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By using Krasnoselskii’s fixed point theorem, we study the existence of positive solutions to the
three-point summation boundary value problem A?u(t — 1) + a(t)f(u(t)) = 0,t € {1,2,...,T},
u(0) =p 22:1 u(s),u(T+1)=«a 22:1 u(s), where f is continuous, T > 3 is a fixed positive integer,
nef{l2..,T-1},0<a< T +2)/n(n+1),0<p< 2T +2-an(n+1))/12T -y +1), and
Au(t —1) = u(t) — u(t — 1). We show the existence of at least one positive solution if f is either
superlinear or sublinear.

1. Introduction

The study of the existence of solutions of multipoint boundary value problems for linear
second-order ordinary differential and difference equations was initiated by Ilin and Moiseev
[1]. Then Gupta [2] studied three-point boundary value problems for nonlinear second-order
ordinary differential equations. Since then, nonlinear second-order three-point boundary
value problems have also been studied by many authors; one may see the text books [3, 4]
and the papers [5-10]. However, all these papers are concerned with problems with three-
point boundary condition restrictions on the difference of the solutions and the solutions
themselves, for example,

u(0) =0, u(T+1) =0,
u(0) =0, au(s) =u(T +1),
u(0) =0, u(T +1) —au(s) =b,



2 Journal of Applied Mathematics

u(0) — aAu(0) =0, u(T +1) = pu(s),
u(0) — aAu(0) =0, Au(T+1) =0,
(1.1)

and so forth.

In [5], Leggett-Williams developed a fixed point theorem to prove the existence of
three positive solutions for Hammerstein integral equations. Since then, this theorem has
been reported to be a successful technique for dealing with the existence of three solutions
for the two-point boundary value problems of differential and difference equations; see [6, 7].
In [8], X. Lin and W. Liu, using the properties of the associate Green’s function and Leggett-
Williams fixed point theorem, studied the existence of positive solutions of the problem.

In [9], Zhang and Medina studied the existence of positive solutions for second-order
boundary value problems of difference equations by applying Krasnoselskii’s fixed point
theorem. In [10], Henderson and Thompson used lower and upper solution methods to study
the existence of multiple solutions for second-order discrete boundary value problems.

We are interested in the existence of positive solutions of the following second-order
difference equation with three-point summation boundary value problem (BVP):

A*u(t—1) +a(t) f(u(t)) =0, te{1,2,...,T},

U U (1.2)
u(0) = Dlu(s),  w(T+1)=ad u(s),
s=1 s=1

where f is continuous, T > 3 is a fixed positive integer, € {1,2,...,T - 1}.

The aim of this paper is to give some results for existence of positive solutions to (1.2),
assuming that 0 < a < 2T +2)/n(n+1),0<p< 2T +2-an(n+1))/n2T —n+1),and f is
either superlinear or sublinear. Set

fo=lim M, foo = lim M (1.3)

u—0" U u—owo U

Then fy = 0 and f,, = oo correspond to the superlinear case, and fo = oo and f, = 0
correspond to the sublinear case. Let N be the nonnegative integer; we let N;; = {k €
Nji < k < j} and N, = Ngp. By the positive solution of (1.2), we mean that a function
u(t) : Nryp — [0, 00) and satisfies the problem (1.2).

Recently, Sitthiwirattham [11] proved the existence of positive solutions for the
boundary value problem with summation condition

A*u(t-1) +a(t) f(u(t)) =0, te{1,2,...,T},

u(0) =0, w(T+1) = azq:u(s), (1.4)
s=1

where f is continuous, T > 3 is a fixed positive integer, 7 € {1,2,...,T -1}, and 0 < a <
2T +2/n(n +1).
Throughout this paper, we suppose the following conditions hold:
(A1) f e C([0,00), [0, 0));
(A2) a € C(N1y1, [0, 00)) and there exists ¢y € N, 141 such that a(to) > 0.
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The proof of the main theorem is based upon an application of the following
Krasnoselskii’s fixed point theorem in a cone.

