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We prove the equivalence and the strong convergence of iterative processes involving generalized
strongly asymptotically ¢-pseudocontractive mappings in uniformly smooth Banach spaces.

1. Introduction

Throughout this paper, we assume that X is a uniformly convex Banach space and X* is the
dual space of X. Let J denote the normalized duality mapping form X into 2X* given by
J(x) = {f € X* : (x, f) = ||x||> = ||f||*} for all x € X, where (-,-) denotes the generalized
duality pairing. It is well known that if X is uniformly smooth, then ] is single valued and
is norm to norm uniformly continuous on any bounded subset of X. In the sequel, we will
denote the single valued duality mapping by ;.

In 1967, Browder [1] and Kato [2], independently, introduced accretive operators (see,
for details, Chidume [3]). Their interest is connected with the existence of results in the theory
of nonlinear equations of evolution in Banach spaces.

In 1972, Goebel and Kirk [4] introduced the class of asymptotically nonexpansive
mappings as follows.

Definition 1.1. Let K be a subset of a Banach space X. A mapping T : K — K is said to be
asymptotically nonexpansive if for each x, y € K

I - Ty < kallx -yl 1)

where {k,}, C [1, o) is a sequence of real numbers converging to 1.
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This class is more general than the class of nonexpansive mappings as the following
example clearly shows.

Example 1.2 (see [4]). If B is the unitball of > and T : B — B is defined as
T(xl,xz,...) = <O,X%,a2x2, a3x3,...>, (1.2)

where {a;},cy C (0,1) is such that [, a; = 1/2, it satisfies.

ITx =Tyl <2llx-yll, T -T"y] <2[ Jaillx -y (13)
j=2

In 1974, Deimling [5], studying the zeros of accretive operators, introduced the class
of -strongly accretive operators.

Definition 1.3. An operator A defined on a subset K of a Banach space X is said, ¢-strongly
accretive if

(Ax- Ay, j(x-y)) 2 o(|lx - y|DIlx -yl (1.4)

where ¢ : R* — R™ is a strictly increasing function such that ¢(0) = 0.

Note that in the special case in which ¢(t) = kt, k € (0,1), we obtain a strongly
accretive operator.

Osilike [6], among the others, proved that Ax = x — (x/(x + 1)) in R* is ¢-strongly
accretive where ¢(t) = (t*/(1 +t)) but not strongly accretive.

Since an operator A is a strongly accretive operator if and only if (I — A) is a strongly
pseudocontractive mapping (i.e., ((I — A)x — (I - A)y, j(x - y)) < kl|x — y||?>, k < 1), taking
in to account Definition 1.3, it is natural to study the class of ¢-pseudocontractive mappings,
that is, the maps such that

’ (1.5)

(Tx =Ty, j(x-y)) < lx=ylI" =0 (lx -yl x - v

where ¢ : R* — R* is a strictly increasing function such that ¢(0) = 0. Of course, the set of
fixed points for these mappings contains, at most, only one point.
Recently, has been also studied the following class of maps.

Definition 1.4. A mapping T is a generalized ¢-strongly pseudocontractive mapping if

(Tx =Ty, j(x=y)) < 2=yl - ¢(llx - v, (1.6)

where ¢ : R* — R* is a strictly increasing function such that ¢(0) = 0.

Choosing ¢(t) = ¢(t)t, we obtain Definition 1.3. In [7], Xiang remarked that it is a open
problem if every generalized ¢-strongly pseudocontractive mapping is ¢-pseudocontractive
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mapping. In the same paper, Xiang obtained a fixed-point theorem for continuous and
generalized ¢-strongly pseudocontractive mappings in the setting of the Banach spaces.
In 1991, Schu [8] introduced the class of asymptotically pseudocontractive mappings.

Definition 1.5 (see [8]). Let X be a normed space, K C X and {k,}, C [1, ). A mapping
T : K — K is said to be asymptotically pseudocontractive with the sequence {k,}, if and
only if lim, , -k, = 1, and for all n € Nand all x, y € K, there exists j(x — y) € J(x — y) such
that

(T"x =Ty, j(x - ) < kallx -y, (1.7)

where ] is the normalized duality mapping.

Obviously every asymptotically nonexpansive mapping is asymptotically pseudocon-
tractive, but the converse is not valid; it is well known that T : [0,1] — [0,1] defined by
Tx=(1-x% 3)3/2 is not Lipschitz but asymptotically pseudocontractive [9].

In [8], Schu proved the following.

