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In 1940 and 1964, Ulam proposed the general problem: “When is it true that by changing a little
the hypotheses of a theorem one can still assert that the thesis of the theorem remains true or
approximately true?”. In 1941, Hyers solved this stability problem for linear mappings. According
to Gruber (1978) this kind of stability problems are of the particular interest in probability theory
and in the case of functional equations of different types. In 1981, Skof was the first author to solve
the Ulam problem for quadratic mappings. In 1982–2011, J. M. Rassias solved the above Ulam
problem for linear and nonlinear mappings and established analogous stability problems even
on restricted domains. The purpose of this paper is the generalized Hyers-Ulam stability for the
following cubic functional equation: f(mx + y) + f(mx − y) = mf(x + y) + mf(x − y) + 2(m3 −
m)f(x),m ≥ 2 in various normed spaces.

1. Introduction

A classical question in the theory of functional equations is the following: “When is it true
that a function which approximately satisfies a functional equation D must be close to an
exact solution of D?”

If the problem accepts a solution, we say that the equationD is stable. The first stability
problem concerning group homomorphisms was raised by Ulam [1] in 1964.

In the next year, Hyers [2] gave a positive answer to the above question for additive
groups under the assumption that the groups are Banach spaces.

In 1978, Th. M. Rassias [3] proved a generalization of Hyers’ theorem for additive
mappings.
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Theorem 1.1 (Th. M. Rassias). Let f : E → E′ be a mapping from a normed vector space E into a
Banach space E′ subject to the inequality

∥
∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ∥∥y∥∥p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then, the limit

L(x) = lim
n→∞

f(2nx)
2n

(1.2)

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥
∥f(x) − L(x)∥∥ ≤ 2ε

2 − 2p
‖x‖p (1.3)

for all x ∈ E. If p < 0, then inequality (1.1) holds for x, y /= 0 and (1.3) for x /= 0. Also, if for each
x ∈ E the mapping t 	→ f(tx) is continuous in t ∈ R, then L is R-linear.

The result of Th. M. Rassias has influenced the development of what is now called
the Hyers-Ulam-Rassias stability theory for functional equations. In 1994, a generalization of
Rassias’ theorem was obtained by Găvruţa [4] by replacing the bound ε(‖x‖p + ‖y‖p) by a
general control function ϕ(x, y).

The functional equation

f
(

x + y
)

+ f
(

x − y) = 2f(x) + 2f
(

y
)

(1.4)

is called a quadratic functional equation. In particular, every solution of the above quadratic
functional equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability
problem for the quadratic functional equation was proved by Skof [5] for mappings f : X →
Y , where X is a normed space and Y is a Banach space. Cholewa [6] noticed that the theorem
of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [7]
proved the generalized Hyers-Ulam stability of the quadratic functional equation.

The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results concerning this
problem (see [2–4, 8–48]).

On the other hand, J. M. Rassias [38] considered the Cauchy difference controlled by a
product of different powers of norm.

Theorem 1.2 (J. M. Rassias). Let f : E → E′ be a mapping from a real normed vector space E into
a Banach space E′ subject to the inequality

∥
∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ ε‖x‖p∥∥y∥∥q (1.5)
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for all x, y ∈ E, where ε and r = p + q are constants with ε > 0 and r /= 1. Then, L : E → E′ is the
unique additive mapping which satisfies

‖f(x) − L(x)‖ ≤ ε

2 − 2r
‖x‖r (1.6)

for all x ∈ E.

However, there was a singular case, for this singularity a counterexample was given by
Găvruţa [19]. This stability phenomenon is called the Ulam-Gavruta-Rassias product stability
(see also [13–17, 49]). In addition, J. M. Rassias considered the mixed product-sum of powers
of norms control function. This stability is called JMRassias mixed product-sum stability (see
also [44, 50–53]).

Jun and Kim [22] introduced the functional equation

f
(

2x + y
)

+ f
(

2x − y) = 2f
(

x + y
)

+ 2f
(

x − y) + 12f(x), (1.7)

and they established the general solution and the generalized Hyers-Ulam-Rassias stability
problem for the functional equation (1.7) in Banach spaces.

Park and Jung [35] introduced the functional equation

f
(

3x + y
)

+ f
(

3x − y) = 3f
(

x + y
)

+ 3f
(

x − y) + 48f(x), (1.8)

and they established the general solution and the generalized Hyers-Ulam-Rassias stability
problem for the functional equation (1.8) in Banach spaces.

It is easy to see that the function f(x) = x3 is a solution of the functional equations
(1.7) and (1.8). Thus, it is natural that functional equations (1.7) and (1.8) are called cubic
functional equations and every solution of these cubic functional equations is said to be a
cubic mapping.

In this paper, we prove the generalized Hyers-Ulam stability of the following func-
tional equation:

f
(

mx + y
)

+ f
(

mx − y) = mf(x + y
)

+mf
(

x − y) + 2
(

m3 −m
)

f(x). (1.9)

wherem is a positive integer greater than 2, in various normed spaces.

2. Preliminaries

In the sequel, we will adopt the usual terminology, notions, and conventions of the theory
of random normed spaces as in [54]. Throughout this paper, the space of all probability
distribution functions is denoted by Δ+. Elements of Δ+ are functions F : R ∪ {−∞,+∞} →
[0, 1], such that F is left continuous and nondecreasing on R, F(0) = 0 and F(+∞) = 1. It is
clear that the subset D+ = {F ∈ Δ+ : l−F(+∞) = 1}, where l−f(x) = limt→x−f(t), is a subset of
Δ+. The spaceΔ+ is partially ordered by the usual pointwise ordering of functions, that is, for
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all t ∈ R, F ≤ G if and only if F(t) ≤ G(t). For every a ≥ 0,Ha(t) is the element of D+ defined
by

Ha(t) =

⎧

⎨

⎩

0, if t ≤ a,
1, if t > a.

(2.1)

One can easily show that the maximal element forΔ+ in this order is the distribution function
H0(t).

Definition 2.1. A function T : [0, 1]2 → [0, 1] is a continuous triangular norm (briefly a t-
norm) if Tsatisfies the following conditions:

(i) T is commutative and associative;

(ii) T is continuous;

(iii) T(x, 1) = x for all x ∈ [0, 1];

(iv) T(x, y) ≤ T(z,w)whenever x ≤ z and y ≤ w for all x, y, z,w ∈ [0, 1].

Three typical examples of continuous t-norms are T(x, y) = xy, T(x, y) = max{a +
b − 1, 0}, and T(x, y) = min(a, b). Recall that, if T is a t-norm and {xn} is a given group of
numbers in [0, 1], Tni=1xi is defined recursively by T1

i=1x1 and T
n
i=1xi = T(T

n−1
i=1 xi, xn) for n ≥ 2.

