx)),

fork=0,1,2,....
The general system of generalized resolvent equations (2.1) can also be rewritten as

Z' = f(x) - S(s,v) + m(y) + < IR )(z’)

(2.24)
z' = g(y) - T(u/ t) + n(x) + <I — Y‘lRYN> (Z/I)'

Utilizing this fixed-point formulation, we suggest the following iterative algorithm.

Algorithm 2.4. For given (xo,yo) € Ei x Ey, (so,v0) € G(xo) x F(yo), (uo,to) € H(xg) x
V(vo), (zy, zy) € E1 x Ez, compute

zy = f(x0) = S(s0,v0) + m(yo) + ( 'R, >(ZO)

(2.25)
= 8(y0) = T(uo, to) +n(x0) + (I - Y‘lRL) (25

For (Z), z]) € E1 x E;, we take (x1,y1) € Ey x E; such that f(x1) = ]]’i,l(z’l) and g(y1) = ]]Y\,(z’l’).
Then, by Nadler [34], there exist (s1,71) € G(x1) x F(y1), (u1,t1) € H(x1) x V(y1) such that

llur — uol| < (1 +1)D(H (x1), H(x0)),
o1 = voll < 1+ 1)D(F (1), F(yo)),
lIs1 = soll < (1 +1)D(G(x1), G(x0)),
Iti = toll < A+ 1DV (1), V (o)),

(2.26)
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where D(:, ) is the Hausdorff metric on CB(E;) (for the sake of convenience, we also denote
by D(:,-) the Hausdorff metric on CB(E,)). Compute

ZI2 = f(xl) - S(Sl,vl) + m(yl) + ( _1RP >(Zl)

(2.27)
2= g(y1) ~ T, ) + ) + (1-y'RL) (2

By induction, we can obtain sequences (xi, yx) € E1 x Ez, (sk,vx) € G(xk) x F(yx), (uk, tx) €
H(xx) x V(yx), (z,,2,) € E1 x E by the iterative scheme:

fxk) = ]M(Zk)
g(w) = ]N(Z
up € H(xk) @ [tk — uxll < <1 bt

D(H (xx+1), H(xx)),

)
L) DE @), Fw),
)

D(G(xk+l)/ G(Xk)),

k

H+

=+

(2.28)

o € P ow - oul < (141

Sk € G(xk) : |Isk+1 — skl < ( 1+ 11

eV ()00 0.V
Zh = Fr) = Sl ) + m(yi) + (1= R),) (3,

zi = §(Wi) = T (uk, t) +n(xi) + <I - Y’lR]Y\]> (z,

fork=0,1,2,....
For positive stepsize §', 6", the general system of generalized resolvent equations (2.1)
can also be rewritten as

f2) = f(x,2) = 6{2 = T4,(2) +p(S(s,0) - m(y)) }

= f(x,2) = 8{fx) - oy (F(0)) + p(S(s5,0) - m(y)) }
g,7") =gy, 2") - 6"{2' - JL (") + Y (T, t) - n(x)) |

= 2(y,2") - 6"{8() - N (gW)) +Y(Tw ) - n(x)) }.

(2.29)

This fixed point formulation enables us to propose the following iterative algorithm.

Algorithm 2.5. For given (xo,y0) € Ei x Ey, (so,v0) € G(xo) x F(yo), (uo,to) € H(xg) x
V(yo), (z, zy) € E1 x Ez, compute (x1,y1) € E1 x E; and (2], z]) € E1 x E; such that

f (21 = £ (x0,2) = 6'{ F(x0) = T (F(x0)) + p(S(s0,00) = m(0)) |,

(2.30)
8(v1,1) = g (v, ) = 6"{ g (v0) = T (8 (v0)) + ¥ (T(uo, o) ~ n(x0)) }.



