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We construct new analytical solutions of the (3 + 1)-dimensional modified KdV-Zakharov-
Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with
arbitrary parameters are effectively obtained by the method. The obtained results show that the
Exp-function method is effective and straightforward mathematical tool for searching analytical
solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.

1. Introduction

Nonlinear partial differential equations (NLPDEs) play a prominent role in different branches
of the applied sciences. In recent time, many researchers investigated exact traveling wave
solutions of NLPDEs which play a crucial role to reveal the insight of complex physical
phenomena. In the past several decades, a variety of effective and powerful methods, such as
variational iteration method [1–3], tanh-coth method [4], homotopy perturbation method [5–
7], Fan subequationmethod [8], projective Riccati equationmethod [9], differential transform
method [10], direct algebraic method [11], first integral method [12], