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The purpose of this paper is to introduce Kirk-type new iterative schemes called Kirk-SP and
Kirk-CR schemes and to study the convergence of these iterative schemes by employing certain
quasi-contractive operators. By taking an example, we will compare Kirk-SP, Kirk-CR, Kirk-Mann,
Kirk-Ishikawa, and Kirk-Noor iterative schemes for aforementioned class of operators. Also, using
computer programs in C++, we compare the above-mentioned iterative schemes through examples
of increasing, decreasing, sublinear, superlinear, and oscillatory functions.

1. Introduction and Preliminaries

There is a close relationship between the problem of solving a nonlinear equation and that of
approximating fixed points of a corresponding contractive-type operator. Consequently, there
is a theoretical and practical interest in approximating fixed points of various contractive-type
operators. Let (X, d) be a complete metric space and T : X → X a selfmap of X. Suppose that
F(T) = {p ∈ X, Tp = p} is the set of fixed points of T . There are several iterative schemes in
the literature for which the fixed points of operators have been approximated over the years
by various authors. In a complete metric space, the Picard iterative scheme is defined by

xn+1 = Txn, n = 0, 1, . . . , (1.1)
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which is used to approximate the fixed points of mappings satisfying the inequality:

d
(
Tx, Ty

) ≤ αd
(
x, y

)
(1.2)

for all x, y ∈ X and α ∈ [0, 1). Condition (1.2) is called Banach’s contraction condition.
The following iteration schemes are now well known:

un+1 = (1 − αn)un + αnTun, (1.3)

where {αn} is a sequences of positive numbers in [0, 1], due to Mann [1].

xn+1 =
k∑

i=0

αiT
ixn,

k∑

i=0

αi = 1, (1.4)

where {αn} is a sequences of positive numbers in [0, 1], due to Kirk [2].

xn+1 =(1 − αn)xn + αnTyn,

yn =
(
1 − βn

)
xn + βnTxn,

(1.5)

where {αn} and {βn} are sequences of positive numbers in [0, 1], due to Ishikawa [3].

xn+1 =(1 − αn)xn + αnTyn,

yn =
(
1 − βn

)
xn + βnTzn,

zn =
(
1 − γn

)
xn + γnTxn,

(1.6)

where {αn}, {βn}, and {γn} are sequences of positive numbers in [0, 1], due to Noor [4].
In [5], Olatinwo introduced the Kirk-Mann and Kirk-Ishikawa iterative schemes as

follows:

xn+1 = αn,0xn +
k∑

i=1

αn,iT
iyn,

k∑

i=0

αn,i = 1,

yn =
s∑

j=0

βn,jT
jxn,

s∑

j=0

βn,j = 1, n = 0, 1, 2, . . . ,

(1.7)

where k ≥ s, αn,i ≥ 0, αn,0 /= 0, βn,j ≥ 0, βn,0 /= 0, αn,i, βn,j ∈ [0, 1], and k, s are fixed integers,
called as Kirk-Ishikawa iteration scheme:

un+1 =
k∑

i=0

αn,iT
iun,

k∑

i=0

αn,i = 1, n = 0, 1, 2, . . . , (1.8)
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where αn,i ≥ 0, αn,0 /= 0, αn,i ∈ [0, 1], and k is a fixed integer and is called as Kirk-Mann iteration
scheme.

However, from [6], the Kirk-Noor iterative scheme is given by

xn+1 = αn,0xn +
k∑

i=1

αn,iT
iyn,

k∑

i=0

αn,i = 1,

yn = βn,0xn +
s∑

r=1

βn,rT
rzn,

s∑

j=0

βn,j = 1,

zn =
t∑

l=0

γn,lT
lxn,

t∑

l=0

γn,l = 1, n = 0, 1, 2, . . . .

(1.9)

In [7], Phuengrattana and Suantai defined the SP iteration scheme as follows:

xn+1 = (1 − αn)yn + αnTyn,

yn =
(
1 − βn

)
zn + βnTzn,

zn =
(
1 − γn

)
xn + γnTxn,

(1.10)

where {αn}, {βn}, and {γn} are sequences of positive numbers in [0, 1].
Recently, Chugh and Kumar introduced the following iteration scheme [8]:

xn+1 =(1 − αn)yn + αnTyn,

yn =
(
1 − βn

)
Txn + βnTzn,

zn =
(
1 − γn

)
xn + γnTxn,

(1.11)

where {αn}, {βn}, and {γn} are sequences of positive numbers in [0, 1].

Remarks 1. (1) If γn = 0, then (1.6) reduces to the Ishikawa iteration scheme (1.5).
(2) If βn = γn = 0, then (1.6) reduces to the Mann iteration scheme (1.3).
(3) If βn = 0, then (1.5) reduces to the Mann iteration scheme (1.3).
(4) If βn = γn = 0, then (1.10) reduces to the Mann iteration scheme (1.3).

In [9], Zamfirescu obtained the following interesting fixed point theorem.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X a mapping for which there
exists real numbers a, b, and c satisfying a ∈ (0, 1), b, c ∈ (0, 1/2) such that for each pair x, y ∈ X at
least one of the following conditions holds:

(i) d
(
Tx, Ty

) ≤ ad
(
x, y

)
,

(ii) d
(
Tx, Ty

) ≤ b
[
d(x, Tx) + d

(
y, Ty

)]
,

(iii) d
(
Tx, Ty

) ≤ c
[
d
(
x, Ty

)
+ d

(
y, Tx

)]
.

(1.12)
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Then, T has a unique fixed point p and the Picard iteration scheme {xn} defined by (1.1) converges to
p for any arbitrary but fixed x0 ∈ X.