12 Journal of Applied Mathematics

Then, by Nadler [34], there exist (s1,v1) € G(x1) x F(y1), (u1,t1) € H(x1) x V(y1) such that

l[r = uol| < (1 +1)D(H (x1), H(x0)),
llor = voll < (1 + 1)D(F (1), F(yo)),
Is1 = soll < (1 +1)D(G(x1), G(x0)),
lIt1 = toll < (1 +1)D(V (1), V(w0)),

(2.31)

where D(:, ) is the Hausdorff metric on CB(E;) (for the sake of convenience, we also denote
by D(:,-) the Hausdorff metric on CB(E;)). Compute (x2,v2) € Ey x E; and (z),z)) € E1 x E
such that

fx2,25) = f(x1,27) — 5'{f(x1) =8 (F(x1) +p(S(s1,v1) - m(yl))},

(2.32)
g(v27) = g1, 2) - 6'{g(n1) - I (8(v1)) + ¥ (T, 1) = m(x)) }.

By induction, we can obtain sequences (xk, yx) € E1 x Ez, (s, vx) € G(xk) x F(yk), (uk, tx) €
H(xx) x V(yx), (z,,2;) € E1 x E by the iterative scheme:

e € HOw) ¢ it = ) < (14 o ) D(H (o), HE),
o € F()  fown - oul < (14 7 )D(F (i), F (),
sk € G(xx) : ||ske1 = skl < (1 e 1 1)D(G(xk+1),G(xk)), (2.33)

b€ V(ye) ¢ ks — tell < (1

1

)P (), V (),

f (et ) = f (2 25) =6 f () = Ty (F () + (S, 00) = m(wi)) |,
gy, Z) = 8w 7) =" {8 (k) = T (8 (W) + ¥ (T (e, 1) = n(x)) |,

fork=0,1,2,....
Note that for 6' = 6" =1, f(xx,z,) = f(xk), §(yx, z}) = &(yx), Algorithm 2.5 reduces
to the following algorithm which solves the general system of variational inclusions (1.14).

Algorithm 2.6. For given (xo,Yo) € E1 x Ea, (50,v0) € G(x0) x F(y0), (uo,t0) € H(x0) x V(yo),
compute (x1,11) € E; x E; such that

f(x1) = Jig[f (x0) = p(S(s0,v0) —m(y0))],

Y (2.34)
g(y1) = JN [8(vo) = v (T (o, to) — n(x0))]-
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Then, by Nadler [34], there exist (s1,v1) € G(x1) x F(y1), (u1,t1) € H(x1) x V(y1) such that

llur = uoll < (1 +1)D(H (1), H(x0)),
llor = voll < (1 + 1)D(F(y1), F(yo)),
l[s1 = soll < (1 +1)D(G(x1), G(x0)),
It1 = toll < X+ 1)D(V (1), V (%0)),

(2.35)

where D(-, ) is the Hausdorff metric on CB(E;) (for the sake of convenience, we also denote
by D(:,-) the Hausdorff metric on CB(E;)). Compute (x2,y2) € E1 x E; such that

fx2) = Jng[f (x1) = p(S(s1,01) = m(y1))], 236
g(y2) = I\ [8(v1) —y(T(ur, 1) = n(x1))]. '

By induction, we can obtain sequences (xk, yx) € E1 x Ez, (s, vx) € G(xk) x F(yk), (uk, tx) €
H(xx) x V(yi) by the iterative scheme:

f(xran) = Jog[f (i) = p(S(sk, k) = m(wi))],
(i) = I 18 (k) = Y (T (uie, tie) — n(xi))],

ur € H(xy) @ ||uks1 — u|| < <1 + X 1 1>D(H(xk+1),H(xk)),
o € F) ¢ lowr —oul < (14 157 ) DF(vin), F()), (2:37)
sk € G(xk) : |ISk+1 — skl < <1 + = 1)D(G(Xk+1),G(xk)),

1
te € V(yk) : ltier — till < (1 e D(V(yk+1),V (yx)),

fork=0,1,2,....

We now study the convergence analysis of Algorithm 2.3. In a similar way, one can
study the convergence of other algorithms.

Theorem 2.7. Let Eq and E; be two real uniformly smooth Banach spaces with modulus of smoothness
7, (1) < Cit? and 1, (t) < Cot? for C1,Cy > 0, respectively. Let G : Ey — CB(E;), F : E; —
CB(E;), H : E; — CB(Ey), V : E; — CB(Ey) be D-Lipschitz continuous mappings with
constants Apg, Ap,, Ap,,, and Ap,, respectively, and let M : E; — 251, N : E; — 2 be m-
accretive mappings such that the resolvent operators associated with M and N are retractions. Let
f +Eiv — Ei, g: Ey — E; be both strong accretive with constants a and B, respectively, and
Lipschitz continuous with constants &1 and 6y, respectively. Let m : E; — Ei, n : E; — E
be Lipschitz continuous with constants \,, and \,, respectively, and S : E;y x E; — E;, T :
Ey x E; — E; Lipschitz continuous in the first and second arquments with constants Ag,, As, and
Ar,, At,, respectively.
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If there exist constants p > 0 and y > 0, such that

0<w<1,

1-B
(2.38)
B’ + \/972+ /03
0< W < 1,

where B' = \/1 —2a + 64C16%, B" = \/1 =2 + 64C,62, and 01 = (1 + pAs,Ap.)/ (1 = p(Ls,Apg +
A5\, +An)), 62 = p(As,Ap, + M)/ (1 = p(hs Apg + As,Ap, + ), 65 = (1+ yAndp,) /(1 -
Y()LT1 -)LDH + )LTZJ\DV + )Ln)), 94 = ]/()LT1 -)LDH + )Ln)/(l - Y(.)LT] /\DH + ./\,TZ.A,DV + J\n)), then there exist
(x,y) € E1 x Ea, (s,v) € G(x) x F(y), (u,t) € H(x) x V(y) and (Z',2") € Ey x E; satisfying
the general system of generalized resolvent equations (2.1) (in this case, (x,y,u,v,s,t) is a solution
of general system of variational inclusions (1.14)), and the iterative sequences {z },{z,}, {xx}, {y«},
{ur}, {vk}, {sk}, and {ti} generated by Algorithm 2.3 converge strongly to z',z", x,y,u,v,s, and t,
respectively.

Proof. From Algorithm 2.3 we have

2k = 2ill = [1.f Gek) = p(S(sk,wk) = m(yi)) = [ (xi-1) = p(S(Sk-1, k1) = m (i) ] ||
< ok = xxe1 = (f (xk) = f(xk-1) ||

+ ||k = x11 = p[(S(sk, vk) = m(yi)) = (S(sk-1,Vk-1) = m(yx1))] |-
(2.39)

By Proposition 1.1, we have (see, e.g., the proof of [32, Theorem 3])
[l = 261 = (F (i) = F ) || < (1 ~2a+ 64c5§) Nk = x| (2.40)

Since S is Lipschitz continuous in both arguments, G, F are D-Lipschitz continuous, and m is
Lipschitz continuous, we have

[ (S(sk,vx) = m(yx)) = (S(sk-1,Vk-1) = m(yx-1)) |
= ||S(sk, vx) = S(sk-1,0k) + S(sk-1, Vk) = S(sk-1,vk-1) = (M (yx) = m(yx-1)) ||
< NIS(sk, vk) = S(sk-1, vi) || + 1S (Sk-1, k) = S(Sk-1, V1) | + || (k) — m(yi-1) ||
< As, lIsk = skl + A, [lox = vk ll + Ao || vk — i |

<5, (1+ £ ) DG, Gloxecn)) + sy (1+ £ ) DIF (), F(we)) + Aol =i

1 1
< <1 + E>1511Dc||xk — X1l + (1 + %>ASZADF||yk = Yr || + M|k — v ||

1 1
= <1 + E))le)tpcllxk - xk_1|| + [(1 + E)ASZADF + )Lm] ”yk — yk_lll.
(2.41)
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Utilizing (2.41) and Proposition 1.1, we have

l| ¢k = k-1 = p[(S(sk, vk) = m(yk)) = (S(Sk-1,Vk-1) = M(Yx-1))] ”2
< ok = xie1|I* = 2p{ (S (s, v) = m(yx)) = (S(Sk-1, Vk1) = m(Yi-1)),
J(xxc = xk-1 = p[(S(sk,v6) = m(yi)) = (S(Sk-1, Vk-1) = m(yk-1))]))
< e = xkal? + 20| (S(sk, v6) = m(y)) = (S(sk1,vx1) = m(yer)) ||
x [|lack = xie-1 = p[(S(sk, vk) =m(yie)) = (S(sk-1,Vk-1) = m(yi-1))] ||

< ook — x| + zP{ <1 + %))le)LDGka — x| + [<1 + %)ASZ)LDF + )Lm] v = it || }
x ||tk = xk-1 = p[(S(sk,vk) =m(yi)) = (S(sk-1,Vk-1) = m(yk-1))] ||