Theorem 1.1 (see [12]). Let E be a Banach space, and let K C E be a cone. Assume 1, , are open
subsets of E with 0 € L1, 1 C Qy, and let

A:Kn<§2\91>—>K (1.5)

be a completely continuous operator such that

(1) [JAul| < |lull, u € KN 0oLy, and ||Aul| = |lul|, u € KN 0oLy, or
(ii) JAul| = |lull, u € KN oLy, and ||Aul| < |lul|, u € K N oQy,.

Then A has a fixed point in K N Q2 \ Q).

2. Preliminaries
We now state and prove several lemmas before stating our main results.

Lemma 2.1. Let f# (2T +2—-an(n+1))/n2T —n+1). Then, for y € C(Nr41, [0, 0)), the problem

A*u(t-1)+y(t) =0, teNyr, (2.1)
u(0) = ﬁiu(s), u(T+1) = aiu(s), (2.2)
s=1 s=1

has a unique solution

_ Pr(n+1) +2t(1-pn) L
S @2 anGre0) e &Y

BT +1)—(B-a)t n-1
B (2T+2 — aq(rl + 1)) _‘[512(2]"_ 1,1 + 1);(71 - S)(i’l —-5-= 1)]/(5) (23)
-1
- (t - S)]/(S)r t € Nry1.

s=1

u(t)

Proof. From (2.1), we get

Au(t) - Au(t~1) = —y(b),

Au(t-1) - Au(t—-2) = —y(t - 1),
(2.4)

Au(l) - Au(0) = —y(1).



We sum the above equations to obtain

Au(t) = Au(0) - Zt:y(s), t € Ny,
s=1
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(2.5)

we denote Zzp y(s) =0, if p > g. Similarly, summing the above equation from ¢t =0tot = h,

we get

h
u(h+1) = u0) + (h+1)Au(0) - Y (h+1-s)y(s), heNr,

s=1

changing the variable from h + 1 to ¢, we have

u(t) = u(0) + tAu(0) - til(t -s)y(s): A+ Bt - S(t -5)y(s), t&Nr,.
s=1 s=1

We sum (2.7) froms =1,2,...,1,

1 n(n + n-ln-s
Zu(s) =nA+ 5 ZZ (I-s)y(s)
s=1 s=11=1

71 1

1n(n +
2

=nA+ Z -s)(n-s+1)y(s).
-1
By (2.2) from u(0) = ZZ:1 u(s), we get

(1-pm)A- ﬂ"(" =—§"z_1 =5)(n-s+1)y(s),

and from u(T +1) = a 22:1 u(s), we obtain

(2.6)

(2.7)

(2.8)

(2.9)

-1
(1-an)A+ <T+1_M>B = ZT:(T—S+1)y(s)— ngZ(q—s)(q—s+1)y(s).
s=1 s=1

2

(2.10)
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Therefore,

pn(n+1)
S @2 an(y+ 1)) - pr(ar - 11+1)Z(T e
B(T +1) S (n—s
- @T+2-an(n+1)) - pn(2T - 71+1)Z(ﬂ e (2.11)
2(1 - pn) Z(T s+1)y(s) |
(2T+2 an(n+1)) - pn(2T -n+1) <
p-a Z(’l s)(n—-s+1)y(s).

(2T+2 an(n+1)) -pn(2T -n+1) <

Hence, (2.1)-(2.2) has a unique solution

Pr(n+1) +2t(1 - pn)
2t+2-an(n+1))-pn2T-n+1) 4

pren--ap o
(2T+2 an(n+1)) - py (2T - 71_'_1)2(’1 s)(n-s+1)y(s) (2.12)

- Z(t -8)y(s), t€Nr,.

u(t) =

Z (T-s+1)y(s)

O

Lemma 2.2. Let 0 < a < 2T +2)/n(n+1),0 < p< QT +2-an(n+1))/n2T —-n+1). If
y € C(N141,[0,00)) and y(t) > 0 for t € Ny, then the unique solution u of (2.1)-(2.2) satisfies
u(t) > 0 fort € Nryq.