Definition 2.2. A random normed space (briefly RN-space) is a triple (X, μ′, T), where X is a
vector space, T is a continuous t-norm and μ′ : X → D+ is a mapping such that the following
conditions hold:

(i) μ′
x(t) = H0(t) for all t > 0 if and only if x = 0;

(ii) μ′
αx(t) = μ

′
x(t/|α|) for all α ∈ R, α/= 0, x ∈ X and t ≥ 0;

(iii) μ′
x+y(t + s) ≥ T(μ′

x(t), μ
′
y(s)), for all x, y ∈ X and t, s ≥ 0.

Every normed space (X, || · ||) defines a random normed space (X, μ′, TM) where, for
every t > 0,

μ′
u(t) =

t

t + ‖u‖ (2.2)

and TM is the minimum t-norm. This space is called the induced random normed space.
If the t-norm T is such that sup0<a<1T(a, a) = 1, then every RN-space (X, μ′, T) is a

metrizable linear topological space with the topology τ (called the μ′-topology or the (ε, δ)-
topology) induced by the base of neighborhoods of θ, {U(ε, λ) | ε > 0, λ ∈ (0, 1)}, where

U(ε, λ) =
{

x ∈ X | μ′
x(ε) > 1 − λ}. (2.3)

Definition 2.3. Let (X, μ′, T) be an RN-space.

(i) A sequence {xn} in X is said to be convergent to x ∈ X in X if, for all t > 0,
limn→∞μ′

xn−x(t) = 1.
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(ii) A sequence {xn} in X is said to be Cauchy sequence in X if, for all t > 0,
limn→∞μ′

xn−xm(t) = 1.

(iii) The RN-space (X, μ′, T) is said to be complete if every Cauchy sequence in X is
convergent.

Theorem 2.4. If (X, μ′, T) is RN-space and {xn} is a sequence such that xn → x, then
limn→∞μ′

xn(t) = μ
′
x(t).

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique element
having the 0 valuation, |rs| = |r||s|, and the triangle inequality holds, that is,

|r + s| ≤ max{|r|, |s|}. (2.4)

A field K is called a valued field if K carries a valuation. The usual absolute values of R and C

are examples of valuations.
Let us consider a valuation which satisfies a stronger condition than the triangle

inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|} (2.5)

for all r, s ∈ K, then the function | · | is called a non-Archimedean valuation and the field is called
a non-Archimedean field. Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ≥ 1. A trivial example
of a non-Archimedean valuation is the function | · | taking everything except for 0 into 1 and
|0| = 0.

Definition 2.5. Let X be a vector space over a field K with a non-Archimedean valuation | · |.
A function ‖ · ‖ : X → [0,∞) is called a non-Archimedean norm if the following conditions
hold:

(a) ‖x‖ = 0 if and only if x = 0 for all x ∈ X;

(b) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;

(c) the strong triangle inequality holds:

∥
∥x + y

∥
∥ ≤ max

{‖x‖,∥∥y∥∥} (2.6)

for all x, y ∈ X. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 2.6. Let {xn} be a sequence in a non-Archimedean normed space X.

(a) A sequence {xn}∞n=1 in a non-Archimedean space is a Cauchy sequence if and only if,
the sequence {xn+1 − xn}∞n=1 converges to zero.

(b) The sequence {xn} is said to be convergent if, for any ε > 0, there are a positive
integerN and x ∈ X such that

‖xn − x‖ ≤ ε (2.7)
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for all n ≥ N. Then, the point x ∈ X is called the limit of the sequence {xn}, which
is denoted by limn→∞xn = x.

(c) If every Cauchy sequence inX converges, then the non-Archimedean normed space
X is called a non-Archimedean Banach space.

Definition 2.7. Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on
X if d satisfies the following conditions:

(a) d(x, y) = 0 if and only if x = y for all x, y ∈ X;

(b) d(x, y) = d(y, x) for all x, y ∈ X;

(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 2.8. Let (X, d) be a complete generalized metric space and J : X → X a strictly contractive
mapping with Lipschitz constant L < 1. Then, for all x ∈ X, either

d
(

Jnx, Jn+1x
)

= ∞ (2.8)

for all nonnegative integers n or there exists a positive integer n0 such that

(a) d(Jnx, Jn+1x) <∞ for all n0 ≥ n0;
(b) the sequence {Jnx} converges to a fixed point y∗ of J ;

(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) <∞};
(d) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

3. Random Stability of Functional Equation (1.9): A Direct Method

In this section, using direct method, we prove the generalized Hyers-Ulam stability of cubic
functional equation (1.9) in random normed spaces.

Lemma 3.1. Let E1 and E2 be real vector spaces. A function f : E1 → E2 satisfies the functional
equation (1.7) if and only if f : E1 → E2 satisfies the functional equation (1.9). Therefore, every
solution of functional equation (1.9) is also cubic function.

Proof. Let f : E1 → E2 satisfy the equation (1.7). Putting x = y = 0 in (1.7), we get f(0) = 0.
Set y = 0 in (1.7) to get f(−y) = −f(y). By induction, we lead to f(kx) = k3f(x) for all
positive integer k. Replacing y by x + y in (1.7), we have

f
(

3x + y
)

+ f
(

x − y) = 2f
(

2x + y
) − 2f

(−y) + 12f(x), (3.1)

for all x, y ∈ E1. Once again replacing y by y − x in (1.7), we have

f
(

x + y
)

+ f
(

3x − y) = 2f
(

y
)

+ 2f
(

2x − y) + 12f(x), (3.2)

for all x, y ∈ E1. Adding (3.1) to (3.2) and using (1.7), we obtain

f
(

3x + y
)

+ f
(

3x − y) = 3f
(

x + y
)

+ 3f
(

x − y) + 48f(x), (3.3)
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for all x, y ∈ E1. By using the previous method, by induction, we infer that

f
(

mx + y
)

+ f
(

mx − y) = mf(x + y
)

+mf
(

x − y) + 2
(

m3 −m
)

f(x), (3.4)

for all x, y ∈ E1 and each positive integerm ≥ 3.
Let f : E1 → E2 satisfy the functional equation (1.9) with the positive integer m ≥ 3.