< ook = xpa [)* + P(l + %)/\sllm
x {||xk — x| + ||k = xk1 = p[(S(sk,vk) = (i) ) = (S(8k-1, Vk1) = M (Y1) )] ||2}
+p [(1 + %)ASZ/\DF + A
x {Ilyk — vt ||+ |2k = xict = p[(S(s0,w0) = m (i) = (S(sk1, vre1) = m(yir))] ||2}

= |1+ (1 £ )asdnc o=l +p [ (14 1 ) sdo + dsidn) +
x ||k = 2k = p[(S(k,0k) = m(yi)) = (S(sko1,Vkt) = m (v )] ||
+p [(1 + %)J\SZ)LDF + A

vk = vea ||,

(2.42)
which implies that

[l = 21 = p[(S(sx,06) = m(yi)) = (S(sk1,01) = m(yien))] ||
< 1+p(1+1/k)AsAp,
T 1-p[(1+1/k)(As,Apg + As,Ap,) + Ay
pl(1+1/k)As,Ap, + Ay ||]/k —yk-1||2
1-p[(A+1/k)(As;Ap, + As,Ap,) + As]
< 1+p(1+1/k)AsAp,
T 1-p[(1+1/k)(As, A + As,Ap,) + Ay

p[(l+1/k))&52)tDF +)Lm] ”yk_yk 1”2
1_P[(1+1/k)(‘)LSlADG +‘)L52‘)LDF) +)Lm] B

o 1+p(1+1/k)As, Apg pl(1+1/k)As,Ap, + Am]
1=pl(A+1/k)(As;Apg +As,App) +dn] | 1= p[(1+1/k)(As Ap + As, Apy) + Ain]

llxk — 21 )

llxk — 21 )

x ||k = 2 || || i — Y ||
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1+p(1+1/k)AsAp, ” ”
T—pl(T+1/k) (A, Apg + A, Apy) + Ay K~ K1

2
1+1/k)As,Apy + Ay
+\/ P[( ) S, AD ] ]”yk_yk—ln} ]

1-p[(1+1/k)(AsAp; + As,Apy) + A

Thus, we have

[|2ck = xk-1 = p[(S(sk, k) = m(yx)) = (S(sk-1,Vk-1) = m(yk-1))] ||

< 1+ p(l + 1/k))t51)LDG
- 1—p[(1+1/k)()tsl)LDG+./l52./\DF)+)tm]

\/ p[(1+1/k)As,Ap, + Ay
1-pl

[lxce = xie-1 |

(1+1/k)(Xs, Apg + As,Ap,) + Al lyk = yi-al|-

Note that

lim 1+p(1+1/k)AsAp, _
k—ool—p[(1+1/k)(XsAp, + As,AD;) + Aum]
lim p[(l + 1/k))LSZJ{DF + /\m] _
k—ool—p[(1+1/k)(XsAp, + As,Ap;) + Al

61,

62/

(2.43)

(2.44)

(2.45)

where 01 = (1+pAs,Ap.)/ (1-p(As,Apg +As, A, +Am)) and 62 = p(As,Ap, + A1) / (1= p(As, Ap, +

As,Apy + L))
Utilizing (2.40) and (2.44), we deduce from (2.39) that

1+P(1+1/k))t5 )LD
! —_ | < _ 4 2 17*D6 —xp
%51 Z"”‘<V1 2“6C61+\/1—p[<1+1/k><A51ADG+A52ADF)+AmJ>”"" ol

pl(1+1/k)As,Ap, + Ap] —
1-p[(1+1/k)(Xs,Apg + As,Apy) + ] Yk — Yk-1

5. 1+p(1+1/k)As,Ap, | |
= X — Xj—
1= p[(T+1/k)(As, Apg + A, ADy) + Al kT Tkl

p[(1+1/k)./{52./\DF +J\m] ”yk_yk )
1-p[(1+1/k)(As,ADg + As,ADy) + Al -

7

where B' := /1 - 2a + 64C67.