Proof. From the fact that A%u(t — 1) = u(t + 1) - 2u(t) + u(t - 1) = —y(t) < 0, we know that
u(t) > (u@E+1)+ut-1))/2,sou(t+1)/(t+1) <u(t)/t.
Hence

wT +1) ~u(©0) _ u(n) —u(0)
T+1 n+1 '

ne Nl,T/ (213)

since u(T) > 0 and u(0) > 0 imply that u(t) > O for t € Nr,.
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Moreover, from u(i) > (i/m)u(n) + ((n —1i)/n)u(0), we get

_1u(

zq:u(s) > [lu(q) + 1
s=1 Tl

1 1
- ) [1+ 2+ 1]+ L u @ [(1=1) + (1-2) +++- 0]

+ %u(q)+n [ u(q)+ ” u(O)

(2.14)
1 1 1 1
=5 [571(11 [+ ﬁu(o)[ P sn(n+ 1)]
1 1
=5+ Du(n) + 501 -1)u(0).
Combining (2.14) with (2.2), we can get
p(n+1)
u(0) > T AT u(1), (2.15)
again combining (2.2), (2.14), and (2.15), we obtain
a(n+1)
u(T+1)> ——— 5 ﬂ( 0 u(n), (2.16)
such that
2T +2 - 1 2(T 1
2 p(n-1)>2-pn>2- +2T _“ﬂ"i”; ) _ X 27;? +::7_(1" ) (2.17)
By using (2.13), (2.15), and (2.16), we obtain
ﬂum) > Mu(q)‘ 2.18)

i T+1

If u(0) <0, then u(r) < 0. It implies that 2T +2-an(n+1))/n(2T —n+1) < f, a contradiction
top< (2T +2-an(n+1))/n2T -n+1). If u(T) <0, then u(n) < 0, and the same contradiction
emerges. Thus, it is true that u(0) > 0, u(T) > 0, together with (2.13), we have

u(t) >0, té&Nr,. (219)

This proof is complete. O

Lemma 2.3. Let an(n+1) > 2T +2, f > max{(2T +2 —an(n +1))/n2T -n+1),0}. If y €
C(Nr41,[0,00)) and y(t) > 0 for t € Ny 1, then problem (2.1)-(2.2) has no positive solutions.

Proof. Suppose that problem (2.1)-(2.2) has a positive solution u satisfying u(t) > 0, t € Nr,q,
and there is a 7y € Ny r such that u(7) > 0.
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If u(T +1) >0, then 22:1 u(s) > 0. It implies

. 2T+2-an(n+1) &
u(0) = ﬁ;:;u(s) > n@T —y+1) Zu(s)

s=1 (2.20)
. (T +1)(u(0) +u(n)) -n(n+1)u(T +1)
- n(2T -y +1) ’

that is,

w(T +1) - u(©) _ u(n) ~u(0)

2.21
T+1 n+l 7 221)

which is a contradiction to (2.13).

If u(T+1) =0, then ZZ=1 u(s)ds = 0. When 7y € Ny, 1, we get u(rp) > u(T) = 0 >
u(1n), which contradicts to (2.13). When 7y € N;.1,1r, we get u(n) < 0 = u(0) < u(rp), which
contradicts to (2.13) again. Therefore, no positive solutions exist. O

Let E = C(Nr41, [0,00)), then E is a Banach space with respect to the norm

[[ull = sup |u(t)]- (2.22)

tENTH

Lemma 2.4. Let 0 < o« < 2T +2)/n(n+1),0< p < QT +2-an(n+1))/n2T —n+1). If
y € C(Nr41, [0,00)) and y(t) > 0, then the unique solution to problem (2.1)-(2.2) satisfies

nf u(t) > ylul, (2.23)
where
. min{ a(n+1)(T+1-1) an(n+1)
(T+1)(2-p(n-1))—an(n+1)" 2-p(n-1))(T+1)’

(2.24)

pn+1)(T+1-1) Pr(n+1) }
Q-p-1))T+1) 2-pn-))T+1) |

Proof. Let u(t) be maximal at t = 7, when 71 € Ny 7 and ||u|| = u(7;). We divide the proof into
two cases.