Theorem 1.6 (see [8]). Let H be a Hilbert space and A C H closed and convex; L > 0;
T: A — A completely continuous, uniformly L-Lipschitzian, and asymptotically pseudocontractive
with sequence {k,}, € [1,0); gn =2k, —1foralln e N; 3,(¢> - 1) < o; {an},, {Bn}, € [0,1];
e<a, <P, <bforalln eN,somee>0andsomeb e (0,L2[V1+L2-1]); x; € A; foralln €N,
define

zp = PuT"(x0) + (1 = Bn) Xn,

Xn+1 = anTn(zn) + (1 - [xn)xn/

(1.8)

then {x,}, converges strongly to some fixed point of T.

Until 2009, no results on fixed-point theorems for asymptotically pseudocontractive
mappings have been proved. First, Zhou in [10] completed this lack in the setting of Hilbert
spaces proving a fixed-point theorem for an asymptotically pseudocontractive mapping that
is also uniformly L-Lipschitzian and uniformly asymptotically regular and that the set of
fixed points of T is closed and convex. Moreover, Zhou proved the strong convergence of a
CQ-iterative method involving this kind of mappings.

In this paper, our attention is on the class of the generalized strongly asymptotically ¢-
pseudocontraction defined as follows.

Definition 1.7. If X is a Banach space and K is a subset of X, a mapping T : K — K is said to
be a generalized asymptotically ¢-strongly pseudocontraction if

(T"x =Ty, j(x =) < kallx = 9| = p (Il - w). (1.9)

where {k,},, C [1,00) is converging to one and ¢ : [0,00) — [0, o0) is strictly increasing and
such that ¢(0) = 0.
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One can note that

(i) if T has fixed points, then it is unique. In fact, if x, z are fixed points for T, then for
everyn € N,

b = z|1* = (T"x = T"z, j(x = 2)) < kallx = 2|I* = p(l|x - z]), (1.10)
50 passing n to +oo, it results that
Il = 2* < floe = 2I* = p(llc = 2Il) = ~p(llx - z[}) 2 0. (1.11)

Since ¢ : [0,00) — [0, o) is strictly increasing and ¢(0) = 0, then x = z.

(ii) the mapping Tx = x/(x+1), where x € [0, 1], is generalized asymptotically strongly
¢-pseudocontraction with k,, = 1, for all n € N and ¢(t) = s*/(1 + s). However, T is
not strongly pseudocontractive; see [6].

We study the equivalence between three kinds of iterative methods involving the
generalized asymptotically strongly ¢-pseudocontractions.

Moreover, we prove that these methods are equivalent and strongly convergent to the
unique fixed point of the generalized strongly asymptotically ¢-pseudocontraction T, under
suitable hypotheses.

We will briefly introduce some of the results in the same line of ours. In 2001, [11]
Chidume and Osilike proved the strong convergence of the iterative method

Yn = AnXy + by Sxy + cty,
(1.12)
! / !
Xn+1 = Xy + b, SYuC, 0y,

where a, +b, +¢c, =a,+b,+c, =1, Sx =x-Tx + f (T a ¢-strongly accretive operator), and
f € X, to a solution of the equation Tx = f.
In 2003, Chidume and Zegeye [12] studied the following iterative method:

Xn+l = (1 - )Ln)xn + AnTxn - )Lnen(xn - xl)/ (113)

where T is a Lipschitzian pseudocontractive map with fixed points. The authors proved the
strong convergence of the method to a fixed point of T under suitable hypotheses on the
control sequences (0,,),,, (An),.

Taking in to account Chidume and Zegeye [12] and Chang [13], we introduce the
modified Mann and Ishikawa iterative processes as follows: for any given xy € X, the
sequence {x,}, is defined by

Yn = (1 _ﬁ")x" +ﬁ"Tnxn - 6n(xn - vn)l

Xn+l = (1 - an)xn + ‘annyn - Yn(xn - un)/ n>0,

(1.14)

where {a,},, {yn}, {Bn},, and {6}, are four sequences in (0,1) satisfying the conditions
an+y,<land B, +6,<1foralln>0.
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In particular, if g, = 6, = 0 for all n > 0, we can define a sequence {z,}, by

zp € X,
(1.15)
Zn1 = (L= an)zn + anT" 2y = Yu(2n —wn), n20,
which is called the modified Mann iteration sequence.
We also introduce an implicit iterative process as follows:
zn=10-anz |+, Tz, -y (2, —w)), n>1, (1.16)

where {a,},, {yx}, are two real sequences in [0, 1] satisfying a, + y, < 1 and a,,k,, < 1 for all
n>1, {w),}, is a sequence in X, and z is an initial point.