The operators satisfying the condition (1.12) are called Zamfirescu operators.
Berinde in [10] introduced a new class of operators on an arbitrary Banach space and

satisfying

d
(
Tx, Ty

) ≤ 2δd(x, Tx) + δd
(
x, y

)
(1.13)

for all x, y ∈ X and δ ∈ [0, 1). He proved that this class is wider than the class of Zamfirescu
operators and used the Ishikawa iteration scheme to approximate fixed points of this class of
operators in an arbitrary Banach space given in the form of following theorem.

Theorem 1.2 (see [10]). Let K be a nonempty closed convex subset of an arbitrary Banach space X
and T : K → K a mapping satisfying (1.13). Let {xn}∞n=0 be defined through the Ishikawa iteration
scheme (1.5) and x0 ∈ K, where {αn}, {βn} are sequences of positive real numbers in [0, 1] with {αn}
satisfying

∑∞
n=0 αn = ∞. Then, {xn}∞n=0 converges strongly to the fixed point of T .

However, in [11], Rafiq studied the convergence of the Noor iteration scheme [4]
involving quasi-contractive operators.

Also several authors [11–16] have studied the equivalence between different iterative
schemes: Şolutz [13, 14] proved that Picard, Mann, Ishikawa, and Noor iteration schemes are
equilvalent for quasi-contractive operators. Recently, Chugh and Kumar [17] proved that, for
quasi-contractive operators satisfying (1.13), Picard, Mann, Ishikawa, Noor, and SP iterative
schemes are equivalent.

Fixed-point iterative schemes are designed to be applied in solving equations arising in
physical formulation but there is no systematic study of numerical aspects of these iterative
schemes. In computational mathematics, it is of vital interest to know which of the given
iterative scheme converges faster to a desired solution, commonly known as rate of con-
vergence. Rhoades in [18] compared theMann and Ishikawa iterative schemes by concerning
their rate of convergences. He illustrated the difference in the rate of convergence for increas-
ing and deceasing functions (see also [19]). However, Olatinwo [5] proved the stability of
Kirk-Mann and Kirk-Ishikawa iterative schemes for the following operator which is more
general than (1.13). Indeed, he employed the following contractive definition: there exist a ∈
[0, 1) and a monotone increasing function ϕ : R+ → R+ with ϕ(0) = 0, such that

∥∥Tx − Ty
∥∥ ≤ ϕ(‖x − Tx‖) + a

∥∥x − y
∥∥ ∀x, y ∈ X. (1.14)

Motivated by the work of Olatinow [5] and Phuengrattana and Suantai [7], in this paper, we
introduce the Kirk-CR and Kirk-SP iterative schemes and study the strong convergence of
these iterative schemes for quasi-contractive operators satisfying (1.14). Moreover, by using
C++ programming, comparison for rate of convergences between the above-mentioned Kirk
type iterative schemes is also shown for increasing, decreasing, sublinear, superlinear, and
oscillatory functions, respectively.
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2. Main Results

We will need the following lemmas and definition in the sequel.

Lemma 2.1 (see [10]). If δ is a real number such that 0 ≤ δ < 1 and {∈n}∞n=0 is a sequence of non-
negative numbers such that limn→∞∈n = 0, then, for any sequence of positive numbers {un}∞n=0 satis-
fying

un+1 ≤ δun + ∈n, n = 0, 1, 2, . . . , (2.1)

one has limn→∞un = 0.

Lemma 2.2 (see [5]). Let (X, ‖ · ‖) be a normed linear space and let T : X → X be a selfmap of
X satisfying (1.13). Let ϕ : R+ → R+ be a subadditive, monotone increasing function such that
ϕ(0) = 0, ϕ(Lu) ≤ Lϕ(u), L ≥ 0, u ∈ R+. Then, for all i ∈ N, L ≥ 0 and for all x, y ∈ X,

∥∥∥Tix − Tiy
∥∥∥ ≤

i∑

j=1

(
i
j

)
ai−jϕj(‖x − Tx‖) + ai

∥∥x − y
∥∥. (2.2)

Definition 2.3 (see [20]). Suppose {an} and {bn} are two real convergent sequences with limits
a and b, respectively. Then, {an} is said to converge faster than {bn} if

lim
n→∞

∣∣∣∣
an − a

bn − b

∣∣∣∣ = 0. (2.3)

Now, we define Kirk-SP and Kirk-CR iterative schemes as follows. Let X be a Banach
space, T : X → X a selfmap of X and x0 ∈ X. Then, the sequence {xn}∞n=0 defined by

xn+1 =αn,0yn +
k∑

i=1

αn,iT
iyn,

k∑

i=0

αn,i = 1,

yn =βn,0zn +
s∑

r=1

βn,rT
rzn,

s∑

j=0

βn,j = 1,

zn =
t∑

l=0

γn,lT
lxn,

t∑

l=0

γn,l = 1, n = 0, 1, 2, . . . ,

(2.4)
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is called Kirk-SP iterative scheme and the sequence {xn}∞n=0 defined by

xn+1 =αn,0yn +
k∑

i=1

αn,iT
iyn,

k∑

i=0

αn,i = 1,

yn =βn,0Txn +
s∑

r=1

βn,rT
rzn,

s∑

r=0

βn,r = 1,

zn =
t∑

l=0

γn,lT
lxn,

t∑

l=0

γn,l = 1, n = 0, 1, 2 . . . ,

(2.5)

is called Kirk-CR iterative scheme, where k, s, and t are fixed integers with k ≥ s ≥ t and αn,i,
βn,r , γn,l are sequences in [0, 1] satisfying αn,i ≥ 0, αn,0 /= 0, βn,r ≥ 0, βn,0 /= 0, γn,l ≥ 0, γn,0 /= 0.

Remarks 2. (5) Putting t = s = 0 in (2.4), we obtain the Kirk-Mann iterative scheme (1.9).
(6) Putting s = 0, k = 1, t = 0 in (2.4), we get usual Mann iterative scheme (1.3). With∑1

i=0 αn,i = 1, αn,1 = αn.
(7) Putting s = 0, t = 0, and αn,i = αi in (2.4), we obtain the usual Kirk’s iterative

scheme (1.4).
(8) Putting s = t = 1 in (2.4) and (2.5), we obtain the SP (1.10) and CR (1.11) iterative

schemes, respectively.