8 Journal of Applied Mathematics

Case i. If u(0) > u(T + 1) and infyen,, , u(t) = u(T + 1), then either 0 < 4 < 7 < T +1or
O<n<m<T+1,if0< 7 <n<T+1,then

w(T +1) —u(n)

u(r) <u(T+1)+ (11 = (T +1))

T+1-n
T+1)-
<u(T+1) +”(T+1_”H('Z>(0—(T+1))
3 : B (2.25)
T+ 1)[1 . <<T+ D-(T+1)(2-pn-1))/a(n+1) >]
T+1-n
. u(T+1)[(T+1)(2—ﬂ(71—1)) -fm(n+1)].
a(T+1)(T+1-1)
This implies
. a(T+1)(T+1-1n)
D > D(2-p(n-1)) —an(n+1) el (220)
Similarly, if 0 <7 <71 <T +1, from
u(n) _ u(m) _ u(n)
n > T >T+1' (227)
together with (2.16), we have
an(n+1)
u(T+1) > 2= pl-1)(T+1) u(T). (2.28)
This implies
inf u(t) > an(+1) . (2.29)

teNr. T 2-pn-D)NT+1)

Case ii. If u(0) < u(T + 1) and infye,,, u(t) = u(0), theneither 0 <7y <y <T+1lor0 <z <
1<T+1,by(213).lf0<7 < <T+1, from

u(n) L _um)  oulm)
T+l-n~ T+1-m~ T+1’

(2.30)

together with (2.15), we have

p(n+1)(T+1-1)

YO G - yaen

(T1). (2.31)
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Hence,

p(n+1)(T+1-1n)

f u(t . 2.32
D> -y (2:32)
If0<n<m <T+1, from
u(m) _ u(m) _ u(n)
T+1< T S n’ (2.33)
together with (2.15), we have
pr(n+1)
u(0) < u(T). (2.34)
@-pn-))T+1)
This implies
1
inf u(ty < P10+ ] (2.35)
N P RSV (S Y
This completes the proof.
O

In the rest of the paper, we assume that 0 < &« < 2T +2)/n(n+1), T € Ny1; 0 < f <
2T +2-an(n+1))/nQ2T —n+1). It is easy to see that the BVP (1.2) has a solution u = u(t) if
and only if u is a solution of the operator equation

N p(n+1) +2t(1 - pn) -
Auh = @T+2-an(n+1)) - pn2T -n+1) s;(T_ SrDuEmE)
T+1)-(B-a)t !

_(2T+2_i;(;)l))(f’ﬂﬂ“()ﬂ_m1)21(;1_s)(q—s+1)u(s)f(u(s)) (2.36)
t-1

- D (= s)u(s) f(u(s)).
s=1

Denote

K= {u €E:u> O,tr%]inu(t) > y||u||}, (2.37)
€NT

where y is defined in (2.24).
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It is obvious that K is a cone in E. Since Au = u and from Lemmas 2.2 and 2.4, then
A(K) c K. Itis also easy to check that A : K — K is completely continuous. In the following,
for the sake of convenience, set

QT +2)(1-pn) +pn(n+1) &
QT +2-an(n+1)) - py(2T - rl+1)Z(T—S+1)a(s)
SRR i a(s).

QT +2-an(n+1)) - pnQT -n+1) S

1=
(2.38)

Ny =

3. Main Results
Now we are in the position to establish the main result.

Theorem 3.1. The BVP (1.2) has at least one positive solution in the case

(Hi) fo=0and fo, = oo (superlinear) or

(Hy) fo = oo and fo, = 0 (sublinear).