(2.46)
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On the other hand, again from Algorithm 2.3 we have

1z = zkll = 18 (k) = ¥ (T (ux, te) = n(xx)) = [ (Y1) = V(T (ur-1, ti1) = n(xx-1))] ||
< lywe = yr1 = (8 (wi) = g (i) | (247)
+ |lyk = v = Y [(T (g, tr) = n(xk)) = (T (ug-1, 1) = n(xe-1))]|-

Utilizing the same arguments as those for (2.40), we have

i = v = (8(i) = g wien)) 1* < (1 -2 + 64C262 ) i - i |1 (2.48)

Since T is Lipschitz continuous in both arguments, H, V are D-Lipschitz continuous, and 7 is
Lipschitz continuous, we have

(T (e, tic) = m(xk)) = (T (uk-1, tie-1) = n(xpe-1)) |
= |IT (ug, tx) = T (ug-1, te) + T (ug-1, tr) = T (ug-1, te-1) — (n(xk) = n(xe-1)) |l
ST (uk, tr) = T (uie-1, ti) | + 1T (i1, i) = T (uie-1, te-1) || + |72 (i) — 1 (cie-1) ||
< Ap [Juk = ur-a || + A It =t |+ Anlloek = x|

< (14 1) D), o) +4n (14 1 ) DOV, V (1)) + Al - 20|

1 1
< <1 + E))LTl)LDHka — xk_1|| + <1 + E))LTZ)LDV”]/]( - yk_lll + )Lonk — xk_1||

1
I =il + (14 1 Ao v = i

1
1+—=)Ar A A
(*k)”’”

(2.49)
Utilizing (2.49) and Proposition 1.1, we have

i = it = YT (ot i) = (i) = (T (utgon, i) = ()] |
<l = i [I” = 20 (T (i te) = (i) = (T (g, tir) = m(yiean)),
J (i = yr1 = Y [(T (u, t) = n(xx)) = (T (g1, te1) = n(xx-1))]))
< Ny =y | + 20 [T G, t) = (i) = (T (i, tir) = () |

|y = yro1 = Y [(T (u, tie) = n(x)) = (T (g1, ter) = n(xe-1)]||

1
llxx = xpe1]l + (1 + E)/\TMDV lvk = yica || }

1
1+=)Ap A A
<+k>”“+

< =l <20

||y = yier = Y [(T (ug, t) = n(xx)) = (T (ui-1, ter) — n(xe-1))]||
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1
< ”]/k - yk—l”2 + Y[(l + E)')LTP/\’DH + )‘Tl]

x { ek = 21 I+ [l = yier = YLt ) = 1(0)) = (T (i, ) = nCeen)] |

+ Y(l + %)ATZ)‘DV

x { |y — yia ||2 + ||k = yre1 = YI(T (u, tie) = n(xi)) = (T (w1, tro1) = 1(xk-1))] ||2}

1
<1 + %) ()LTl)LDH + )LTZ)LDV) + )L-,,

1
= [1 + Y(l + %)‘)‘TZADV] ”yk — Yk ”2 Ty
% |y = vt = YL (g tie) = m(xx)) = (T (e, tr) = n(xee)]||
(1 + %>)LT1)LDH + Ay

lloc = xk-1 1%,

Ty

(2.50)
which implies that

s = yir = YT (e ) = m(xi)) = (T (i, bin) = o))
1+y(1+1/k)Ar,Ap, .
< - —
T 1-y[(A+1/k)(ArAp, + A Ap,) + Ay] llvic = yiea |
y[(1 +1/k)Ar,Ap,, + Ay]
1-y[(1+1/k)(Az, Apy, + A1, ADy) + An
< 1+y@A+1/k)ArAp, ) ,
T 1-y[(Q1+1/k)(Ar,Ap, + An,Ap, ) + Ay ] llyx = yiea |
yL(1+1/k) Az, Ap,, + ]
1-y[A+1/k)(Ar,Ap, + A AD, ) + Ay

+2 1+y(1+1/k)ArAp, y[(1+1/k)Ar,Ap,, + Al
1-y[A+1/k)(ArAp,, + AAD,) + ] V 1= y[(1 + 1/k)(Ar,Ap,, + Ay AD, ) + Ay