The algorithm is well defined. Indeed, if T is a asymptotically strongly ¢-pseudo-
contraction, one can observe that, for every fixed n, the mapping S, defined by S,x :=
(1 - ap — Yu)zZn-1 + @, T"x + yw, is such that

(Sux = Suy,j(x—y)) = (T"x - Ty, j(x - y)) < anka||x - y||*, (1.17)

that is, S, is a strongly pseudocontraction, for every fixed n, then (see Theorem 13.1 in [14])
there exists a unique fixed point of S, for each n.

These kind of iterative processes (also called by Chang iterative processes with errors)
have been developed in [15-18], while equivalence theorem for Mann and Ishikawa methods
has been studied, in [19, 20], among the others.

In [21], Huang established equivalences between convergence of the modified Mann
iteration process with errors (1.15) and convergence of modified Ishikawa iteration process
with errors (1.14) for strongly successively ¢-pseudocontractive mappings in uniformly
smooth Banach space.

In the next section, we prove that, in the setting of the uniformly smooth Banach
space, if T is an asymptotically strongly ¢-pseudocontraction, not only (1.14) and (1.15) are
equivalent but also (1.16) is equivalent to the others. Moreover, we prove also that (1.14),
(1.15), and (1.16) strongly converge to the unique fixed point of T, if it exists.

2. Preliminaries
We recall some definitions and conclusions.

Definition 2.1. X is said to be a uniformly smooth Banach space if the smooth module of X

1
() = sup{ 5 (=l + ) = 1 1 < 1, ) <} 1)

satisfies lim;_,o px (t)/t = 0.
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Lemma 2.2 (see [22]). Let X be a Banach space, and let j : X — 2X° be the normalized duality
mapping, then for any x,y € X, one has

lx+yl* < =l + 20y, j(x +)), Vi(x+y) € J(x+y). (22)

The next lemma is one of the main tools for our proofs.

Lemma 2.3 (see [21]). Let ¢ : [0,00) — [0, 00) be a strictly increasing function with ¢(0) = 0,
and let {a,},, {bn},, {cn}, and {e,}, be nonnegative real sequences such that

limb, =0,  cu=o(bn), nZ:lbn =o,  lime,=0. (2.3)
Suppose that there exists an integer N1 > 0 such that
aiﬂ < ai —2b,p(|ans1 —€nl) + cn, Vn>Njy, (2.4)

then lim,, _, , a,, = 0.
Proof. The proof is the same as in [21], but we substitute (a,.+1—e,) with |a,1—e,|, in (2.4). O

Lemma 2.4 (see [23]). Let {sn},, {cn}, C Ry, {an}, C (0,1), and {b,}, C R be sequences such
that

Sus1 < (1 —ay)sy + by + ¢, (2.5)

or all n > 0. Assume that Cu| < oo, then the following results hold:
n 8
(1) if b, < Pay, (where p > 0), then {s,},, is a bounded sequence;
(2) if one has 3, a, = oo and limsup,b,/a, <0, then s, — 0asn — oo.

Remark 2.5. 1f in Lemma 2.3 choosing e, = 0, for all n, ¢(t) = kt?> (k < 1), then the inequality
(2.4) becomes

2
n+1

a2, < ah-2b.kal, | +cp =

1 c
2 < 2 n
w1 S Top ko T T obk

. 1_ﬂ a2+c—n
B 1+2b,k/) ™ 1+2b,k’

a
(2.6)

Setting a,, := 2b,k/(1+2b,k) and g, := ¢,/ (1+2b,k) and by the hypotheses of Lemma 2.3, we
geta, — Oasn — oo, >, a, = oo, and limsup, f,/a, = 0. That is, we reobtain Lemma 2.4 in
the case of ¢,, = 0.
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3. Main Results

The ideas of the proofs of our main Theorems take in to account the papers of Chang and
Chidume et al. [11, 13, 24].

Theorem 3.1. Let X be a uniformly smooth Banach space, and let T : X — X be generalized strongly
asymptotically ¢-pseudocontractive mapping with fixed point x* and bounded range.
Let {x,} and {z,} be the sequences defined by (1.14) and (1.15), respectively, where

{an} Ayn} (Bn} {60} C [0,1] satisfy

(H1) lim, ., o a0y = lim, o, By = lim,, o5 6, = 0 and y,, = o(ay),

(H2) 3552 an = oo,

and the sequences {uy},{vn},{wn} are bounded in X, then for any initial point zg,xo € X, the
following two assertions are equivalent:

(i) the modified Ishikawa iteration sequence with errors (1.14) converges to x*;

(ii) the modified Mann iteration sequence with errors (1.15) converges to x*.