Putting x = y = 0 in (1.9), we get f(0) = 0. Setting x = 0, we get f(−y) = −f(y). Let k be a
positive integer. Replacing y by kx + y in (1.9), we have

f
(

(m + k)x + y
)

+ f
(

(m − k)x − y) = mf((k + 1)x + y
)

−mf((k − 1)x + y
)

+ 2
(

m3 −m
)

f(x),

(3.5)

for all x, y ∈ E1. Replacing y by y − kx in (1.9), we have

f
(

(m − k)x + y
)

+ f
(

(m + k)x − y) = mf((k + 1)x − y)

−mf((k − 1)x − y)

+ 2
(

m3 −m
)

f(x),

(3.6)

for all x, y ∈ E1. Adding (3.5) to (3.6), we obtain

f
(

(m + k)x + y
)

+ f
(

(m − k)x − y) + f((m − k)x + y
)

+ f
(

(m + k)x − y)

= mf
(

(k + 1)x + y
)

+mf
(

(k + 1)x − y)

−m(f((k − 1)x + y
)

+ f
(

(k − 1)x − y)) + 2
(

m3 −m
)

f(x),

(3.7)

for all x, y ∈ E1 and for all integer k ≥ 1. Let ψm(x, y) = f(mx+y)+f(mx−y) for each integer
m ≥ 0. Then, (3.7)means that

ψm+k
(

x, y
)

+ ψm−k
(

x, y
)

= mψk+1
(

x, y
) −mψk−1

(

x, y
)

+ 4
(

m3 −m
)

f(x), (3.8)

for all x, y ∈ E1 and for all integer k ≥ 1. For k = 1 and k = m in (3.8), we obtain

ψm+1
(

x, y
)

+ ψm−1
(

x, y
)

= mψ2
(

x, y
)

+ 4
(

m3 −m
)

f(x),

ψ2m
(

x, y
)

= mψm+1
(

x, y
) −mψm−1

(

x, y
)

+ 4
(

m3 −m
)

f(x),
(3.9)

for all x, y ∈ E1. By the proof of the first part, since f : E1 → E2 satisfies the functional
equation (1.9) with the positive integer m ≥ 3, then f satisfies the functional equation (1.9)
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with the positive integer k ≥ m. It follows from (3.9) that f satisfies the functional equation
(1.7) and

f
(

(m − 1)x + y
)

+ f
(

(m − 1)x − y) = (m − 1)f
(

x + y
)

+ (m − 1)f
(

x − y)

+ 2
(

(m − 1)3 − (m − 1)
)

f(x).

(3.10)

Theorem 3.2. Let X be a real linear space, (Z, μ′,min) an RN-space, and ψ : X2 → Z a function
such that, for some 0 < α < m3,

μ′
ψ(mx,0)(t) ≥ μ′

αψ(x,0)(t) ∀x ∈ X, t > 0, (3.11)

and, for all x, y ∈ X and t > 0, limn→∞μ′
ψ(mnx,mny)/m3n(t) = 1. Let (Y, μ,min) be a complete RN-

space. If f : X → Y is a mapping with f(0) = 0 such that for all x ∈ X and t > 0

μf(mx±y)−mf(x±y)−2(m3−m)f(x)(t) ≥ μ′
ψ(x,y)(t), (3.12)

then the limitC(x) = limn→∞(f(mnx)/m3n) exists for all x ∈ X and defines a unique cubic mapping
C : X → Y such that

μf(x)−C(x)(t) ≥ μ′
ψ(x,0)/2(m3−α)(t). (3.13)

Proof. Putting y = 0 in (3.12) we see that, for all x ∈ X,

μf(mx)/m3−f(x)(t) ≥ μ′
ψ(x,0)/2m3(t). (3.14)

Replacing x bymnx in (3.14) and using (3.11), we obtain

μf(mn+1x)/m3n+3−f(mnx)/m3n(t) ≥ μ′
ψ(mnx,0)/2m3n+3(t) ≥ μ′

αnψ(x,0)/2m3n+3(t). (3.15)

So

μ(f(mnx)/m3n)−f(x)/(∑n−1
k=0 (α

k/2m3k+3))(t) = μ((
∑n−1

k=0(f(mk+1x)/m3k+3))−(f(mkx)/m3k))/(
∑n−1

k=0(αk/2m3k+3))(t)

≥ Tn−1k=0

(

μ((f(mk+1x)/m3k+3)−(f(mkx)/m3k))/(αk/2m3k+3)(t)
)

= Tn−1k=0

(

μ′
ψ(x,0)(t)

)

= μ′
ψ(x,0)(t).

(3.16)
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This implies that

μf(mnx)/m3n−f(x)(t) ≥ μ′
∑n−1

k=0(αkψ(x,0)/2m3k+3)
(t). (3.17)

Replacing x bymp
x in (3.17), we obtain

μf(mn+px)/m3(n+p)−f(mpx)/m3p(t) ≥ μ′
∑n−1

k=0(αkψ(m
px,0)/2m3(k+p)+3)

(t) ≥ μ′
∑n−1

k=0(α
k+pψ(x,0)/2m3(k+p)+3)

(t)

= μ′
∑n+p−1

k=p (αkψ(x,0)/2m3k+3)
(t).

(3.18)

As

lim
p,n→∞

μ′
∑n+p−1

k=p (αkψ(x,0)/2m3k+3)
(t) = 1, (3.19)

{f(mnx)/m3n} is a Cauchy sequence in complete RN-space (Y, μ,min), so there exists some
point C(x) ∈ Y such that limn→∞(f(mnx)/m3n) = C(x). Fix x ∈ X and put p = 0 in (3.18).
Then, we obtain

μf(mnx)/m3n−f(x)(t) ≥ μ′
∑n−1

k=0(αkψ(x,0)/2m3k+3)
(t), (3.20)

and so, for every ε > 0, we have

μC(x)−f(x)(t + ε) ≥ T
(

μC(x)−f(mnx)/m3n(ε), μf(mnx)/m3n−f(x)(t)
)

≥ T
(

μC(x)−f(mnx)/m3n(ε), μ′
∑n−1

k=0(αkψ(x,0)/2m3k+3)
(t)
)

.
(3.21)

Taking the limit as n → ∞ and using (3.21), we get

μC(x)−f(x)(t + ε) ≥ μ′
ψ(x,0)/2(m3−α)(t). (3.22)

Since ε was arbitrary by taking ε → 0 in (3.22), we get

μC(x)−f(x)(t) ≥ μ′
ψ(x,0)/2(m3−α)(t). (3.23)

Replacing x and y by mnx and mny in (3.12), respectively, we get, for all x, y ∈ X and for all
t > 0,

μ(f(mn+1x±mny)−mf(mnx±mny)−2(m3−m)f(mnx))/m3n(t) ≥ μ′
ψ(mnx,mny)/m3n(t). (3.24)

Since limn→∞μ′
ψ(mnx,mny)/m3n(t) = 1, we conclude thatC(mx±y) = C(x±y)+2(m3−m)C(x). To

prove the uniqueness of the cubicmappingC, assume that there exists another cubicmapping
L : X → Y which satisfies (3.13).
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By induction one can easily see that, since f is a cubic functional equation, so, for all
n ∈ N and every x ∈ X, C(mnx) = m3nC(x), and L(mnx) = m3nL(x), we have

μC(x)−L(x)(t) = lim
n→∞

μ(C(mnx)/m3n)−(L(mnx)/m3n)(t), (3.25)

so

μC(mnx)/m3n−L(m3nx)/m3n(t) ≥ min
{

μC(mnx)/m3n−f(mnx)/m3n

(
t

2

)

, μL(mnx)/m3n−f(mnx)/m3n

(
t

2

)}

≥ μ′
ψ(mnx,0)/m3n(m3−α)(t)

≥ μ′
αnψ(x,0)/m3n(m3−α)(t).