] [k = x|

2
] llxk = Xk

x || yk = yiea ||l = 2kl

_ 1+y(1+1/k)ArAp, ” ) ”
T—y[(L+1/K) (i, Apy, + Apdpy) + A, 1Yk~ Ykt

2
. Y[+ 1/K) A7, Ap,, + L] x|
1= y[(L+1/k)(An,Ap, + A dp,) + A, ]k Rt

(2.51)
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Thus, we have

vk = i1 = yI(T (u, te) = n(xi)) = (T (w1, teo1) = n(xe-1))] ||

< 1+y(1+1/k)Ar,Ap, - I
“V1-y[(1+1/k)(Ar,Ap,, + A, AD,) + Ay] Yk — Yik-1

\/ y[(1+1/k)Ar, Ap,, + 4]
1-y[

(4 17K) (i Ay, + A, ) + 4] 1k~ Xl
Note that
i 1+y(1+1/k)AgAp, i
e Ty [+ 1/K) rdpy, + Apdp) + ]
1+1/k)ArAp,, + Ay
lim y[(A+1/k) Az Aoy + An] _ o,

k—ool—=y[(1+1/k)(Ar,Ap,, + AryAD,) + An]

19

(2.52)

(2.53)

where 93 = (1 +}’)LT2)LDV)/(1 —Y(./\TI)LDH +)LT2)LDV +)Ln)) and 94 = Y()LTl )‘DH +)Ln)/(1 —Y()LTl)LDH +

)‘TZ)LDV + )‘n))
Utilizing (2.48) and (2.52), we deduce from (2.47) that

T+y(1+1/k)An\p
noo__n _ 2 27V —
I Z"”S<V1 # +64C62+\/1—r[<1+1/k)<mpﬂ+ATZADV>+A,1]>”?/" i

lloxx = xk-1]l

y[(1+1/k)Ar Ap,, + Anl
1- Y[(l + 1/k)()LT1JlDH + )LTZ./\DV) + )Ln]

— B/I + ]. + Y(]. + 1/k).)LT2,/\,DV ” ~ ”
. T [0+ 1/R) O Ay + Adpy) + 4] ) 1Y ¥

Y[(l + 1/k))LT1)LDH + )Ln]
N TSI+ 170 O Ay, + AnAny) + A

”xk — Xk-1 ”1

where B” := 1/1 - 2f + 64C63.

(2.54)
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Adding (2.46) and (2.54), we have

Iz = 2l + 1210 = 2kl

. 1+p(1+1/k)As,Ap,
= 1= p[(A1+1/K)(As, Apy + A, Dy ) + Am]

Y[+ 1/K)Ar, A, + A
NI A+ 17k (i Apy, + An Aoy ) + ] ek = 20l (2.55)

+ Br/ + p[(l + 1/k))‘52)‘DF + /\m]
1- p[(l + 1/k) (./\SlJ\DG + )LSZ)LDF) + )Lm]

; 1+y(1+1/k)Apdp, —
Ty [+ 1/K) o Apy, + Ay ) + A,] ) 1YE T Pl
Also from (2.21), we have

[l = Xkl = ”xk =1 = (f (o) = f (i) + Tag (20) = Thg (210) ”
< [l = e = (FGn) = feae) ||+ [T ) - T )| @59)
< B'llxk = xall + |z = 24 I,
which implies that

1
e = xiall < 7= |

, (2.57)

e = vall = | = vir = (8 () = 8 (i) + X (20) = T (Z) |

< [l - 1 = (8(ve) = gwe)) |+ |7 (1) - TR Gz | (2.58)

"

< B'llyx —yia |l + Mz = 2l

which implies that

1
vk =y |l < 1-B Il =z l- (2.59)
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Utilizing (2.57) and (2.59), we conclude from (2.55) that

lIzka = 2l + 1210 = 2l

g, 1+ p(1+1/k)As,Ap,
= 1= p[(1+1/k)(As, Apg + As,Apy) + Al

. Y[ +1/k)Ar, Ap,, + A,] 1 12— 2|
1-y[(1+1/k) (A1, Ap,, + AnAp,) + 4] [1-B 17k 7K1 (2.60)

B" p[(l + 1/k))LSZ)LDF + )Lm]
V7 VT o[ 1K) (s A, + As,dpy) + o]