Proof. First of all, we note that by boundedness of the range of T, of the sequences {w,}, {1}
and by Lemma 2.4, it results that {z,} and {x,} are bounded sequences. So, we can set

Tz = Ty ||, 1T — xnl|,

T"y, — x IT"z, — zyl|
M = sup Iy =l o . (3.1)
n 1zn = xull, [lttn = xull, |00 = xull,

lwn = znll, llwn — 1|
By Lemma 2.2, we have

1Zns1 = X l? = [ (1 = @ = ¥) (20 = %) + @ (T2 = T"Y,,) + Y@ — ) ||
< (1= atn = ¥u) llzn = Xul® + 2{n (T" 20 = T"Y) + Y (Wn = tn), j(Zne1 = Xna1))
< (1= an)?||zn = Xul® + 20(T" 2 = T", (20 = Y) )
+ 20, (T" 2 = T"Y, j(Zns1 = Xns1) = (20 = Yn) ) +2Yn{Wn = Un, j(Zns1 = Xna1))
< (1= @)1z = %al? + 200kn |20 = Y|l = 200 (|| 20 = yal|)
+ 20 || T" 2 = Ty || || (zn1 = Xna1) = (20 = Y) | +2¥nllw0n = el znsr = 2l
< (1= a)’l|zn = %l + 200k | 20 = Yl = 2009 ([| 20 = yul)

+ 20,0, M + 2y, M?,
(3.2)
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where 0, = ||j(Zp+e1 — Xn+1) — j (20 — ¥u)||. Using (1.14) and (1.15), we have

||(Zn+1 = Xn+1) — (Zn - ]/n) ” < ||xn+1 - ]/n” +||zne1 — zal|

= ”an (Tn]/n - xn) + Yn(un - xn) - ﬂn(Tnxn - xn) - 6n(vn - xn)”

+ ||an(T"zn = z4) + Yu(wn — zn) ||

<2M(ay +Yn +Pn+64) — 0, (n — ).

(3.3)

In view of the uniformly continuity of j, we obtain that 0, — 0 as n — oo. Furthermore, it

follows from the definition of {y,} that foralln >0

20 = Yl = |20 = X + Bu(=T" % + x) + Su(~0 + x0)||°
< (20 = %all + Ball T2 = all + Gllvn - xal]?
< [z = xull + (B + 62) M]?
= 1120 = Xall” + (Bn +64) (21120 = all M + (B + 62) M?)
< llzn = Xall” + 3(Bn + 62) M?,

”]/n - xn” < ﬁn”Tnxn - xn” + 6n||vn - xn” < (ﬂn + 6n)M — 0, (Tl - OO),

SO

Zne1 = Xna1ll = || 20 = X0 = (@0 + Yu) (Zn = %) + A (T" 20 = T"Yn) + Yn(wn — ) ||
< lzn = xull + (n + Yu) 120 = Xull + @ || T" 20 = Ty || + Yullwwn — 14|
< lzn =yl + llyn = xa |l +2(an + yu) M.
< ||zn = | + (B + 60) M + 2(aty + y) M.

Therefore, we have

”Zn - yn” > ||zns1 = Xna1ll — €n,

(3.4)

(3.5)

(3.6)

(3.7)

where e, = (B, + 6,)M + 2(ay, + y,) M. By (H1), we have thate, — Oasn — oo. If ||z,41 —
Xn+1|| — en < 0 for an infinite number of indices, we can extract a subsequence such that

|Zne = Xn, || = €n,—1 < 0. For this subsequence, ||z, — xp, || — 0,as k — oo.
In this case, we can prove that ||z, — x,|| — 0, that is, the thesis.
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Firstly, we note that substituting (3.4) into (3.2), we have
Izt = %1l < 120 = xull® + o l120 = xall* + 200 (K, = 1)1z = 2]
+6auky (Bn + 62) M? = 20, (|| 20 = Y ||) + 2040, M + 2y, M?
< Nlzn = xall® = 20 (|| 20 = yul]) + a3 M? + 2000 (K, ~ 1) M?
+ 60k (B + 64) M? + 20,0, M + 2y, M* (3.8)
= 120 = xall” = @n([|2 = yull) + 23,M?
-ay [(])(Hzn ~Yal|) — anM? - 2(k,, — 1) M?
~6K (i + 6,) M2 - 20, M|,

where k := sup,, (k).
Moreover, we observe that

Thus, for every fixed € > 0, there exists j; such that for all j > j;

Since {an},, {(ky = 1)}, {(Bn + 6n)},, {On},, and {y,}, are null sequences (and in particular
Yn = 0(ay,)), for the previous fixed € > 0, there exists an index N such that, foralln € N,

<

+

Zn; = Yn Zn; = X Yn; = Xn;|| — 0 as j— oo, (3.9)

<e. (3.10)

Zn; = Ynj Zn; — Xn;

<2e |

. e  ¢(e/2)
|“”|<mm{16M’ §M? }
€ Yu|  ¢(e/2)
l<tear oo | < a2
ey - 1] < ‘ﬁ(;]\/fz) 3.11)
) /2)
n+6n < {i/ (‘b(f }/
1p | <min 4M" 48k M2
P(e/2)
|OTL| < 16M 7

foralln > N.

