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1 Department of Technical Mathematics, Faculty of Mechanical Engineering,
Czech Technical University in Prague, Karlovo Nám. 13, 121 35 Praha 2, Czech Republic

2 Institute of Thermomechanics AS CR, Dolejškova 5, 18200 Prague 8, Czech Republic
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This study deals with the numerical solution of a 2D unsteady flow of a compressible viscous
fluid in a channel for low inlet airflow velocity. The unsteadiness of the flow is caused by a
prescribed periodic motion of a part of the channel wall with large amplitudes, nearly closing
the channel during oscillations. The flow is described by the system of Navier-Stokes equations
for laminar flows. The numerical solution is implemented using the finite volume method (FVM)
and the predictor-corrector Mac-Cormack scheme with Jameson artificial viscosity using a grid
of quadrilateral cells. Due to the motion of the grid, the basic system of conservation laws is
considered in the arbitrary Lagrangian-Eulerian (ALE) form. The numerical results of unsteady
flows in the channel are presented for inlet Mach number M∞ = 0.012, Reynolds number
Re∞ = 4481, and the wall motion frequency 100Hz.

1. Introduction

A current challenging question is a mathematical and physical description of the mechanism
for transforming the airflow energy in human vocal tract (convergent channel) into the
acoustic energy representing the voice source in humans. The voice source signal travels from
the glottis to the mouth, exciting the acoustic supraglottal spaces, and becomes modified by
acoustic resonance properties of the vocal tract [1]. The airflow coming from the lungs causes
self-oscillations of the vocal folds, and the glottis completely closes in normal phonation
regimes, generating acoustic pressure fluctuations. In this study, the movement of the
boundary channel is known, harmonically opening and nearly closing in the narrowest cross-
section of the channel, making the investigation of the airflow field in the glottal region
possible.
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Acoustic wave propagation in the vocal tract is usually modeled from incompressible
flow models separately using linear acoustic perturbation theory, the wave equation for the
potential flow [2], or the Lighthill approach on sound generated aerodynamically [3].

Goal of this work is numerical simulation of compressible viscous flow in 2D
convergent channel which involves attributes of real flow causing acoustic perturbations as
is “Coandă phenomenon” (the tendency of a fluid jet to be attracted to a nearby surface),
vortex convection and diffusion, jet flapping, and so forth along with lower call on computer
time, due to later extension in 3D channel flow. Particular attention is paid to the analysis of
acoustic pressure signal from the channel.

2. Mathematical Model

To describe the unsteady laminar flow of a compressible viscous fluid in a channel, the 2D
system of Navier-Stokes equations was considered as a mathematical model. The system of
Navier-Stokes equations is expressed in nondimensional conservative form [4]

∂W
∂t

+
∂F
∂x

+
∂G
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=
1
Re

(
∂R
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+
∂S
∂y

)
, (2.1)

where W = [ρ, ρu, ρv, e]T is the vector of conservative variables, F and G are the vectors of
inviscid fluxes, andR and S are the vectors of viscous fluxes. The static pressure p is expressed
by the state equation in the form

p = (κ − 1)
[
e − 1

2
ρ
(
u2 + v2

)]
. (2.2)

The transformation to the nondimensional form uses inflow parameters (marked with the
infinity subscript) as reference variables (dimensional variables are marked with the hat):
the speed of sound ĉ∞ = 343ms−1, density ρ̂∞ = 1.225 kgm−3, reference length L̂r = 0.02m,
and dynamic viscosity η̂∞ = 18 · 10−6 Pa · s. Inflow temperature T̂∞ [K] depends on relation
for speed of sound ĉ2∞ = κR̂T̂∞ where κ = 1.4 is the ratio of the specific heats. Inflow pressure
satisfies equation of state for ideal gas p̂∞ = ρ̂∞R̂T̂∞.

General Reynolds number in (2.1) is computed from reference variables Re =
ρ̂∞ĉ∞L̂r/η̂∞. The nondimensional dynamic viscosity in the dissipative terms is a function
of temperature in the form η = (T/T∞)

3/4. The heat transfer coefficient is expressed as
k = ηκ/[Pr(κ − 1)], where Pr = 0.7 is the Prandtl number.