We now prove our main results.

Theorem 2.4. Let (X, ‖ · ‖) be a normed linear space and T : X → X a selfmap of X satisfying the
contractive condition (1.14) and ϕ : R+ → R+ a subadditive monotone increasing function such that
ϕ(0) = 0 and ϕ(Lu) ≤ Lϕ(u), L ≥ 0, u ∈ R+. Let x0 ∈ X and {xn}∞n=0 be the Kirk-SP iterative scheme
defined by (2.4). Suppose that T has a fixed point p. Then, the Kirk-SP iterative scheme converges
strongly to p.

Proof. Using Kirk-SP iterative scheme (2.4) and Lemma 2.1, we have

∥∥xn+1 − p
∥∥ ≤ αn,0

∥∥yn − p
∥∥ +

k∑

i=1

αn,i

∥∥∥Tiyn − p
∥∥∥

≤ αn,0
∥∥yn − p

∥∥ +
k∑

i=1

αn,i

⎧
⎨

⎩

i∑

j=1

(
i
j

)
ai−jϕj(∥∥p − Tp

∥∥) + ai
∥∥yn − p

∥∥

⎫
⎬

⎭

= αn,0
∥∥yn − p

∥∥ +

(
k∑

i=1

αn,ia
i

)
∥∥yn − p

∥∥

=

(
k∑

i=0

αn,ia
i

)
∥∥yn − p

∥∥.

(2.6)
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Now, we have the following estimates:

∥
∥yn − p

∥
∥ ≤ βn,0

∥
∥zn − p

∥
∥ +

s∑

r=1

βn,r
∥
∥Trzn − p

∥
∥

≤ βn,0
∥
∥zn − p

∥
∥ +

s∑

r=1

βn,r

⎧
⎨

⎩

r∑

j=1

(
r
j

)
ar−jϕj(∥∥p − Tp

∥
∥) + ar

∥
∥zn − p

∥
∥

⎫
⎬

⎭

=

(
k∑

r=0

βn,ra
r

)
∥
∥zn − p

∥
∥,

∥
∥zn − p

∥
∥ ≤ γn,l

∥
∥xn − p

∥
∥ +

t∑

l=1

γn,l
∥
∥
∥Tlxn − p

∥
∥
∥

≤ γn,l
∥∥xn − p

∥∥ +
t∑

l=1

γn,l

⎧
⎨

⎩

l∑

j=1

(
l
j

)
al−jϕj(∥∥p − Tp

∥∥) + al
∥∥xn − p

∥∥

⎫
⎬

⎭

=

(
t∑

l=0

γn,la
l

)
∥∥xn − p

∥∥.

(2.7)

It follows from (2.6), (2.7) that

∥∥xn+1 − p
∥∥ ≤

(
k∑

i=0

αn,ia
i

)(
s∑

r=0

βn,ia
i

)(
t∑

l=0

γn,la
l

)
∥∥xn − p

∥∥. (2.8)

Since ai ∈ [0, 1) and
∑k

i=0 αn,i =
∑s

r=0 βn,r =
∑t

l=0 γn,l = 1, hence

(
k∑

i=0

αn,ia
i

)(
s∑

r=0

βn,ra
r

)(
t∑

l=0

γn,la
l

)

<

(
k∑

i=0

αn,i

)(
s∑

r=0

βn,r

)(
t∑

l=0

γn,l

)

= 1. (2.9)

Using (2.9) and Lemma 2.1, (2.8) yields limn→∞xn = p. Thus, Kirk-SP iterative scheme
converges strongly to p.

Theorem 2.5. Let (X, ‖·‖) be a normed linear space and T : X → X a selfmap ofX satisfying the con-
tractive condition (1.14) and ϕ : R+ → R+ a subadditive monotone increasing function such that
ϕ(0) = 0 and ϕ(Lu) ≤ Lϕ(u), L ≥ 0, u ∈ R+. Let x0 ∈ X and {xn}∞n=0 be the Kirk-CR iterative scheme
defined by (2.5). Suppose that T has a fixed point p. Then, the Kirk-CR iterative scheme converges
strongly to p.

Proof. Using Kirk-CR iterative scheme (2.5) and Lemma 2.2, we have

∥∥xn+1 − p
∥∥ ≤

(
k∑

i=0

αn,ia
i

)
∥∥yn − p

∥∥. (2.10)
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Now, we have the following estimates:

∥
∥yn+1 − p

∥
∥ ≤ βn,o

∥
∥Txn − p

∥
∥ +

s∑

r=1

βn,r
∥
∥Trzn − p

∥
∥

≤ aβn,0
∥
∥xn − p

∥
∥ +

s∑

r=1

βn,r

⎧
⎨

⎩

r∑

j=1

(
r
j

)
ar−jϕj(∥∥p − Tp

∥
∥) + ar

∥
∥zn − p

∥
∥

⎫
⎬

⎭

= aβn,0
∥
∥xn − p

∥
∥ +

(
s∑

r=1

βn,ra
r

)
∥
∥zn − p

∥
∥,

∥
∥zn − p

∥
∥ ≤

(
t∑

l=0

γn,la
l

)
∥
∥xn − p

∥
∥.

(2.11)

It follows from (2.10), (2.11) that

∥∥xn+1 − p
∥∥ ≤ a

(
k∑

i=0

αn,ia
i

)

βn,0
∥∥xn − p

∥∥ +

(
k∑

i=0

αn,ia
i

)(
s∑

r=1

βn,ra
r

)(
t∑

l=0

γn,la
l

)
∥∥xn − p

∥∥

=

(
k∑

i=0

αn,ia
i

)[

aβn,0 +

(
s∑

r=1

βn,ra
r

)(
t∑

l=0

γn,la
l

)]
∥∥xn − p

∥∥.