Take n* > max{N, n; } such that n* = n; for a certain k.

We prove, by induction, that ||z, — Xp++i]| <€, for every i € N. Let i = 1. Suppose that
|zn+1 = xpes1ll > €.
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By (3.6), we have

€< ||Zn*+1 - xn*+1|| < "Zn* - yn*” + (ﬂn* + 6n*>M + 2(“71* + Yn*)M

€ € €
< ”Zn* - yn*|| + Mm + 2M<16M + 16M> (3.12)

=Nz =yl + 3+ g = 2w -l + 5
4 4 2

Thus, ||zx+ — yn+|| > €/2. Since ¢ is strictly increasing, ¢(||zp — yu-||) > P(€/2).
From (3.8), we obtain that

*
ot =l <€~ (gl —yirl) 2242 )
n

— [ (l|zn =y ||) = @ M2 = 2(k;, = 1)M? = 6k (B, + 6;) M ~ 20, M|
(313)

One can note that

lX*MZ +2(k* _ 1)M2 +6%(ﬂ* +6*)M2 +20'n*M < 4)(6/2) 4 ¢(€/2) " ¢(€/2) 4 ¢(€/2)

8 8 8 8
(3.14)
hence
- 2
P20 =y |]) = @M =2k = )M = 6k (B + 6,0 ) M* = 20,:M > §(5 ) - 4’(62/ ) >0,
(3.15)
In the same manner,
n* 2
¢ (|2 — e |)) —2MZZ— > p(e/2) - ¢(€2/ ) S0 (3.16)
Thus,
| Znes1 = Xt I < €% (3.17)

So we have ||zy+41 — Xpe+1|| < €, which contradicts ||z,=+1 — Xp+41] > €. By the same idea, we can
prove that ||z,-+2 — Xu=42|| < € and then, by inductive step, ||zy=+i — Xn+i|| < €, for all i. This is
enough to ensure that ||z, — x,|| — 0.

If there are only finite indices for which ||z,+1 — xp41]| — €, < 0, then definitively ||zj.1 —

Xn+1|| — en 2 0. By the strict increasing function ¢, we have definitively

(|20 = yull) = PUlzner — xnetll — en)- (3.18)
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Again substituting (3.4) and (3.18) into (3.2) and simplifying, we have

2 2 2 2
1zne1 = Xpaa || < M|z — 2l + “iHZn = Xp||” + 200, (kp — 1) || 20 — x|

+ 60, ky (B + 62) M? = 20, (|| Zns1 = Xna1|| = €n) + 20,0, M + 2y, M? 619
3.19
< Hzn - xn”2 - 2an¢(||zn+1 - xn+1|| —ep) + aiMz + 2[xn(kn - 1)M2

+ 60, ky (B + 6,) M? + 20,0, M + 2y, M.

Suppose that a, = ||z, — x4||, by = an, and ¢, = a2 M? + 2a,,(k, — 1) M? + 6a,k, (B, + 6,) M?* +
20,,0,M + 2y,,M2. It follows from lim, .0, = 0, lim, ., e, = 0, lim,, . k, = 1, and the
hypothesis that we have, 37, b, = o0 and ¢, = o(b,), e, — 0asn — oo. By virtue of
Lemma 2.3, we obtain that lim,, _, ., a,, = 0. Hence, lim,, _, . ||z,, — x| = 0. O

Theorem 3.2. Let X be a uniformly smooth Banach space, and let T : X — X be generalized strongly
asymptotically ¢-pseudocontractive mapping with fixed point x* and bounded range.
Let {z,} and {z,} be the sequences defined by (1.15) and (1.16), respectively, where
{an} {yn} C [0,1] are null sequences satisfying
(H1) limy, oo &, = 0 and y,, = o(ap),
(H2) 372 an = oo,
of Theorem 3.1 and such that ayk, <1, for every n € N.
Suppose moreover that the sequences {w,},{w,,} are bounded in X, then for any initial point
2y, zo € X, the following two assertions are equivalent:
(i) the modified Mann iteration sequence with errors (1.15) converges to the fixed point x*,

(ii) the implicit iteration sequence with errors (1.16) converges to the fixed point x*.