3. Computational Domain and Boundary Conditions

For phonation of vowels, the frequencies of the vocal folds oscillations are in the region from
cc 82Hz for bass up to cc 1170Hz for soprano in singing voice, and the airflow velocity in the
trachea is approximately in the range of 0.3–5.2ms−1 taking into account the tracheal diameter
in humans in the range 14.5–17.6mm [2].

The bounded computational domain D1, used for the numerical solution of flow field
in the channel, is shown in Figure 1. The domain is a symmetric channel, the shape of which is
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Figure 1: Computational domain D1. L = 8 (160mm), H = 0.8 (16mm), and g = 0.08 (1.6mm)—middle
position.

inspired by the shape [5] of the trachea (inlet part of the channel), vocal folds, false vocal folds
and supraglottal spaces (outlet part). The upper and the lower boundaries are the channel
walls. A part of the wall changes its shape between the points A and B according to a given
harmonic function of time and axial coordinate (see, e.g., [6]). The gap g(t) is the narrowest
part of the channel (in point C). The gap width was oscillating with frequency 100Hz (typical
for normal male voice) between the minimum gmin = 0.4mm and maximum gmax = 2.8mm,
not closing the channel completely.

The boundary conditions are considered in the following formulation:

(1) upstream conditions: u∞ = û∞/ĉ∞ = M∞, v∞ = 0, ρ∞ = 1, and p∞ is extrapolated
from domain D1;

(2) downstream conditions: p2 = 1/κ and (ρ, ρu, ρv) are extrapolated from D1;

(3) flow on the wall: (u, v) = (uwall, vwall) where (uwall, vwall) is velocity vector of the
wall and ∂T/∂�n = 0 where T = κp/ρ is the temperature.

The general Reynolds number in (2.1) multiplied with nondimensional value M∞H
represents kinematic viscosity scale, and for computation of the real problem, inlet Reynolds
number Re∞ = ρ̂∞ĉ∞M∞HL̂r/η̂∞ is used.

4. Numerical Solution

The numerical solution uses FVM in conservative cell-centered form on the grid of
quadrilateral cells, see, for example, [4].

The bounded domain is divided into mutually disjoint subdomains Di,j (i.e.,
quadrilateral cells). The system of (2.1) is integrated over the subdomains Di,j using the
Green formula and the mean value theorem. In the time-changing domain, the integral form
of FVM is derived using the ALE formulation. The ALE method defines homeomorphic
mapping of the reference domain Dt=0 at initial time t = 0 to a domain Dt at t > 0 [7].
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Figure 2: Finite volume Di,j and dual volume V ′
k
.

The explicit predictor-corrector MacCormack (MC) scheme in the domain with a
moving grid of quadrilateral cells is used. The scheme is 2nd order accurate in time and
space using orthogonal regular grid [4]

Wn+1/2
i,j =

μn
i,j

μn+1
i,j

Wn
i,j −

Δt

μn+1
i,j

4∑
k=1

[(
F̃nk − s1kWn

k −
1
Re

R̃n
k

)
Δyk −

(
G̃n

k − s2kWn
k −

1
Re

S̃n
k

)
Δxk

]
,

W
n+1
i,j =

μn
i,j

μn+1
i,j

1
2

(
Wn

i,j +Wn+1/2
i,j

)
− Δt

2μn+1
i,j

4∑
k=1

[(
F̃n+1/2k − s1kW

n+1/2
k − 1

Re
R̃n+1/2

k

)
Δyk

−
(
G̃n+1/2

k − s2kW
n+1/2
k − 1

Re
S̃n+1/2
k

)
Δxk

]
,

(4.1)

where Δt = tn+1 − tn is the time step, μi,j =
∫ ∫

Di,j
dx dy is the volume of cell Di,j , Δx and Δy

are the steps of the grid in directions x and y, and vector sk = (s1, s2)k represents the speed of
edge k (see Figure 2). The physical fluxes F, G, R, S on the edge k of the cellDi,j are replaced
by numerical fluxes (marked with tilde) F̃, G̃, R̃, S̃ as approximations of the physical fluxes.

The approximations of the convective terms sWk and the numerical viscous fluxes
R̃k, S̃k on the edge k are central. The higher partial derivatives of velocity and temperature
in R̃k, S̃k are approximated using dual volumes V ′

k (see [4]) shown in Figure 2. The inviscid
numerical fluxes are approximated by the physical fluxes from the cell on the left side of the
current edge in the predictor step and from the cell on the right side of the current edge in
the corrector step.