(2.12)

Since ai ∈ [0, 1) and
∑k

i=0 αn,i =
∑s

r=0 βn,r =
∑t

l=0 γn,l = 1 with αn,0 /= 0, βn,0 /= 0, γn,0 /= 0, hence

(
k∑

i=0

αn,ia
i

)[

aβn,0 +

(
s∑

r=1

βn,ra
r

)(
t∑

l=0

γn,la
l

)]

<

(
k∑

i=0

αn,i

)[

βn,0 +

(
s∑

r=1

βn,r

)(
t∑

l=0

γn,l

)]

= βn,0 +
s∑

r=1

βn,r = 1.

(2.13)

Using (2.13) and Lemma 2.1, (2.12) yields limn→∞xn = p. Thus, Kirk-CR iterative scheme
converges strongly to p.

Theorem 2.6. Let (X, ‖ · ‖) be a normed linear space and T : X → X a selfmap of X satisfying the
contractive condition (1.14) and ϕ : R+ → R+ a subadditive monotone increasing function such that
ϕ(0) = 0 and ϕ(Lu) ≤ Lϕ(u), L ≥ 0, u ∈ R+. Let x0 ∈ X and {xn}∞n=0 be the Kirk-Noor iterative
scheme defined by (1.9). Suppose that T has a fixed point p. Then, the Kirk-Noor iterative scheme
converges strongly to p.
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Proof. Using Kirk-Noor iterative scheme (1.9) and Lemma 2.2, we have

∥
∥xn+1 − p

∥
∥ ≤ αn,0

∥
∥xn − p

∥
∥ +

k∑

i=1

αn,i

∥
∥
∥Tiyn − p

∥
∥
∥

≤ αn,0
∥
∥xn − p

∥
∥ +

k∑

i=1

αn,i

⎧
⎨

⎩

i∑

j=1

(
i
j

)
ai−jϕj(∥∥p − Tp

∥
∥) + ai

∥
∥yn − p

∥
∥

⎫
⎬

⎭

= αn,0
∥
∥xn − p

∥
∥ +

(
k∑

i=1

αn,ia
i

)
∥
∥yn − p

∥
∥.

(2.14)

Now, we have the following estimates:

∥∥yn − p
∥∥ ≤ βn,0

∥∥xn − p
∥∥ +

s∑

r=1

βn,r
∥∥Trzn − p

∥∥

≤ βn,0
∥∥xn − p

∥∥ +
s∑

r=1

βn,r

⎧
⎨

⎩

r∑

j=1

(
r
j

)
ar−jϕj(∥∥p − Tp

∥∥) + ar
∥∥zn − p

∥∥

⎫
⎬

⎭

= βn,0
∥∥xn − p

∥∥ +

(
k∑

r=1

βn,ra
r

)
∥∥zn − p

∥∥,

∥∥zn − p
∥∥ ≤ γn,l

∥∥xn − p
∥∥ +

t∑

l=1

γn,l
∥∥∥Tlxn − p

∥∥∥

≤ γn,l
∥∥xn − p

∥∥ +
t∑

l=1

γn,l

⎧
⎨

⎩

l∑

j=1

(
l
j

)
al−jϕj(∥∥p − Tp

∥∥) + al
∥∥xn − p

∥∥

⎫
⎬

⎭

=

(
t∑

l=0

γn,la
l

)
∥∥xn − p

∥∥.

(2.15)

It follows from (2.14), (2.15) that

∥∥xn+1 − p
∥∥ ≤ αn,0

∥∥xn − p
∥∥ +

(
k∑

i=1

αn,ia
i

)

βn,0
∥∥xn − p

∥∥

+

(
k∑

i=1

αn,ia
i

)(
s∑

r=1

βn,ia
i

)(
t∑

l=0

γn,la
l

)
∥∥xn − p

∥∥

<
[
αn,0 + (1 − αn,0)βn,0 + (1 − αn,0)

(
1 − βn,0

)]∥∥xn − p
∥∥ =

∥∥xn − p
∥∥.

(2.16)

Using Lemma (2.2), (2.16) yields limn→∞xn = p. Thus, Kirk-Noor iterative scheme converges
strongly to p.
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3. Results on Fastness of Kirk-Type Iterative Schemes for
Quasi-Contractive Operators

In [20], Berinde showed that Picard iteration is faster than Mann iteration for quasi-
contractive operators satisfying (1.14). In [21], Qing and Rhoades by taking example showed
that Ishikawa iteration is faster than Mann iteration for a certain quasi-contractive operator.
Ciric et al. [22], by providing an example, showed that Noor iterative scheme can be faster
than Mann and Ishikawa iterative schemes for some quasi-contractive operator. Recently,
Hussian et al. [23], provided an example of a quasi-contractive operator for which the
iterative scheme due to Agarwal et al. is faster than Mann and Ishikawa iterative schemes.

Now, by providing Example 3.1, we prove that the decreasing order of Kirk-type
iterative schemes is as follows: Kirk-SP, Kirk-CR, Kirk-Noor, Kirk-Ishikawa, and Kirk-Mann
iterative scheme.

However, after interchanging the parameters the decreasing order of Kirk-type
iterative schemes is as follows: Kirk-CR, Kirk-SP, Kirk-Noor, Kirk-Ishikawa, and Kirk-Mann.

Example 3.1. Let T : [0, 1] → [0, 1] := x/2, αn,1 = βn,1 = γn,1 = αn,0 = βn,0 = γn,0 = 4/
√
n,

n = 1, 2, . . . , n0 for some n0 ∈ N and αn,2 = βn,2 = γn,2 = 1 − 8/
√
n, n ≥ n0.

It is clear that T is a quasi-contractive operator satisfying (1.14) with a unique fixed
point 0. Also, it is easy to see that Example 3.1 satisfies all the conditions of Theorems 2.4, 2.5,
and 2.6.