Proof. Asin Theorem 3.1, by the boundedness of the range of T and by Lemma 2.4, one obtains
that our schemes are bounded. We define

||Tnzl’l - TnZ;1||/ ”Tnzn - Zn”, ||TnZ;1 - Z,n”/ |Tnz,n - 2;1_1 ” } (320)
zne1 = 2ull, Nza—wall, |y, =241, llwn — 2wl

M= sup{
By the iteration schemes (1.15) and (1.16), we have

121 =2 l1” < (1= @ = 1) (20 = 20) + @0 (20 = T"2,) + Y (w0~ w3) ||
< (L= =) |20 = 2t |” + 200 (T"20 = T"2,) + Y (wn = @}), j (z01 = 20))
< (1= ap)?|| 20 = 2,4 ||” + 200 (T" 2, = T"2, j (20 — 2L,) )
+ 20, (T" 2y = T"z, j(Zne1 = 2,) = (20 = 23) ) + 20 ||wn — w0y ||| 201 = 2|
<(1- an)2||zn - z’n_1||2 + 20,k || 20 — z’n“2

=20, (||zn = 2, ||) + 200 Mo, + 2y, M?,
(3.21)
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where 0, = ||j(zu+1 — 2,) — j(zn — 2,,)||- By (1.15), we get

| (zni1 = 23) = (20— 2p) || = N1zt = 2Zall = ||@n(T" 20 = 2Z4) + Yu(wn — z4) || < (@ + ) M.
(3.22)

It follows from (H1) that ||(zy+1 — 2,) — (24, — 2},)|| — 0asn — oo, which implies that o, — 0
asn — oo. Moreover, for all n > 0,

2 2
20 = 2ull” < (120 = zpa | + M2 = 2alD)

< (120 = Zyall + @I T2 = 23y | + Yl = 23 1)
< [llzn = Zy o ll + (an +y2) M]? (3.23)

= llzn =2t I+ ) [2M 120 = 2 + (4 7) M)
< 2w = 2y || + 3 (etn + 1) M2
Again by the boundedness of all components, we have that
120 = zall = o (T"25, = 25, 1) + ¥ (), = 23, ) [| < (cn + 1) M, (3.24)
and so

2t 24l =11 Gam2) + (Zam2as) = (@01 (rm2as) + @ (T 20 T"2,) + 1o (w0f) |
< Nzam 2l + 2l + (@) a2z [+ all 20T, | + il =20} |

< |zn = 2| + 3(an + yu) M.
(3.25)

Hence, we have that ||z, — z,|| > [|zus1 — 2,,|| — en, Where e, = 3(a;, + y,) M. Note thate, — 0
asn — oo. As in proof of Theorem 3.1, we distinguish two cases:

(i) the set of indices for which ||z,.41 — z},|| — e, < 0 contains infinite terms;

(ii) the set of indices for which ||z,+1 — z),|| — en < 0 contains finite terms.
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In the first case, (i) we can extract a subsequence such that ||z, - z), k71|| — 0,as k — co.
Substituting (3.23) in (3.21), we have that

[EREEA <1 + - 2“n> |20 = 2y |+ 20kn |20 = 2oy || + 6 + ) MPatyky
_ Zan(,‘b(llzn - Z;”) +2a,Mo, + 2}’an
<||zn - 2;71”2 + (ai +2a, (ky, — 1)> |2 - Z/7171”2 4 6(an + o) M2ayk
=20, (|| 20 = 2, ||) + 2an Moy, + 2y, M?
2 (3.26)
< lzn = 2t P = and (|| zn = Z,]|) +2yn M?
—ay [¢(||zn —2Z|) - @ M? = 2M?(k, — 1) = 6(at + 1) Mk — 2Mo,,]
= llzn =z I” = and(llz0 = 23 ) + 2 M?

~ ¢ (ll20 — 2, ) - 7k M? - 2M2(k,, ~ 1) - 67, M?k - 2Moy ],

where k = sup, k,. Again by (3.23), for every e > 0, there exists an index [ such that if j > I,

By hypotheses on the control sequence, with the same e > 0, there exists an index N such that
definitively

!
——p

!
Zn; = Zy,

<2e. (3.27)

|| <min{

e ¢(e/2) }
12M’56M2E !
e $e/2) } T
12M’ 48 M2k g ay,
P(e/2)
16M2’

P(e/2)
16M °

P(e/2)
amz

<

lyx| < min{
(3.28)

|kn_1| <

low| <

So take n* > max{n;, N} with n* = n; for a certain j.