. 1+y(1+1/k)ApAp, U
1_Y[(1+1/k)()tTl)tDH +)‘Tz)‘Dv) +~)‘n] 1- B~k k-11l*

Observe that

. , 1+ p(1+1/k) ks, Ap,
QE&{B - \/1 ~p[(L+ 1/k) (s, Aoy + A5, App) + om]

. YI(1+1/k)Ar, Ap, + Ay] 1 B +V0i+6s <o

1-y[(1+1/k)(Ar,Ap,, + AApy) +As] [1-B 1-B -
(2.61)

. " pL(1+1/k)As,Ap; + Am]
klEI;o{B i \/1 _P[(l + 1/k)()‘51)‘Dc + -)LSZ)LDF) + -)‘m]
. 1+y(1+1/k)An,Ap, 1 _B"+\/972+\/973<9
1-y[(1+1/k)(Ar,Ap,, + Andpy) + 4] [1-B" 1-B" -
where

9=maX{B +\1/?7;\/674,B ?@Bf\@}. (2.62)
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By (2.38), we know that 0 < 6 < 1. Now take a fixed 6y € (0, 1) arbitrarily. Then from (2.61)
and (2.31) it follows that there exists an integer k > 1 such that for all k > k,

B+ 1+p(1+1/k)AsAp,
1 —p[(l + 1/k)(.)LSI)LDG + )LSZ)LDF) + )Lm]

4 Y[(1+1/k)AT1ADH+-)‘n] 1 <9
1—y[(A+1/k) (A Ap, + Andpy) + 4] [1-B =%

(2.63)
B + P[(l + 1/k)'/\'52'/\’DF + -/\m]
1- p[(l + 1/k) ()LSl)LDG + )LSZ)LDF) + J\m]
+ 1+ Y(l + 1/k))LT2)LDV 1 <0
1—y[(A+1/k)(Ap Ap, + Andp,) +A,] [1-B" ="
So, we obtain from (2.60) that
IZki = Zill + 1250 = 2]l < Bo(ll 2k =z Il + N2k — =2k Vk2k, o (264)

which implies that {z, } and {z, } are both Cauchy sequences. Thus, there exist z' € E; and
z" € E; such that z, — Z2/ and z;, — z"as k — oo. From (2.57) and (2.59) it follows
that {xi} and {yx} are also Cauchy sequences in E; and E,, respectively, that is, there exist
x € Ey, ye€ Eysuchthatxy — xand yx — yask — .

Also from (2.22), we have

1

1
- <(1+
ks = il < ( =

k

Aoyl =l

et

VD (), Hw) < (14
o = oull < (1 7 ) D) F ) <

lIsea - sill < (1 .

7

1+ ))t ey =y
k 1 (2.65)

)D(G(xk+1> Glx)) < (1 + >)LDG||xk+1 ~xdl

k+

>

+1
1 1
It =1l < (14 57 )P @), V) < (14 7)Aol = will,

and hence, {ui}, {vr}, {sk}, and {t} are also Cauchy sequences. Accordingly, there exist u, s €
Eiand v,t € E; such that uy — u, vy — v, sy — s,and tx — t, respectively.

Now, we will show that u € H(x), v € F(y), s € G(x), and t € V(y). Indeed, since
ux € H(xg) and

d(uk,H(x))Smax{d(uk,H(x)), sup d(H(xk),wl)}

wi€H (x)

Smax{ sup d(w,, H(x)), sup d(H(xk),w:)

wy€H (xk) w€H (x)

= D(H (xx), H(x)),

} (2.66)
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we have

d(u, H(x)) < [lu—ukll + d(ux, H(x))
< lu = ukll + D(H (xk), H(x)) (2.67)

< |lu—ukl|| + Apyllxk —x|]] = 0 as k — oo,

which implies that d(u, H(x)) = 0. Taking into account that H(x) € CB(E;), we deduce that
u € H(x). Similarly, we can show that v € F(y), s € G(x) and t € V(y). By the continuity of
f,gmmn,GFHV,S,T, ]1‘\’/[, ]]Y\, and Algorithm 2.3, we have

Z' = f(x) - p(S(s,0) -m(y)) = Joy (z) - p(S(s,0) —m(y)) € Ey,

2.68
Z" = g(y) - y(T(wt) - n(x)) = J;(z") - y(T(u,t) - n(x)) € Ex. (2.68)

By Propositions 2.1 and 2.2, the required result follows. O
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