Proof. Let n ≥ 64 and u0 = x0 with x0 /= 0. Then, for Kirk-Mann and Kirk-Ishikawa iterative
schemes, we have

un+1 =
n∏

i=64

(
1
4
+

4√
i

)
u0,

xn+1 =
n∏

i=64

(
1
16

+
5√
i

)
x0.

(3.1)

Now, consider

∣∣∣∣
xn+1

un+1

∣∣∣∣ =

∣∣∣∣∣∣∣

∏n
i=64

(
1/16 + 5/

√
i
)
x0

∏n
i=64

(
1/4 + 4/

√
i
)
u0

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

n∏

i=64

⎡

⎢
⎣1 −

(
3/16 − 1/

√
i
)

(
1/4 + 4/

√
i
)

⎤

⎥
⎦

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

n∏

i=64

⎡

⎢
⎣1 −

(
3
√
i − 16

)

(
4
√
i + 64

)

⎤

⎥
⎦

∣∣∣∣∣∣∣
.

(3.2)

It is easy to see that

0 ≤ lim
n→∞

n∏

i=64

⎡

⎢
⎣1 −

(
3
√
i − 16

)

(
4
√
i + 64

)

⎤

⎥
⎦ ≤ lim

n→∞

n∏

i=64

(
1 − 1

i

)
= lim

n→∞
63
n

= 0. (3.3)

Hence, limn→∞|xn+1/pn+1| = 0.
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Therefore, by Definition 2.3, Kirk-Ishikawa iterative scheme converges faster than
Kirk-Mann iterative scheme to the fixed point 0 of T .

Similarly,

∣
∣
∣
∣

xn+1(Kirk-Noor)
xn+1(Kirk-Ishikawa)

∣
∣
∣
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∣
∣
∣∣
∣
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√
i
)
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√
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i=64
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⎣1 −

(
3
√
i − 16

)

(
4
√
i + 320

)

⎤

⎥
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∣
∣
∣
∣
∣∣∣
,

(3.4)

with

0 ≤ lim
n→∞

n∏

i=64

⎡

⎢
⎣1 −

(
3
√
i − 16

)

(
4
√
i + 320

)

⎤

⎥
⎦ ≤ lim

n→∞

n∏

i=64

(
1 − 1

i

)
= lim

n→∞
63
n

= 0, (3.5)

implies

lim
n→∞

∣∣∣∣
xn+1(Kirk-Noor)

xn+1(Kirk-Ishikawa)

∣∣∣∣ = 0. (3.6)

Therefore, by Definition 2.3, Kirk-Noor iterative scheme converges faster than Kirk-Ishikawa
iterative scheme to the fixed point 0 of T .

Again, similarly
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xn+1(Kirk-Noor)
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,

(3.7)



12 Journal of Applied Mathematics

with

0 ≤ lim
n→∞

n∏

i=64

⎡

⎢
⎣1 −

64
(
17
√
i − 48

)

(
4i + 1344

√
i
)

⎤

⎥
⎦ ≤ lim

n→∞

n∏

i=64

(
1 − 1

i

)
= lim

n→∞
63
n

= 0, (3.8)

implies

lim
n→∞

∣
∣
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xn+1(Kirk-CR)
xn+1(Kirk-Noor)

∣
∣
∣∣ = 0. (3.9)

It shows Kirk-CR iterative scheme converges faster than Kirk-Noor iterative scheme to the
fixed point 0 of T .

Again, let n ≥ 300. Then, for Kirk-CR iterative scheme, we have

xn+1 =
n∏

i=300

(
1
64

+
3

4
√
i
+
12
n

+
64
i3/2

)
x0. (3.10)

So,
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1 − 64i − 16384

4i3/2 + 256i + 3072
√
i
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.

(3.11)

It is easy to see that

0 ≤ lim
n→∞

n∏

i=300

[
1 − 64i − 16384

4i3/2 + 256i + 3072
√
i

]
≤ lim

n→∞

n∏

i=300

[
1 − 1

i

]
= lim

n→∞
299
n

= 0. (3.12)

Hence, we have limn→∞|xn+1(Kirk-SP)/xn+1(Kirk-CR)| = 0. It shows Kirk-SP iterative scheme
converges faster than Kirk-CR iterative scheme to the fixed point 0 of T .

The following example shows comparison of simple iterative schemes with their cor-
responding Kirk-type iterative schemes.

Example 3.2. Let T : [0, 1] → [0, 1] := x/2, αn,0 = βn,0 = γn,0 = αn,1 = βn,1 = γn,1 = 4/
√
n,

n = 1, 2, . . . , n0, for some n0 ∈ N and αn,3 = βn,3 = γn,3 = 1 − 8/
√
n, n ≥ n0. It is clear that T is a

quasi-contractive operator satisfying (1.14) with a unique fixed point 0. Also, it is easy to see
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that Example 3.2 satisfies all the conditions of Theorems 2.4, 2.5, and 2.6. We will show the
following:

(1) Kirk-Mann iterative scheme is faster than Mann iterative scheme,

(2) Kirk-Ishikawa iterative scheme is faster than Ishikawa iterative scheme,

(3) Kirk-Noor iterative scheme is faster than Noor iterative scheme,

(4) Kirk-SP iterative scheme is faster than SP iterative scheme,

(5) Kirk-CR iterative scheme is faster than CR iterative scheme.

Proof. Let n ≥ 70 and u0 = x0 with x0 /= 0. Then, for Kirk-Mann and Mann iterative schemes,
we have

un+1 =
n∏

i=64

(
1
4
+

4√
n

)
u0,

xn+1 =
n∏

i=70

(
1 − 2√

i

)
x0.