Proof. Superlinear Case

Let (Hy) hold. Since fo = lim,, - (f (1) /u) = 0 for any € € (0, A]'], there exists p, such that

fu) <eu forue[0,p.]. (3.1)
LetQ, ={u€kE:|u| <ps} forany u € KNoQ, .From (3.1), we get

2t(1-pn) + pn(n+1)
QT +2-an(n+1)) -pn2T-n+1) 5
(T +1) - (ﬂ tx)t
(2T+2 an(n+1)) -pn(2T -n+1

- Z(t —s)a(s) f(u(s))
2t(1-pn) + pn(n +1) L (3.2)
S G 2—anin+ 1)) - —g o) 2T 5+ Da)fwls)
2T +1)(1-pn) +pn(n+1) i
(2T+2 an(n+1)) -pn2T -n+1) <

QT+2)(1-pn) +pn(n+1)
(2T +2-an(n+1)) - pn(2T - ,1+1)Z(T_5+1)ﬂ(5)

=eMip. < ps = [lul,

Au(t) = Z(T—s+1)a(5)f(u(5))

72 Z(n s)(n—s+1)a(s)f (u(s))

T s+ a(s) f(u(s))

< Epx
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which yields

|Aul| < [lul| for ue KnNoL,. (3.3)

Further, since fo, = lim,_, o (f(u#)/u) = oo, then, for any M* € [Agl,oo), there exists p* > p,
such that

f(u) > M*u for u > yp*. (3.4)

Set Q- = {u € E: ||lu| < p*} for u € KN 0OQ,-.
Since u € K, minien, u(t) > yllul| = yp*. Hence, for any u € K N Q,., from (3.4) and
(2.23), we get

(2-pn+P)n
QT +2-an(n+1)) -pn2T-n+1) <
PT+1) = (f-a)y
(2T+2 an(n+1)) -pn2T -n+1)<

Au(n) =

Z(T s+ 1)a(s)f(u(s))

Z(n s)(n—s+1)a(s)f(u(s))

-
- > (n-s)a(s)f (u(s))
s=1

(2-pn+p)n
(2T+2 an(n+1)) -pn(2T -n+1
1
T T 2-an(n+1)) - pn@T -5+ 1)

)Z(T s+ 1)a(s)f(u(s))

x E;(n =s)[~2-pn+B)T + (B(T —n) +an+1)s+ (1-1)pla(s) f (u(s))

T (2T +2- aq((i +[i7)2)+ ﬁ;Z QT —n+1) <& Z(T s+1)a(s)f(u(s))
(T +2- m;,i 1[)5;1 - Zm 1+1) 2 Z(n s)a(s)f (u(s))
(2T +2 - 5&1?)3 iﬂﬁ; (12:r —n+1) 7: <’ZS - 32)a(s)f (u(s))
T re2- aq(q(-:ll);)ﬂﬁn(ZT 1) Z(’i s)a(s) f(u(s))

(2-Pn+P)n

>(2T+2 an(n+1)) - py(2T - ,1+1)Z(T s+1)a(s)f(u(s))
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- T(Z—ﬂn+ﬂ) S —s)a(s)f(u(s
T 2wl = 1) - T 21O )

_ (2-pn+p)(T-n) L
T QT+2-ag(n+1)) - py2T —n+1) gsa(s)f(u(s))
e (2-pn+ p)(T - 1) Lo
zyp'M T+ 2~ an(r+ 1)) —ﬁTZ(ZT—ﬂ+1)Sz:;8a(S) = M*Ayp
zp" = |ull,
(3.5)
which implies
[Aul| > |jull for u € KN oQ,. (3.6)

Therefore, from (3.3), (3.6), and Theorem 1.1, it follows that A has a fixed point in
KN (Qp \ ,,) such that p. < [Jul| < p*.