(3.26)

Since limn→∞μ′
αnψ(x,0)/m3n(m3−α)(t) = 1, it follows that, for all t > 0, μC(x)−L(x)(t) = 1 and so

C(x) = L(x). This completes the proof.

Corollary 3.3. Let X be a real linear space, (Z, μ′,min) an RN-space, and (Y, μ,min) a complete
RN-space. Let 0 < r < 1 and z0 ∈ Z, and let f : X → Y be a mapping with f(0) = 0 and satisfying

μf(mx±y)−mf(x±y)−2(m3−m)f(x)(t) ≥ μ′
(||x||r+||y||r)z0(t), (3.27)

for all x, y ∈ X and t > 0. Then, the limit C(x) = limn→∞(f(mnx)/m3n) exists for all x ∈ X and
defines a unique cubic mapping C : X → Y such that

μf(x)−C(x)(t) ≥ μ′
||x||rz0/2(m3−m3r)(t) (3.28)

for all x ∈ X and t > 0.

Proof. Let α = m3r , and let ψ : X2 → Z be defined as ψ(x, y) = (||x||r + ||y||r)z0.
Remark 3.4. In Corollary 3.3, if we assume that ψ(x, y) = (‖x‖r .‖y‖r)z0 or ψ(x, y) = (‖x‖r+s +
‖y‖r+s + ‖x‖r‖y‖s)z0, then we get Ulam-Gavruta-Rassias product stability and JMRassias
mixed product-sum stability, respectively. But, since we put y = 0 in this functional equation,
the Ulam-Gavruta-Rassias product stability and JMRassias mixed product-sum stability
corollaries will be obvious. Meanwhile, the JMRassias mixed product-sum stability when
r + s = 3 is an open question.

Corollary 3.5. Let X be a real linear space, (Z, μ′,min) an RN-space, and (Y, μ,min) a complete
RN-space. Let z0 ∈ Z, and let f : X → Y be a mapping with f(0) = 0 and satisfying

μf(mx±y)−mf(x±y)−2(m3−m)f(x)(t) ≥ μ′
δz0

(t), (3.29)

for all x, y ∈ X and t > 0. Then, the limit C(x) = limn→∞(f(mnx)/m3n) exists for all x ∈ X and
defines a unique cubic mapping C : X → Y such that

μf(x)−C(x)(t) ≥ μ′
δz0/2(m3−1)(t) (3.30)

for all x ∈ X and t > 0.
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Proof. Let α = 1, and let ψ : X2 → Z be defined by ψ(x, y) = δz0.

Theorem 3.6. Let X be a real linear space, (Z, μ′,min) an RN-space, and ψ : X2 → Z a function
such that for some 0 < α < 1/m3

μ′
ψ(x/m,0)(t) ≥ μ′

αψ(x,0)(t) ∀x ∈ X, t > 0, (3.31)

and, for all x, y ∈ X and t > 0,

lim
n→∞

μ′
m3nψ(x/mn,y/mn)(t) = 1. (3.32)

Let (Y, μ,min) be a complete RN-space. If f : X → Y is a mapping with f(0) = 0 and satisfying
(3.12), then the limit C(x) = limn→∞m3nf(x/mn) exists for all x ∈ X and defines a unique cubic
mapping C : X → Y such that

μf(x)−C(x)(t) ≥ μ′
ψ(x,0)/2(1−m3α)(t). (3.33)

Proof. Putting y = 0 in (3.12) and replacing x by x/m, we obtain that for all x ∈ X

μf(x)−m3f(x/m)(t) ≥ μ′
ψ(x,0)/2(t). (3.34)

Replacing x by x/mn in (3.34) and using (3.31), we obtain

μm3nf(x/mn)−m3n+3f(x/mn+1)(t) ≥ μ′
m3nψ(x/mn,0)/2(t) ≥ μ′

αnm3nψ(x,0)/2(t). (3.35)

So

μ(m3nf(x/mn)−f(x))/∑n−1
k=0(αkm3k/2)(t) = μ(

∑n−1
k=0 m

3k+3f(x/mk+1)−m3kf(x/mk))/
∑n−1

k=0(αkm3k/2)(t)

≥ Tn−1k=0

(

μ′
ψ(x,0)(t)

)

= μ′
ψ(x,0)(t).

(3.36)

This implies that

μm3nf(x/mn)−f(x)(t) ≥ μ′
∑n−1

k=0 α
km3kψ(x,0)/2

(t). (3.37)

The rest of the proof is similar to the proof of Theorem 3.2.

Corollary 3.7. Let X be a real linear space, (Z, μ′,min) an RN-space, and (Y, μ,min) a complete
RN-space. Let r > 1 and z0 ∈ Z, and let f : X → Y be a mapping with f(0) = 0 and satisfying
(3.27). Then, the limit C(x) = limn→∞m3nf(x/mn) exists for all x ∈ X and defines a unique cubic
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mapping C : X → Y such that

μf(x)−C(x)(t) ≥ μ′
m3r ||x||rz0/2(m3r−m3)(t) (3.38)

for all x ∈ X and t > 0.

Proof. Let α = m−3r , and let ψ : X2 → Z be defined as ψ(x, y) = (||x||r + ||y||r)z0.

Corollary 3.8. Let X be a real linear space, (Z, μ′,min) be an RN-space, and (Y, μ,min) a complete
RN-space. Let z0 ∈ Z, and let f : X → Y be a mapping with f(0) = 0 and satisfying (3.29). Then,
the limit C(x) = limn→∞m3nf(x/mn) exists for all x ∈ X and defines a unique cubic mapping
C : X → Y such that

μf(x)−C(x)(t) ≥ μ′
mδz0/2(m−1)(t) (3.39)

for all x ∈ X and t > 0.

Proof. Let α = 1/m4, and let ψ : X2 → Z be defined by ψ(x, y) = δz0.

4. Random Stability of the Functional Equation (1.9):
A Fixed Point Approach

In this section, using the fixed point alternative approach, we prove the generalized Hyers-
Ulam stability of functional equation (1.9) in random normed spaces.

Theorem 4.1. Let X be a linear space, (Y, μ, TM) a complete RN-space, and Φ a mapping from X2 to
D+(Φ(x, y) is denoted by Φx,y) such that there exists 0 < α < 1/m3 such that

Φx,y(t) ≤ Φx/m,y/m(αt) (4.1)

for all x, y ∈ X and t > 0. Let f : X → Y be a mapping with f(0) = 0 and satisfying

μf(mx±y)−mf(x±y)−2(m3−m)f(x)(t) ≥ Φx,y(t) (4.2)

for all x, y ∈ X and t > 0. Then, for all x ∈ X

C(x) := lim
n→∞

m3nf

(
x

mn

)

(4.3)

exists and C : X → Y is a unique cubic mapping such that

μf(x)−C(x)(t) ≥ Φx,0

((

2 − 2m3α
)

t

α

)

(4.4)

for all x ∈ X and t > 0.