(3.13)

Now, consider
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(3.14)

It is easy to see that

0 ≤ lim
n→∞
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)
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69
n

= 0. (3.15)

Hence, we have limn→∞|xn+1/un+1| = 0.
It shows that Kirk-Mann iterative scheme converges faster thanMann iterative scheme

to the fixed point 0 of T . Similarly,
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(3.16)
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with

0 ≤ lim
n→∞
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implies

lim
n→∞

∣
∣
∣
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xn+1(Ishikawa)

∣
∣
∣
∣ = 0. (3.18)

It shows that Kirk-Ishikawa iterative scheme converges faster than Ishikawa iterative scheme
to the fixed point 0 of T .

Again, similarly,
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with

0 ≤
n∏
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implies

lim
n→∞

∣∣∣∣
xn+1(Kirk-Noor)

xn+1(Noor)

∣∣∣∣ = 0. (3.21)

It shows that Kirk-Noor iterative scheme converges faster than Noor iterative scheme to the
fixed point 0 of T .
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Again,
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with
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implies

lim
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It shows that Kirk-SP iterative scheme converges faster than SP iterative scheme to the fixed
point 0 of T .

Again,

∣∣∣∣
xn+1(Kirk-CR)

xn+1(CR)

∣∣∣∣ =

∏n
i=70

(
1/64 + 1/

√
i + 12/i

)
x0

∏n
i=70

(
1/2 − 1/

√
i − 4/i + 8/i3/2

)
x

=
n∏

i=70

⎡

⎢
⎣1 −

(
31/64 − 2/

√
i − 16/i + 8/i3/2

)

1/2 − 1/
√
i − 4/i + 8/i3/2

⎤

⎥
⎦

=
n∏

i=70

⎡

⎢
⎣1 −

(
31i3/2 − 128i − 1024

√
i + 512

)

32i3/2 − 64i − 256
√
i + 512

⎤

⎥
⎦,

(3.25)

with
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implies

lim
n→∞

∣
∣
∣
∣
xn+1(Kirk-CR)

xn+1(CR)

∣
∣
∣
∣ = 0. (3.27)

It shows that Kirk-CR iterative scheme converges faster than CR iterative scheme to the fixed
point 0 of T .

4. Applications

In this section, with the help of computer programs in C++, we compare the rate of con-
vergence of Kirk-type iterative schemes, through examples. The outcome is listed in the form
of Tables 1, 2, 3, 4, and 5, by taking αn,1 = βn,1 = γn,1 = αn,2 = βn,2 = γn,2 = 1/(1 + n)1/2,
αn,0 = 1 − αn,1 − αn,2, and βn,0 = 1 − βn,1 − βn,2, γn,0 = 1 − γn,1 − γn,2 for all iterative schemes.

4.1. Decreasing Cum Sublinear Functions

The function f : [0, 1] → [0, 1] defined by f(x) = (1 − x3)1/2 is a decreasing and sublinear
function. By taking initial approximation x0 = 0.8, the comparison of convergence of the
above-mentioned iterative schemes to the exact fixed point p = 0.754878 is listed in Table 1.

4.2. Increasing Functions

Let f : [0, 2] → [0, 2] be defined by f(x) =
√
(π + xn

√
4 − xn

2 − (4 − 2xn
2)sin−1(xn/2))/π .

Then, f is an increasing function. By taking initial approximation x0 = 1, the comparison of
convergence of the above-mentioned iterative schemes to the exact fixed point p = 1.15863 of
f is listed in Table 2.

4.3. Functions with Multiple Zeros

The function defined by f(x) = (1 − x)2 is a function with multiple zeros. By taking initial
approximation x0 = 0.9, the comparison of convergence of the above-mentioned iterative
schemes to the exact fixed point p = 0.381966 is listed in Table 3.

4.4. Superlinear Functions with Multiple Roots

The function defined by f(x) = 2x3 − 7x2 + 8x − 2 is a superlinear function with multiple
real roots. By taking initial approximation x0 = 0.9, the comparison of convergence of the
above-mentioned iterative schemes to the exact fixed point p = 1 is listed in Table 4.

For detailed study, these programs are again executed after changing the parameters
and some observations are made as given below.
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Table 1: Decreasing cum sublinear functions.

Kirk-CR iteration Kirk-SP iteration Kirk-Noor iteration Kirk-Mann iteration Kirk-Ishikawa iteration

n fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1

0 0.69857 0.710807 0.69857 0.723726 0.69857 0.710384 0.69857 0.710418 0.69857 0.698227

1 0.800542 0.75984 0.78799 0.75565 0.800941 0.770859 0.800909 0.765142 0.812157 0.779333

2 0.7492 0.754819 0.754002 0.754877 0.736164 0.752595 0.743004 0.75401 0.725717 0.750854

3 0.754944 0.754878 0.754878 0.754878 0.75745 0.754879 0.755859 0.754812 0.759396 0.754853

4 0.754878 0.754878 0.754878 0.754878 0.754877 0.754878 0.754952 0.754866 0.754905 0.754875

5 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754891 0.754875 0.754881 0.754877

6 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754881 0.754877 0.754878 0.754878

7 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754879 0.754877 0.754878 0.754878

8 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878

9 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878

10 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878

Table 2: Increasing functions.

Kirk-CR iteration Kirk-SP iteration Kirk-Noor iteration Kirk-Mann iteration Kirk-Ishikawa iteration

n fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1

0 1.103589 1.116858 1.103589 1.17464 1.103589 1.451792 1.103589 1.241473 1.103589 1.365883

1 1.142723 1.158453 1.165002 1.15863 1.300429 0.997618 1.193272 1.158697 1.253254 1.076407

2 1.158561 1.158631 1.15863 1.15863 1.102871 1.189602 1.158657 1.158641 1.128293 1.167741

3 1.158631 1.15863 1.15863 1.15863 1.171096 1.15929 1.158635 1.158633 1.162237 1.159321

4 1.15863 1.15863 1.15863 1.15863 1.15889 1.158731 1.158632 1.158631 1.158902 1.158763

5 1.15863 1.15863 1.15863 1.15863 1.15867 1.158655 1.158631 1.158631 1.158682 1.158667