We can prove that ||z,.1 — z,|| — 0asn — oo proving that, for every i > 0, the result
is [|Zp i = 2yl <€

Let i = 1. If we suppose that ||z,-1 — z).|| > €, it results that

e <zt 2 ll < llzw = 2l + 3w + )M < [lze ~20l| + 5

5 (3.29)

SO ||zp — Z),.|| > €/2. In consequence of this, ¢(||z,- — z,.||) > p(e/2).
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In (3.26), we note that

Tkay M2 + 2M? (ke — 1) + 6y, M2k + 2Mo,e

< 7%M2M +2M2M N 6M2E¢(e/2) +2M¢(€/2)

56 M2k 16 M2 48 M2k 16M (3.30)
_$/2), _9(e/2)
-8 2
SO
— - 2
¢(||zn = 2o ||) = 7k M? = 2M? (ke — 1) = 6y M?k = 2Mo0ype 2 @ (3.31)
hence in (3.26) remains
2w = 2o’ < € = an(ll2n = 2, ) + 20 M < &, (3:32)

as in Theorem 3.1. This is a contradiction. By the same idea, and using the inductive
hypothesis, we obtain that ||z,-.; —Z,.,. || <€, for every i > 0. This ensures that ||z,;1 — z;,|| —
0. In the second case (ii), definitively, ||z,+1 — z,,|| — e, > 0, then from the strictly increasing
function ¢, we have

$Ulzn = 2zull) 2 $(llznn1 = 20l - en)- (3.33)
Substituting (3.33) and (3.23) into (3.21) and simplifying, we have

2w = 23ll” < 20 = 2, s I+ @3llzn = 2 |1 + 20 (ki = 1|20 = 2,4 |7

+ 60,k (an + ) M? = 20,9 (|| 201 — 2o, || — €n) + 2040, M + 2y, M?

, (3.34)
< llzn =z 7 =200 (12001 = 2l - €n) + @ M?
+2a, (ky = 1) M? + 6a,ky (t + y) M? + 22,0, M + 2y, M.
By virtue of Lemma 2.3, we obtain that lim,, . .||z, — z,_,|| = 0. O

Theorem 3.3. Let X be a uniformly smooth Banach space, and let T : X — X be generalized strongly
asymptotically ¢-pseudocontractive mapping with fixed point x* and bounded range.

Let {z,},, be the sequences defined by (1.15) where {a,},, {yn}, C [0,1] satisfy

(1) lim;, . o, ap = lim;, . o Yn = 0,

(if) X0y an =00, >oq Yn < 0.

and the sequence {wy}, is bounded on X, then for any initial point zy € X, the sequence {z,},
strongly converges to x*.
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Proof. Firstly, we observe that, by the boundedness of the range of T, of the sequence {w,},,,
and by Lemma 2.4, we have that {z,}, is bounded.
By Lemma 2.2, we observe that
Zns1 — x*|* < (1 -ty — Yn)2||Zn — x|+ 20, (T 2, = X*, j(Zns1 — X*)
+ 2¥n(wp = X*, j(zpe1 — x¥))
< (1 - an)?||zn — x*|* + 20, (T" 2,y — X%, j(zpa1 = x%) = j(zn — X7))
+ 20, (T" 2 = X*, (20 = X)) + 2yn(wn — X*, j(2Zns1 — 7))
< (1= an)?||zn — x| + 20, (T"nzy — X*, (Zns1 — X7) = j (20 — x*))
*112 * P * (335)
+ Zankrt”Zn - X ” - 2“n¢(||zn -X ”) + 2Yn<wn - X /](Zn+l - X )>
= (1 +at - 20(,1) 2 = 2*|1* + 200 (T" 2 — x*, j(Zps1 — X*) = j(20 — X¥))
+ 2, k|20 = x°|* = 2 (|20 = X"I[) + 2y (00 = X", j(Zni1 = x"))
n

= llza = I + (@ = 2 + 200k ) 120 = %" = 21170 = x°1]) + 2200

+ 2y (wn — X7, j(zps1 — X¥)),

where p,, := (T"z, — x*, j(zp1 — X*) — j(zn — x*)). Let

M = max{sup”zn - x*||, sup||T"z, — x*||, supllw, — x*||, sup{wn — x*, j(zps1 — x*)) }
n n n n