Journal of Applied Mathematics 13

Proof. Putting y = 0 in (4.2) and replacing x by x/m, we have

μf(x)−m3f(x/m)(t) ≥ Φx/m,0(2t) ≥ Φx,0

(
2t
α

)

(4.5)

for all x ∈ X and t > 0. Consider the set

S :=
{

g : X → Y ; g(0) = 0
}

(4.6)

and the generalized metric d in S defined by

d
(

f, g
)

= inf
{

u ∈ R
+ : μg(x)−h(x)(ut) ≥ Φx,0(t), ∀x ∈ X, t > 0

}

, (4.7)

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [26], Lemma 2.1). Now, we
consider a linear mapping J : S → S such that

Jh(x) := m3h

(
x

m

)

(4.8)

for all x ∈ X. First, we prove that J is a strictly contractive mapping with the Lipschitz
constantm3α.

In fact, let g, h ∈ S be such that d(g, h) < ε. Then, we have

μg(x)−h(x)(εt) ≥ Φx,0(t) (4.9)

for all x ∈ X and t > 0, and so

μJg(x)−Jh(x)
(

m3αεt
)

= μm3g(x/m)−m3h(x/m)

(

m3αεt
)

= μg(x/m)−h(x/m)(αεt)

≥ Φx/m,0(αt)

≥ Φx,0(t)

(4.10)

for all x ∈ X and t > 0. Thus, d(g, h) < ε implies that

d
(

Jg, Jh
)

= d
(

m3g

(
x

m

)

, m3h

(
x

m

))

< m3αε. (4.11)

This means that

d
(

Jg, Jh
)

= d
(

m3g

(
x

m

)

, m3h

(
x

m

))

≤ m3αd
(

g, h
)

(4.12)
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for all g, h ∈ S. It follows from (4.5) that

d
(

f, Jf
)

= d
(

f,m3f

(
x

m

))

≤ α

2
. (4.13)

By Theorem 2.8, there exists a mapping C : X → Y satisfying the following.
(1) C is a fixed point of J , that is,

C

(
x

m

)

=
1
m3

C(x) (4.14)

for all x ∈ X.
The mapping C is a unique fixed point of J in the set

Ω =
{

h ∈ S : d
(

g, h
)

<∞}. (4.15)

This implies that C is a unique mapping satisfying (4.14) such that there exists u ∈ (0,∞)
satisfying

μf(x)−C(x)(ut) ≥ Φx,0(t) (4.16)

for all x ∈ X and t > 0.
(2) d(Jnf, C) → 0 as n → ∞. This implies the equality

lim
n→∞

m3nf

(
x

mn

)

= C(x) (4.17)

for all x ∈ X.
(3) d(f, C) ≤ d(f, Jf)/(1 − m3α) with f ∈ Ω, which implies the inequality d(f, C) ≤

α/(2 − 2m3α) and so

μf(x)−C(x)

(
αt

2 − 2m3α

)

≥ Φx,0(t) (4.18)

for all x ∈ X and t > 0. This implies that inequality (4.4) holds. Now, we have

μm3nf((mx±y)/mn)−m3n+1f((x±y)/mn)−2m3n(m3−m)f(x/mn)(t) ≥ Φx/mn,y/mn

(
t

m3n

)

(4.19)

for all x, y ∈ X, t > 0, and n ≥ 1, and so, from (4.1), it follows that

Φx/mn,y/mn

(
t

m3n

)

≥ Φx,y

(
t

m3nαn

)

, (4.20)
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Since

lim
n→∞

Φx,y

(
t

m3nαn

)

= 1, (4.21)

for all x, y ∈ X and t > 0, we have

μC(mx±y)−mC(x±y)−2(m3−m)C(x)(t) = 1 (4.22)

for all x, y ∈ X and t > 0. Thus, the mapping C : X → Y is cubic. This completes the
proof.

Corollary 4.2. Let X be a real normed space, θ ≥ 0, and p a real number with p ∈ (1,+∞). Let
f : X → Y be a mapping with f(0) = 0 and satisfying

μf(mx±y)−mf(x±y)−2(m3−m)f(x)(t) ≥
t

t + θ
(‖x‖p + ∥∥y∥∥p) (4.23)

for all x, y ∈ X and t > 0. Then, for all x ∈ X, the limit C(x) = limn→∞m3nf(x/mn) exists and
C : X → Y is a unique cubic mapping such that

μf(x)−C(x)(t) ≥
2
(

m3p −m3)t

2
(

m3p −m3
)

t + θ‖x‖p (4.24)

for all x ∈ X and t > 0.

Proof. The proof follows from Theorem 4.1 if we take

Φx,y(t) =
t

t + θ
(‖x‖p + ∥∥y∥∥p) (4.25)

for all x, y ∈ X and t > 0. In fact, if we choose α = m−3p, then we get the desired result.

Theorem 4.3. Let X be a linear space, (Y, μ, TM) a complete RN-space, and Φ a mapping from X2 to
D+ ( Φ(x, y) is denoted by Φx,y) such that for some 0 < α < m3

Φx/m,y/m(t) ≤ Φx,y(αt) (4.26)

for all x, y ∈ X and t > 0. Let f : X → Y be a mapping with f(0) = 0 and satisfying (4.2). Then, for
all x ∈ X, the limit C(x) := limn→∞f(mnx)/m3n exists and C : X → Y is a unique cubic mapping
such that

μf(x)−C(x)(t) ≥ Φx,0

((

2m3 − 2α
)

t
)

(4.27)

for all x ∈ X and t > 0.
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Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 4.1. Now, we
consider a linear mapping J : S → S such that

Jh(x) :=
1
m3

h(mx) (4.28)

for all x ∈ X.
Let g, h ∈ S be such that d(g, h) < ε. Then, we have

μg(x)−h(x)(εt) ≥ Φx,0(t) (4.29)

for all x ∈ X and t > 0 and so

μJg(x)−Jh(x)

(
αεt

m3

)

= μ(1/m3)g(mx)−(1/m3)h(mx)

(
αεt

m3

)

= μg(mx)−h(mx)(αεt)

≥ Φmx,0(αt)

≥ Φx,0(t)

(4.30)

for all x ∈ X and t > 0. Thus, d(g, h) < ε implies that

d
(

Jg, Jh
)

= d
(
g(mx)
m3

,
h(mx)
m3

)

<
αε

m3
. (4.31)

This means that

d
(

Jg, Jh
)

= d
(
g(mx)
m3

,
h(mx)
m3

)

≤ α

m3
d
(

g, h
)

(4.32)

for all g, h ∈ S.
Putting y = 0 in (4.2), we see that, for all x ∈ X,

μf(mx)/m3−f(x)

(
t

2m3

)

≥ Φx,0(t). (4.33)

It follows from (4.33) that

d
(

f, Jf
)

= d
(

f,
f(mx)
m3

)