6 1.15863 1.15863 1.15863 1.15863 1.15864 1.158638 1.158631 1.158631 1.158645 1.158643

7 1.15863 1.15863 1.15863 1.15863 1.158633 1.158633 1.158631 1.158631 1.158635 1.158635

8 1.15863 1.15863 1.15863 1.15863 1.158632 1.158632 1.15863 1.15863 1.158632 1.158632

9 1.15863 1.15863 1.15863 1.15863 1.158631 1.158631 1.15863 1.15863 1.158631 1.158631

10 1.15863 1.15863 1.15863 1.15863 1.158631 1.158631 1.15863 1.15863 1.158631 1.158631

11 1.15863 1.15863 1.15863 1.15863 1.158631 1.158631 1.15863 1.15863 1.158631 1.158631

12 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.158631 1.158631

13 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.158631

14 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863

15 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863

4.5. Oscillatory Functions

The function defined by f(x) = 1/x is an oscillatory function. By taking initial approximation
x0 = 4, the comparison of convergence of the above-mentioned iterative schemes to the exact
fixed point p = 1 is listed in Table 5.
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Table 3: Functions with multiple zeros.

Kirk-CR iteration Kirk-SP iteration Kirk-Noor iteration Kirk-Mann iteration Kirk-Ishikawa iteration
n fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1

0 0.01 0.129763 0.01 0.181407 0.01 0.194268 0.01 0.0901 0.01 −0.04247
1 0.757312 0.419604 0.670095 0.38479 0.649205 0.487941 0.827918 0.569045 1.086743 0.695256
2 0.336859 0.382104 0.378484 0.381966 0.262204 0.363223 0.185722 0.402006 0.092869 0.341163
3 0.381795 0.381966 0.381966 0.381966 0.405485 0.381913 0.357596 0.385139 0.434066 0.381282
4 0.381965 0.381966 0.381966 0.381966 0.382031 0.38196 0.378054 0.382721 0.382812 0.381873
5 0.381966 0.381966 0.381966 0.381966 0.381974 0.381965 0.381033 0.382195 0.382081 0.381946
6 0.381966 0.381966 0.381966 0.381966 0.381968 0.381966 0.381683 0.382047 0.381991 0.38196
7 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381866 0.381998 0.381973 0.381964
8 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381926 0.38198 0.381968 0.381965
9 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381949 0.381972 0.381967 0.381966
10 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381958 0.381969 0.381966 0.381966
11 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381962 0.381968 0.381966 0.381966
12 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381964 0.381967 0.381966 0.381966
13 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381965 0.381966 0.381966 0.381966
14 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381965 0.381966 0.381966 0.381966
15 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966 0.381966

Table 4: Superlinear functions.

Kirk-CR iteration Kirk-SP iteration Kirk-Noor iteration Kirk-Mann iteration Kirk-Ishikawa iteration
n fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1

0 0.988 0.994372 0.988 1.083583 0.988 1.092828 0.988 1.087853 0.988 1.093597
1 0.999968 0.999996 0.994182 0.993672 0.992983 0.960331 0.993638 0.959083 0.992879 0.95975
2 1 1 0.999959 1.000023 0.998302 1.006115 0.998189 1.005282 0.998249 1.006211
3 1 1 1 1 0.999963 1 0.999972 0.999986 0.999962 1
4 1 1 1 1 1 1 1 0.999999 1 1
5 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1

5. Observations

5.1. Decreasing Functions

(1) Taking initial guess xo = 0.5 (away from the fixed point), Kirk-Mann iterative scheme
converges in 9 iterations, Kirk-Ishikawa scheme converges in 9 iterations, Kirk-Noor iterative
scheme converges in 6 iterations, Kirk-CR and the Kirk-SP iterative schemes converge in 5
iterations.

(2) Taking αn = βn = γn = 1/(1 + n)1/4 and xo = 0.8, we observe that Kirk-Mann
iterative scheme converges in 10 iterations, Kirk-Ishikawa iterative scheme converges in 12
iteration, Kirk-Noor scheme converges in 12 iterations, Kirk-CR iterative scheme converges
in 8 iterations, and Kirk-SP iterative scheme converges in 6 iterations.
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Table 5: Oscillatory functions.

Kirk-CR iteration Kirk-SP iteration Kirk-Noor iteration Kirk-Mann iteration Kirk-Ishikawa iteration
n fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1

0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
1 4 1.294298 4 0.966905 4 1.768962 4 2.90165 4 2.191915
2 0.772619 0.995245 1.034228 1.000136 0.565303 0.889831 0.344631 1.425355 0.456222 0.833093
3 1.004778 1 0.999864 1 1.123808 1 0.70158 1.063467 1.200346 1.000137
4 1 1 1 1 1 1 0.94032 1.008394 0.999863 1.000015
5 1 1 1 1 1 1 0.991676 1.001569 0.999985 1.000003
6 1 1 1 1 1 1 0.998434 1.000384 0.999997 1.000001
7 1 1 1 1 1 1 0.999616 1.000112 0.999999 1
8 1 1 1 1 1 1 0.999888 1.000037 1 1
9 1 1 1 1 1 1 0.999963 1.000014 1 1
10 1 1 1 1 1 1 0.999986 1.000005 1 1
11 1 1 1 1 1 1 0.999995 1.000002 1 1
12 1 1 1 1 1 1 0.999998 1.000001 1 1
13 1 1 1 1 1 1 0.999999 1 1 1
14 1 1 1 1 1 1 1 1 1 1

5.2. Increasing Functions

(1) Taking initial guess xo = 0.8 (away from the fixed point), Kirk-Mann iterative scheme con-
verges in 19 iterations, Kirk-Ishikawa iterative scheme converges in 16 iterations, Kirk-Noor
iterative scheme converges in 15 iterations, Kirk-CR iterative scheme converges in 5 itera-
tions, and Kirk-SP iterative scheme converges in 3 iterations.