The last term used in the MC scheme is the Jameson artificial dissipation AD(Wi,j)
n

[8]. Artificial dissipation is used to stabilize computation and also due to velocity gradients
in the narrowest width of the channel, where M∞ ≈ 0.5. The vector of conservative variables
is computed at a new time level tn+1:Wn+1

i,j = W
n+1
i,j +AD(Wi,j)

n.



Journal of Applied Mathematics 5

2.25 2.3 2.35

0.76

0.78

0.8

0.82

0.84

(a)

2.295 2.3 2.305 2.31

0.834

0.836

0.838

0.84

0.842

0.844

(b)

Figure 3: Grid of quadrilateral cells in the narrowest part of domain D1 at the middle position of the gap
width g = 0.08 (1.6mm). Detail: Δymin

.= 5 · 10−4 (0.01mm).

The stability condition of the scheme (on the regular orthogonal grid) limits the time
step
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where c denotes the local speed of sound, umax and vmax are the maximum velocities in the
domain, and CFL < 1 for nonlinear equations [9]. Time discretization of the scheme satisfies
discrete geometric conservation law (DGCL), see [10].

The grid used in the channel has successive refinement cells near the wall. The
minimum cell size in y-direction is Δymin ≈ 1/

√
Re∞ to capture the boundary layer effects.

Figure 3 shows the detail of the grid in domain D1 in the narrowest channel cross-section at
the middle position of the gap.

5. Numerical Results

The numerical results were obtained (using a specifically developed program) for the
following input data: Mach number M∞ = 0.012 (û∞ = 4.116ms−1), Reynolds number
Re∞ = 4481, atmospheric pressure p2 = 1/κ (p̂2 = 102942Pa) at the outlet, andwall oscillation
frequency f̂ = 100Hz. The computational domain contained 450 × 100 cells in D1.

The computation has been carried out in two stages. First, a steady numerical solution
is obtained, when the channel between points A and B has a rigid wall fixed in the middle
position of the gap width. Then this solution is used as the initial condition for the unsteady
simulation.

Figure 4 shows the initial condition for unsteady computation of the flow field in
domain D1 and the convergence to the steady-state solution computed using the L2 norm
of momentum residuals (ρu). The maximum Mach number computed in the flow field
Figure 4(a) was Mmax = 0.177 (corresponding to the dimension velocity ûmax = 60.7ms−1).
The picture displays nonsymmetric flow developed behind the narrowest channel cross-
section. The graph in Figure 4(b) indicates the nonstationary solution of initial condition
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Figure 4: The initial condition computed in D1—M∞ = 0.012, Re∞ = 4481, p2 = 1/κ, 450 × 100 cells, and
Mmax = 0.177 (ûmax = 60.7ms−1).

which is caused probably by eddies separated in the unmovable glottal orifice and floating
away.

The numerical simulation of the airflow computed in domainD1 over the fourth cycle
of the wall oscillation is presented in Figure 5 showing the unsteady flow field in five time
instants during one vibration period. Large eddies are developing in supraglottal spaces and
a “Coandă” effect is apparent in the flow field pattern. The absolute maximum of Mach
number Mmax = 0.535 (ûmax = 183.5ms−1) in the flow field during fourth cycle was achieved
at time t = 34.2ms (g = 1.002mm, opening phase) behind the narrowest channel cross-
section. The flow becomes practically periodic after the first period of oscillations.

Figure 6 shows three vibration periods of the gapwidth oscillation (a) and the acoustic
pressures signals computed in the gap (b) and at the outlet (c) on the axis of the channel. The
acoustic pressure was calculated by subtracting the average values of the pressure signals
pac = p − p2. The acoustic pressure time dependent data are transformed to frequency-
dependent data (acoustic pressure spectrum) using discrete fourier transformation (DFT)
of the signals. The spectrum of the pressure in the glottis, Figure 6(b)-right, shows the
dominant fundamental frequency of vocal folds model oscillations f̂0 = 100Hz and the
generated higher harmonics as a consequence of the throttling and nearly closing the glottal
gap g(t). Two different regimes are apparent in the acoustic pressure signal at the channel
outlet during one vibration period of the glottis in Figure 6(c)-left. Relatively smooth signal
containing low frequencies is dominant in the time interval corresponding to the phase of
maximum glottal opening, and a very noisy signal containing high frequencies is associated
with the phase of minimum glottal opening. Four acoustic resonances of the channel cavity
at about f̂0 = 100, f̂1 = 550, f̂2 = 1150, and f̂3 = 1950Hz can be identified in the spectrum
envelope of the pressure at the channel outlet in Figure 6(c)-right. The first acoustic resonance
f̂1 = 550Hz (see spectrum peak at cc 500Hz) corresponds to the first eigenfrequency F̂1