≤ 1
2m3

. (4.34)

By Theorem 2.8, there exists a mapping C : X → Y satisfying the following.
(1) C is a fixed point of J , that is,

C(mx) = m3C(x) (4.35)

for all x ∈ X.
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The mapping C is a unique fixed point of J in the set

Ω =
{

h ∈ S : d
(

g, h
)

<∞}. (4.36)

This implies that C is a unique mapping satisfying (4.35) such that there exists u ∈ (0,∞)
satisfying

μf(x)−C(x)(ut) ≥ Φx,0(t) (4.37)

for all x ∈ X and t > 0.
(2) d(Jnf, C) → 0 as n → ∞. This implies the equality

lim
n→∞

f(mnx)
m3n

= C(x) (4.38)

for all x ∈ X.
(3) d(f, C) ≤ d(f, Jf)/(1 − α/m3) with f ∈ Ω, which implies the inequality d(f, C) ≤

1/(2m3 − 2α), and so

μf(x)−C(x)

(
t

2m3 − 2α

)

≥ Φx,0(t) (4.39)

for all x ∈ X and t > 0. The rest of the proof is similar to the proof of Theorem 4.1.

Corollary 4.4. Let X be a real normed space, θ ≥ 0, and p a real number with p ∈ (0, 1). Let
f : X → Y be a mapping with f(0) = 0 and satisfying (4.23). Then, for all x ∈ X, the limit
C(x) = limn→∞f(mnx)/m3n exists and C : X → Y is a unique cubic mapping such that

μf(x)−C(x)(t) ≥
2
(

m3 −m3p)t

2
(

m3 −m3p
)

t + θ‖x‖p (4.40)

for all x ∈ X and t > 0.

Proof. The proof follows from Theorem 6.3 if we take

Φx,y(t) =
t

t + θ
(‖x‖p + ∥∥y∥∥p) (4.41)

for all x, y ∈ X and t > 0. In fact, if we choose α = m3p, then we get the desired result.

Remark 4.5. In Corollaries 4.2 and 4.4, if we assume that Φx,y(t) = t/(t + θ(‖x‖p · ‖y‖p)) or
Φx,y(t) = t/(t + θ(‖x‖p+q + ‖y‖p+q + ‖x‖p‖y‖q)), then we get Ulam-Gavruta-Rassias product
stability and JMRassias mixed product-sum stability, respectively. But, since we put y = 0 in
this functional equation, the Ulam-Gavruta-Rassias product stability and JMRassias mixed
product-sum stability corollaries will be obvious. Meanwhile, the JMRassias mixed product-
sum stability when p + q = 3 is an open question.
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5. Non-Archimedean Stability of Functional Equation (1.9):
A Direct Method

In this section, using direct method, we prove the generalized Hyers-Ulam stability of cubic
functional equation (1.9) in non-Archimedean normed spaces. Throughout this section, we
assume that G is an additive semigroup and X is a complete non-Archimedean space.

Theorem 5.1. Let ζ : G2 → [0,+∞) be a function such that

lim
n→∞

|m|3nζ
(
x

mn
,
y

mn

)

= 0 (5.1)

for all x, y ∈ G and let for each x ∈ G the limit

Θ(x) = lim
n→∞

max
{

|m|3(k+1)ζ
(

x

mk+1
, 0
)

; 0 ≤ k < n
}

(5.2)

exist. Suppose that f : G → X a mapping with f(0) = 0 and satisfying the following inequality:

∥
∥
∥f
(

mx ± y) −mf(x ± y) − 2
(

m3 −m
)

f(x)
∥
∥
∥ ≤ ζ(x, y, z). (5.3)

Then, the limit C(x) := limn→∞m3nQ(x/mn) exists for all x ∈ G and defines a cubic mapping
C : G → X such that

∥
∥f(x) − C(x)∥∥ ≤ Θ(x)

|2m3| . (5.4)

Moreover, if

lim
j→∞

lim
n→∞

max
{

|m|3(k+1)ζ
(

x

mk+1
, 0
)

; j ≤ k < n + j
}

= 0, (5.5)

then C is the unique cubic mapping satisfying (5.4).

Proof. Putting y = 0 in (5.3), we get

∥
∥
∥f(mx) −m3f(x)

∥
∥
∥ ≤ ζ(x, 0)

|2| (5.6)

for all x ∈ G. Replacing x by x/mn+1 in (5.6), we obtain

∥
∥
∥
∥
m3n+3f

(
x

mn+1

)

−m3nf

(
x

mn

)∥
∥
∥
∥
≤ |m|3n

|2| ζ

(
x

mn+1
, 0
)

. (5.7)

It follows from (5.1) and (5.7) that the sequence {m3nf(x/mn)}n≥1 is a Cauchy sequence. Since
X is complete, {m3nf(x/mn)}n≥1 is convergent. Set C(x) := limn→∞m3nf(x/mn).
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Using induction, one can show that

∥
∥
∥
∥
m3nf

(
x

mn

)

− f(x)
∥
∥
∥
∥
≤ 1

|2m3| max
{

|m|3(k+1)ζ
(

x

mk+1
, 0
)

; 0 ≤ k < n
}

(5.8)

for all n ∈ N and all x ∈ G. By taking n to approach infinity in (5.8) and using (5.2), one
obtains (5.4). By (5.1) and (5.3), we get

∥
∥
∥C
(

mx ± y) −mC(x ± y) − 2
(

m3 −m
)

C(x)
∥
∥
∥

= lim
n→∞

∥
∥
∥
∥
m3nf

(
mx ± y
mn

)

−m3n+1f

(
x ± y
mn

)

− 2m3n
(

m3 −m
)

f

(
x

mn

)∥
∥
∥
∥

≤ lim
n→∞

|m|3nζ
(
x

mn
,
y

mn

)

= 0

(5.9)

for all x, y ∈ G. Therefore, the function C : G → X satisfies (1.9). To prove the uniqueness
property of C, let L : G → X be another function satisfying (5.4). Then,

‖C(x) − L(x)‖ = lim
j→∞

|m|3j
∥
∥
∥
∥
C

(
x

mj

)

− L
(
x

mj

)∥
∥
∥
∥

≤ lim
j→∞

|m|3j max
{∥
∥
∥
∥
C

(
x

mj

)

− f
(
x

mj

)∥
∥
∥
∥
,

∥
∥
∥
∥
f

(
x

mj

)

− L
(
x

mj

)∥
∥
∥
∥

}

≤ lim
j→∞

lim
n→∞

max
{

|m|3(k+1)ζ
(

x

mk+1
, 0
)

; j ≤ k < n + j
}

= 0

(5.10)

for all x ∈ G. Therefore, C = L, and the proof is complete.