(2) Taking αn = βn = γn = 1/(1 + n)1/4 and xo = 1, we observe that Kirk-Mann iterative
scheme converges in 6 iterations, Kirk-Ishikawa iterative scheme converges in 11 iterations,
Kirk-Noor iterative scheme converges in 13 iterations, Kirk-CR iterative scheme converges in
5 iterations, and Kirk-SP iterative scheme converges in 4 iterations.

5.3. Functions with Multiple Zeros

(1) Taking initial guess xo = 0.6 (near the fixed point), Kirk-Mann iterative scheme converges
in 12 iterations, Kirk-Ishikawa iterative scheme converges in 10 iterations, Kirk-Noor iterative
scheme converges in 8 iterations, Kirk-CR iterative scheme converges in 5 iterations and the
Kirk-SP iterative scheme converges in 4 iterations.

(2) Taking αn = βn = γn = 1/(1 + n)1/4 and xo = 0.9, we observe that Kirk-Mann
iterative scheme converges in 9 iterations, Kirk-Ishikawa iterative scheme converges in 13
iterations, Kirk-Noor iterative scheme converges in 13 iterations, Kirk-CR iterative scheme
converges in 8 iterations, and Kirk-SP iterative scheme converges in 6 iterations.

5.4. Superlinear Functions with Multiple Roots

(1) Taking initial guess xo = 0.6 (away from the fixed point), Kirk-Mann, Kirk-Ishikawa and
Kirk-Noor iterative schemes converge in 5 iterations while Kirk-CR and the Kirk-SP schemes
converge in 4 iterations.
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(2) Taking αn = βn = γn = 1/(1 + n)1/4 and xo = 0.9, we observe that Kirk-Mann, Kirk-
Ishikawa, and Kirk-Noor schemes converge in 11 iterations while Kirk-CR iterative scheme
converges in 4 iterations, and Kirk-SP iterative scheme converges in 3 iterations.

5.5. Oscillatory Functions

(1) Taking initial guess xo = 0.6 (near the fixed point), Kirk-Mann iterative scheme converges
in 9 iterations, Kirk-Ishikawa, iterative scheme converges in 6 iterations while Kirk-Noor,
Kirk-CR, and Kirk-SP iterative schemes converge in 5 iterations.

(2) Taking αn = βn = γn = 1/(1 + n)1/4 and xo = 4, we observe that Kirk-Mann iterative
scheme converges in 12 iterations, Kirk-Ishikawa iterative scheme converges in 15 iterations,
Kirk-Noor iterative scheme converges in 13 iterations, Kirk-CR iterative scheme converges in
9 iterations, and Kirk-SP iterative scheme converges in 8 iterations.

6. Conclusions

The speed of iterative schemes depends on αn, βn, and γn. From Tables 1–5 and obsevations
made in Section 4, we conclude the following.

6.1. Decreasing Cum Sublinear Functions

(1) Decreasing order of rate of convergence of Kirk-type iterative schemes is as follows:

Kirk-SP, Kirk-CR, Kirk-Noor, Kirk-Ishikawa, and Kirk-Mann.

(2) For initial guess away from the fixed point, Kirk-SP and Kirk-Ishikawa iterative
schemes show an increase while Kirk-CR, Kirk-Noor, and Kirk-Mann iterative schemes show
no change in the number of iterations to converge.

6.2. Increasing Functions

(1) Decreasing order of rate of convergence of Kirk-type iterative schemes is as follows:

Kirk-SP, Kirk-CR, Kirk-Mann, Kirk-Noor, and Kirk-Ishikawa.

(2) For initial guess away from the fixed point, the number of iterations increases in
case of Kirk-Mann, Kirk-Noor, and Kirk-Ishikawa iterative schemes. However, Kirk-SP and
Kirk-CR schemes show no change in the number of iterations.

6.3. Functions with Multiple Zeros

(1) Decreasing order of rate of convergence of Kirk-type iterative schemes is as follows:

Kirk-SP, Kirk-CR, Kirk-Noor, Kirk-Ishikwa, and Kirk-Mann.

(2) For initial guess near the fixed point, Kirk-CR, Kirk-Ishikawa, and Kirk-Mann
iterative schemes show a decrease while Kirk-Noor and Kirk-SP iterative schemes show no
change in the number of iterations to converge.
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6.4. Superlinear Functions

(1) Decreasing order of rate of convergence of Kirk-type iterative schemes is as follows:

Kirk-CR, Kirk-SP, Kirk-Noor, and Kirk-Mann, while Kirk-Noor and Kirk-Ishikawa
iterative schemes show equivalence.

(2) For initial guess near the fixed point, Kirk-CR iterative scheme show an increase,
while Kirk-SP, Kirk-Ishikawa, Kirk-Mann, and Kirk-Noor iterative schemes show no change
in the number of iterations to converge.

6.5. Oscillatory Functions

(1) Decreasing order of rate of convergence of Kirk type iterative schemes is as follows:

Kirk-CR, Kirk-Ishikawa, and Kirk-Mann, while Kirk-CR, Kirk-SP, and Kirk-Noor
iterative schemes show equivalence.

(2) For initial guess near the fixed point, Kirk-Mann and Kirk-Ishikawa iterative
schemes show a decrease, while Kirk-CR, Kirk-SP, and Kirk-Noor iterative schemes show
no change in the number of iterations to converge.

Remarks 3. (9) It is observed from experiments that, on taking k = s = t > 2, the convergence
speed of each iterative scheme decreases for all type of the above-mentioned functions. Con-
vergence speed is the highest for k = s = t = 2.

(10) In Section 4, we have shown comparison between Kirk-type iterative schemes
for decreasing functions. However, for decreasing functions of the form f(x) = (1 − x)m,
m = 7, 8, 9 . . ., Kirk-type iterative schemes may not converge.

(11) Hence, Kirk-SP and Kirk-CR iterative schemes have a good potential for further
applications.
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