Sublinear Case

Let (H>) hold. In view of fy = lim, o+ (f (1) /1) = oo forany M, € [A;, ), there exists 7, > 0
such that

f(u) > M,u for0<u<r. (3.7)

Set Q, ={u € E:|ul| <r}forue KnoQ,,. Since u € K, then minsey,, u(t) > yllull = yr..
Thus, from (3.7) for any u € K N 0L2,,, we can get

_ (2-pn+p)n g
A“(’l) - (2T +2— ‘XTI(TZ + 1)) _ﬂﬂ(zT -7 4 1) ;(T - S+ 1)a(s)f(u(s))
i BT +1) - (p-a)n oo
(2’1" +2— “7](7] + 1)) _ﬁﬂ(zT -+ 1) ;(Tl S) (71 5+ 1)a(s)f(u(s)) 68)
n-1 ’
= 2 (n=s)a(s)f(u(s))
s=1
(2-pn+p)(T-n) Q _ -
2 T an (e 1)~ paar = 1) 2 ) T M 2 v =l
which yields

|Aul| > |lu|| for u € K NOL,.. (3.9)
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Since fo, = limy, o (f(u)/u) = 0, then, for any &1 € (0, Ail], there exists ry > 7. such
that

f(u) < eu for u € [rg, 00). (3.10)

We have the following two cases.

Case i. Suppose that f(u) is unbounded, then, from f € C([0, =), [0, o0)), we know that there
is r* > rg such that

f(u) < f(r*) foruel0,r*]. (3.11)
Since r* > 1y, then, from (3.10) and (3.11), one has

fu) < f(r*) <er” foruel0,r*]. (3.12)

Foru € K, ||u|| = r*, from (3.12), we obtain

@T+2)(1-pn) +pn(n+1) <
(T +2-an(n+1)) - py(2T - ,1+1)Z(T—s+1)a 8)f (u(s))

., QT+2)(A-pn) +pn(n+1) & (3.13)
YT v 2—a(y+ 1)) - (2T - q+1)Z(T_S+1)”(S)

=g ir* <r* = u.

Au(t) <

Case ii. Suppose that f(u) is bounded, say f(u) < N for all u € [0,00). Taking r* >
max{N/¢ey, .}, foru € K, ||u]| = r*, we have

(2T +2)(1 - pn) + pr(n +1) 4

A S BT 2 an( e 1)) = py2T -+ 1) 2, (T = s+ Da(s)f (u(s))
T
EEEE T e DR 614)
T
e <2T(2Ta+11781(i e T e
= e Mr” <r* = |ul.
Hence, in either case, we may always set Q,- = {u € E : |lu]| < r*} such that
|Au|| < |lul| for u € KN oQ,. (3.15)

Hence, from (3.9), (3.15), and Theorem 1.1, it follows that A has a fixed point in K N
(€2p+ \ ©Qp,) such that r, < [lu|| < r*. The proof is complete. O
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4. Some Examples
In this section, in order to illustrate our result, we consider some examples.

Example 4.1. Consider the BVP

Alu(t-1)+Puf =0, te Ny,

12 22 (4.1)
u(0) = 52”(5), u(5) = EZ”(S)-
s=1 s=1
Seta=2/3,p=1/3,1=2,T =4,a(t) =t and f(u) = u.
We can show that

2T +2 — 1
0cac2 522 g 1 3 We2-an(nrl)

3 3 n(n+1) 3 7 71(2T—71+1)

Case I. k € (1,00). In this case, fy =0, fo, = o0, and H; of Theorem 3.1 holds. Then BVP (4.1)
has at least one positive solution.

Case II. k € (0,1). In this case, fy = oo, fo, = 0, and H» of Theorem 3.1 holds. Then BVP (4.1)
has at least one positive solution.

Example 4.2. Consider the BVP

gasinu+2cosu

Au(t-1) +ette< >
u

> =0, te DJL4,

1 3 1 3 (43)
u(0) = ZZ”(S), u(5) = gz:u(s).
s=1 s=1
Seta=1/3,=1/4,1=3,T =4, a(t) =e't®, f(u) = (rsinu+2cosu)/u’
We can show that
2T +2 — 1
Oca=io2_ 22 5 5 L 1 20 ann +1) (4.4)
3 6 n(n+1) 4 "3 n(2T -n+1)

Through a simple calculation we can get fy = oo, fo, = 0. Thus, by H; of Theorem 3.1,
we can get BVP (4.3) has at least one positive solution.
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