Corollary 5.2. Let ξ : [0,∞) → [0,∞) be a function satisfying

ξ

(
t

|m|
)

≤ ξ
(

1
|m|
)

ξ(t) (t ≥ 0) ξ

(
1
|m|
)

< |m|−3. (5.11)

Let κ > 0, and let f : G → X be a mapping with f(0) = 0 and satisfying the following inequality:

∥
∥
∥f
(

mx ± y) −mf(x ± y) − 2
(

m3 −m
)

f(x)
∥
∥
∥ ≤ κ(ξ(|x|) + ξ(∣∣y∣∣)) (5.12)

for all x, y ∈ G. Then there exists a unique cubic mapping C : G → X such that

∥
∥f(x) − C(x)∥∥ ≤ κξ(|x|)

|2m3| . (5.13)
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Proof. Defining ζ : G2 → [0,∞) by ζ(x, y) := κ(ξ(|x|) + ξ(|y|)), we have

lim
n→∞

|m|3nζ
(
x

mn
,
y

mn

)

≤ lim
n→∞

(

|m|3ξ
(

1
|m|
))n

ζ
(

x, y
)

= 0 (5.14)

for all x, y ∈ G. The last equality comes from the fact that |m|3ξ(1/|m|) < 1. On the other hand,

Θ(x) = lim
n→∞

max
{

|m|3k+3ζ
(

x

mk+1
, 0
)

; 0 ≤ k < n
}

= |m|3ζ
(
x

m
, 0
)

= κξ(|x|), (5.15)

for all x ∈ G, exists. Also,

lim
j→∞

lim
n→∞

max
{

|m|3k+3ζ
(

x

mk+1
, 0
)

; j ≤ k < n + j
}

= lim
j→∞

|m|3j+3ζ
(

x

mj+1
, 0
)

= 0. (5.16)

Applying Theorem 5.1, we get the desired result.

Theorem 5.3. Let ζ : G3 → [0,+∞) be a function such that

lim
n→∞

ζ
(

mnx,mny
)

|m|3n
= 0 (5.17)

for all x, y ∈ G, and let for each x ∈ G the limit

Θ(x) = lim
n→∞

max

{

ζ
(

mkx, 0
)

|m|3k+3
; 0 ≤ k < n

}

(5.18)

exist. Suppose that f : G → X a mapping with f(0) = 0 and satisfying (5.3). Then, the limit
C(x) := limn→∞f(mnx)/m3n exists for all x ∈ G and defines a cubic mapping C : G → X such
that

∥
∥f(x) − C(x)∥∥ ≤ 1

|2|Θ(x). (5.19)

Moreover, if

lim
j→∞

lim
n→∞

max

{

ζ
(

mkx, 0
)

|m|3k+3
; j ≤ k < n + j

}

= 0, (5.20)

then C is the unique cubic mapping satisfying (5.19).

Proof. Putting y = 0 in (5.3), we get

∥
∥
∥
∥
f(x) − f(mx)

m3

∥
∥
∥
∥
≤ ζ(x, 0)

|2m3| (5.21)
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for all x ∈ G. Replacing x bymnx in (5.21), we obtain

∥
∥
∥
∥
∥

f(mnx)
m3n

− f
(

mn+1x
)

m3n+3

∥
∥
∥
∥
∥
≤ ζ(mnx, 0)

|2||m|3n+3
. (5.22)

It follows from (5.17) and (5.22) that the sequence {f(mnx)/m3n}n≥1 is convergent. Set
C(x) := limn→∞f(mnx)/m3n. On the other hand, it follows from (5.22) that

∥
∥
∥
∥

f(mpx)
m3p

− f(mqx)
m3q

∥
∥
∥
∥
=

∥
∥
∥
∥
∥
∥

q−1
∑

k=p

f
(

mk+1x
)

m3k+3
− f
(

mkx
)

m3k

∥
∥
∥
∥
∥
∥

≤ max

{∥
∥
∥
∥
∥

f
(

mk+1x
)

m3k+3
− f
(

mkx
)

m3k

∥
∥
∥
∥
∥
; p ≤ k < q − 1

}

≤ 1
|2| max

{

ζ
(

mkx, 0
)

|m|3k+3
; p ≤ k < q

}

(5.23)

for all x ∈ G and all nonnegative integers p, q with q > p ≥ 0. Letting p = 0, passing the
limit q → ∞ in the last inequality, and using (5.18), we obtain (5.19). The rest of the proof is
similar to the proof of Theorem 5.1.

6. Non-Archimedean Stability of Functional Equation (1.9):
A Fixed Point Method

In this section, using the fixed point alternative approach, we prove the generalized Hyers-
Ulam stability of cubic functional equation (1.9) in non-Archimedean normed spaces.
Throughout this section, let X be a non-Archimedean normed space that Y a complete non-
Archimedean normed space. Also, |2m3|/= 1.

Theorem 6.1. Let ζ : X2 → [0,∞) be a function such that there exists an L < 1 with

ζ

(
x

m
,
y

m

)

≤ Lζ
(

x, y
)

|m3| (6.1)

for all x, y ∈ X. Let f : X → Y be a mapping with f(0) = 0 and satisfying the following inequality:

∥
∥
∥f
(

mx ± y) −mf(x ± y) − 2
(

m3 −m
)

f(x)
∥
∥
∥ ≤ ζ(x, y) (6.2)

for all x, y ∈ X. Then, there is a unique cubic mapping C : X → Y such that

∥
∥f(x) − C(x)∥∥ ≤ Lζ(x, 0)

|2m3| − |2m3|L (6.3)

for all x ∈ X.
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Proof. Putting y = 0 in (6.2) and replacing x by x/m, we have

∥
∥
∥
∥
m3f

(
x

m

)

− f(x)
∥
∥
∥
∥
≤ 1

|2|ζ
(
x

m
, 0
)

(6.4)

for all x ∈ X. Consider the set

S :=
{

g : X → Y ; g(0) = 0
}

(6.5)

and the generalized metric d in S defined by

d
(

f, g
)

= inf
μ∈R+

{∥
∥g(x) − h(x)∥∥ ≤ μζ(x, 0), ∀x ∈ X}, (6.6)

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [26], Lemma 2.1).
Now, we consider a linear mapping J : S → S such that

Jh(x) := m3h

(
x

m

)

(6.7)

for all x ∈ X. Let g, h ∈ S be such that d(g, h) = ε. Then,

∥
∥g(x) − h(x)∥∥ ≤ εζ(x, 0) (6.8)

for all x ∈ X, and so

∥
∥Jg(x) − Jh(x)∥∥ =

∥
∥
∥
∥
m3g

(
x

m

)

−m3h

(
x

m

)∥
∥
∥
∥
≤
∣
∣
∣m3
∣
∣
∣εζ

(
x

m
, 0
)

≤
∣
∣
∣m3
∣
∣
∣
Lε

|m3|ζ(x, 0)
(6.9)

for all x ∈ X. Thus, d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(

Jg, Jh
) ≤ Ld(g, h) (6.10)

for all g, h ∈ S. It follows from (6.4) that

d
(

f, Jf
) ≤ L

|2m3| . (6.11)