of a simple tube of the length of the complete channel closed at the inlet and open at the
outlet (F̂1 = ĉ∞/(4L · L̂r) = 343ms−1/(4 · 0.16m) = 536Hz). The acoustic resonances are
more damped with increasing frequency, which can be caused by the fluid viscosity as well
as by a numerical viscosity implemented in the numerical method (constants magnitude in
AD(Wi,j)

n).

Remark 5.1. We used several tests on fine and coarse grids in the computational domain. Also
the domain has been prolonged in upstream and also in downstream part. Achieved results
were approximately the same on fine grid.
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(a) t = 30ms, g = 1.6mm,Mmax = 0.159 (54.5ms−1)

0
0 2 4 6 8

0.4

0.8

1.2

1.6

(b) t = 32.5ms, g = 0.4mm,Mmax = 0.236 (80.9ms−1)

0
0 2 4 6 8

0.4

0.8

1.2

1.6

(c) t = 35ms, g = 1.6mm,Mmax = 0.370 (126.9ms−1)

0
0 2 4 6 8

0.4

0.8

1.2

1.6

(d) t = 37.5ms, g = 2.8mm,Mmax = 0.097 (33.3ms−1)

0
0 2 4 6 8

0.4

0.8

1.2

1.6

(e) t = 40ms, g = 1.6mm,Mmax = 0.162 (55.6ms−1)

Figure 5: The unsteady numerical solution of the airflow in D1— f̂ = 100Hz, M∞ = 0.012, Re∞ = 4481,
p2 = 1/κ, and 450 × 100 cells. Data computed during the fourth oscillation cycle. Results are mapped by
isolines of velocity ratio and by streamlines.

Remark 5.2. The mathematical model (2.1) of laminar flow used in this case is debatable. For
the first approximation, we supposed unformed turbulent flow at the inlet part of the channel.

Remark 5.3. The validation of computations for this case is not complete because of
experiments absence. Semivalidation of the computations is comparison with particle image
velocimetry method (PIV) experiment, but we can compare only qualitative behavior of the
flow. Full validation of the code for subsonic and transonic flow through a turbine cascade
computed in periodic domain is showed, for example, in [10].
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Figure 6: Three vibration periods of the gap width oscillations and the acoustic pressure signals pac
computed in the gap and at the outlet on the axis of the channel.

6. Discussion and Conclusions

The numerical solution in the channel showed large vortex structures developed in the
supraglottal space moving slowly downstream and decaying gradually. It was possible to
detect a “Coandă phenomenon” in the computed flow field patterns. A similar generation of
large-scale vortices, vortex convection and diffusion, jet flapping, and general flow patterns
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were experimentally obtained in physical models of the vocal folds by using PIV method in
[5, 11, 12].

The results show that some numerical results of viscous flow in a symmetric channel
using a symmetric grid and scheme can be nonsymmetrical, depending on the geometry and
the Reynolds number. This effect was observed also for laminar transonic flow computation
[13]. The assumption of the axisymmetry solution for the axisymmetry channels (see [6])
excludes modeling the “Coandă” effect and large vortex structures of the size comparable
with the cross-section of the channel.

The analysis of the computed pressure revealed basic acoustic characteristics of the
channel. This is promising result for future studies for a direct modeling of human voice
generated by the flow in vibrating glottis taken into account a real shape of the human vocal
tract for phonation and throttling the glottal gap width up to zero.
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[5] J. Horacek, P. Sidlof, V. Uruba, J. Vesely, V. Radolf, and V. Bula, “PIV measurement of flow-patterns
in human vocal tract model,” in Proceedings of the the International Conference on Acoustic NAG/DAGA
2009, pp. 1737–1740, Rotterdam, The Netherlands, 2009.
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