(3.36)
We have
1zt = x*|° < ||z — x*|* + <a,21 +2a, (ky, — 1)>M = 2a,¢(||zn — x*||) + 200 ptn + 2y M
= |20 = %*|* = ang(llzn = x°[|) + 2y M (3.37)
— an [Pllzn — x*||) = 2 — (@n + 2(ky, — 1)) M],
so we can observe that
(1) py — O0asn — oo. Indeed from the inequality

1zner = x*|| = |z = x*||| < |zns1 — 2zall < (@n +yu)M — 0, asn— oo, (3.38)

and since j is norm to norm uniformly continuous, then j(||z+1 — x*||) = j(/lzn —
x*||) = 0,asn — oo,
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(2) inf,(||z,, — x*||) = 0. Indeed, if we supposed that o := inf,(||z, — x*||) > 0, by the
monotonicity of ¢,

¢z = x*[) > ¢(o) > 0. (3.39)

Thus, by (1) and by the hypotheses on a, and k;, the value —a, [¢(||z,, — x*||) — 2, —
(an+2(k,—1)) M] is definitively negative. In this case, we conclude that there exists
N > 0 such that for every n > N,

21 = %1 < llzn = %1 = up(llzn = x7II) + 2y, M

. (3.40)
<lzw = X7 = anp(0) + 2y, M,
and so
0 (0) < ||z — X*|* = 201 — x*|* +2y,M  Vn> N. (3.41)
In the same way we obtain that
$() D < 3 [llzi = X =z — X +23 M
i=N i=N i=N
(3.42)

m
= llzn = X7 = llzm = x*|* +2M D 7.
i=N

By the hypotheses >, v, < o0 and Y, a, = oo, the previous is a contradiction, and
it follows that inf, (||z, — x*||) = 0.

Then, there exists a subsequence {z,, }; of {z,}, that strongly converges to x*. This implies
that for every e > 0, there exists an index n() such that, for all j > nx(), |z, — x*|| < e.

Now, we will prove that the sequence {z,}, converges to x*. Since the sequences in
(3.37) are null sequences and };, y» < oo, but >, a,, = oo, then, for every € > 0, there exists an
index 7(¢) such that for all n > 71(€), it results that

€ Y|  ¢(e/2)
|Yn|<mr x, < M .
p(e/2) '
|kn - 1| SM 7
$(e/2)
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So, fixing € > 0, let n* > max(nk(),n(e)) with n* = n; for a certain n;. We will prove, by

induction, that ||z,; — x*|| < € for every i € N. Let i = 1. If not, it results that ||z, — x*|| > €.
Thus,

€ <|znwr = X7 < |z = X7 + @ M+ Y M,

<Nz =+ o Mot 1M = ||z =2+ 5 o
TN M Ty T e T g
thatis, ||z,» — x*|| > €/2. By the strict increasing of ¢, ¢(||z,- — x*||) > P(e/2).
By (3.37), it results that
21 =51 <€ = e (9l = 2°1) ~2M 1 )
e (3.45)
=y [P(l|zne = X7[1) = 2ptne = (2t + 2(kpe = 1)) M].
We can note that
P(e/2) <¢<e/2> qb(e/z))
. . . — < , A
2y + (aye +2(kpr —1))M < 1 + M + AM M (3.46)
so
3 2
Bz 1) =2t — (e + 20k~ )M > Ple/2) - L2 0 347)
Moreover, ¢(||zn — x*||) = 2Myy /ay > $(€/2)/2 > 0, so it results that
|Zne 1 — x*||* < €% (3.48)

This is a contradiction. Thus, ||z,:41 — x*|| < €.
In the same manner, by induction, one obtains that, for every i > 1, ||z, — x*|| < €. So
|z, — x*|| — 0. O

Corollary 3.4. Let X be a uniformly smooth Banach space, and let T : X — X be generalized
strongly asymptotically ¢-pseudocontractive mapping with bounded range and fixed point x*. The
sequences {Xn},, {zn},, and {z,}, are defined by (1.14), (1.15), and (1.16), respectively, where the
sequences {an},, {Pnlu {¥nlw {60}, C[0,1] satisfy

(1) limy, o ay = limy, oo B, = limy, . 6, = 0,

(ii) Z;.zozl an = o0, Z;.lozl Yn < O,
and the sequences {uy},, {vn}, {wn},, and {w,}, are bounded in X. Then for any initial point
X0, 20, 2, € X, the following two assertions are equivalent and true:

(i) the modified Ishikawa iteration sequence with errors (1.14) converges to the fixed point x*;

(ii) the modified Mann iteration sequence with errors (1.15) converges to the fixed point x*;

(iii) the implicit iteration sequence with errors (1.16) converges to the fixed point x*.
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