By Theorem 2.8, there exists a mapping C : X → Y satisfying the following.
(1) C is a fixed point of J , that is,

C

(
x

m

)

=
1
m3

C(x) (6.12)
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for all x ∈ X. The mapping C is a unique fixed point of J in the set

Ω =
{

h ∈ S : d
(

g, h
)

<∞}. (6.13)

This implies that C is a unique mapping satisfying (6.12) such that there exists μ ∈ (0,∞)
satisfying

∥
∥f(x) − C(x)∥∥ ≤ μζ(x, 0) (6.14)

for all x ∈ X.
(2) d(Jnf, C) → 0 as n → ∞. This implies the equality

lim
n→∞

m3nf

(
x

mn

)

= C(x) (6.15)

for all x ∈ X.
(3) d(f, C) ≤ d(f, Jf)/(1 − L)with f ∈ Ω, which implies the inequality

d
(

f, C
) ≤ L

|2m3| − |2m3|L. (6.16)

This implies that inequality (6.3) holds.
By (6.1) and (6.2), we obtain

∥
∥
∥C
(

mx ± y) −mC(x ± y) − 2
(

m3 −m
)

C(x)
∥
∥
∥ ≤ lim

n→∞
|m|3nζ

(
x

mn
,
y

mn

)

≤ lim
n→∞

|m|3n · Ln

|m|3n
ζ
(

x, y
)

(6.17)

for all x, y ∈ X and n ∈ N. So,

C
(

mx ± y) = mC(x ± y) + 2
(

m3 −m
)

C(x) (6.18)

for all x, y ∈ X. Thus, the mapping C : X → Y is cubic, as desired.

Corollary 6.2. Let θ ≥ 0, and let r be a real number with 0 < r < 1. Let f : X → Y be a mapping
with f(0) = 0 and satisfying inequality

∥
∥
∥f
(

mx ± y) −mf(x ± y) − 2
(

m3 −m
)

f(x)
∥
∥
∥ ≤ θ(‖x‖r + ∥∥y∥∥r) (6.19)
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for all x, y ∈ X. Then, the limit C(x) = limn→∞m3nf(x/mn) exists for all x ∈ X and C : X → Y
is a unique cubic mapping such that

∥
∥f(x) − C(x)∥∥ ≤

∣
∣2m3

∣
∣θ‖x‖r

|2m3|r+1 − |2m3|2
. (6.20)

for all x ∈ X.

Proof. The proof follows from Theorem 6.1 by taking

ζ
(

x, y
)

= θ
(‖x‖r + ∥∥y∥∥r) (6.21)

for all x, y ∈ X. In fact, if we choose L = |2m3|1−r , then we get the desired result.

Theorem 6.3. Let ζ : X2 → [0,∞) be a function such that there exists an L < 1 with

ζ
(

x, y
) ≤
∣
∣
∣m3
∣
∣
∣Lζ

(
x

m
,
y

m

)

(6.22)

for all x, y ∈ X. Let f : X → Y be a mapping with f(0) = 0 and satisfying the inequality (6.2).
Then, there is a unique cubic mapping C : X → Y such that

∥
∥f(x) − C(x)∥∥ ≤ ζ(x, 0)

|2m3| − |2m3|L. (6.23)

Proof. By (5.21), we know that

∥
∥
∥
∥
f(x) − f(mx)

m3

∥
∥
∥
∥
≤ ζ(x, 0)

|2m3| (6.24)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 6.1. Now,

we consider a linear mapping J : S → S such that

Jh(x) :=
1
m3

f(mx) (6.25)

for all x ∈ X. Let g, h ∈ S be such that d(g, h) = ε. Then, ‖g(x) − h(x)‖ ≤ εζ(x, 0) for all x ∈ X,
and so

∥
∥Jg(x) − Jh(x)∥∥ =

∥
∥
∥
∥

g(mx)
m3

− h(mx)
m3

∥
∥
∥
∥
≤ 1

|m3|εζ(mx, 0) ≤
1

|m3|
∣
∣
∣m3
∣
∣
∣Lζ(x, 0) (6.26)

for all x ∈ X. Thus, d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(

Jg, Jh
) ≤ Ld(g, h) (6.27)
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for all g, h ∈ S. It follows from (6.24) that

d
(

f, Jf
) ≤ 1

|2m3| . (6.28)

By Theorem 2.8, there exists a mapping C : X → Y satisfying the following.
(1) C is a fixed point of J , that is,

C(mx) = m3C(x) (6.29)

for all x ∈ X. The mapping C is a unique fixed point of J in the set

Ω =
{

h ∈ S : d
(

g, h
)

<∞}. (6.30)

This implies that C is a unique mapping satisfying (6.29) such that there exists μ ∈ (0,∞)
satisfying

∥
∥f(x) − C(x)∥∥ ≤ μζ(x, 0) (6.31)

for all x ∈ X.
(2) d(Jnf, C) → 0 as n → ∞. This implies the equality

lim
n→∞

f(mx)
m3

= C(x) (6.32)

for all x ∈ X.
(3) d(f, C) ≤ d(f, Jf)/(1 − L)with f ∈ Ω, which implies the inequality

d
(

f, C
) ≤ 1

|2m3| − |2m3|L. (6.33)

This implies that inequality (6.23) holds.
The rest of the proof is similar to the proof of Theorem 6.1.

Corollary 6.4. Let θ ≥ 0, and let r be a real number with r > 1. Let f : X → Y be a mapping with
f(0) = 0 and satisfying (6.19). Then, the limit C(x) = limn→∞(f(mnx)/m3n) exists for all x ∈ X
and C : X → Y is a unique cubic mapping such that

∥
∥f(x) − C(x)∥∥ ≤ θ‖x‖r

|2m3| − |2m3|r (6.34)

for all x ∈ X.
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Proof. The proof follows from Theorem 6.3 by taking

ζ
(

x, y
)

= θ
(‖x‖r + ∥∥y∥∥r) (6.35)

for all x, y ∈ X. In fact, if we choose L = |2m3|r−1, then we get the desired result.

Remark 6.5. In Corollaries 6.2 and 6.4, if we assume that ζ(x, y) = θ(‖x‖r · ‖y‖r) or ζ(x, y) =
θ(‖x‖r+s + ‖y‖r+s + ‖x‖r‖y‖s), then we get Ulam-Gavruta-Rassias product stability and
JMRassias mixed product-sum stability, respectively. But, since we put y = 0 in this functional
equation, the Ulam-Gavruta-Rassias product stability and JMRassias mixed product-sum
stability corollaries will be obvious. Meanwhile, the JMRassias mixed product-sum stability
when r + s = 3 is an open question.

7. Conclusion

We linked here four different disciplines, namely, the random normed spaces, non-Archime-
dean normed spaces, functional equations, and fixed point theory. We established the
generalized Hyers-Ulam stability of the functional equation (1.9) in random and non-
Archimedean normed spaces.
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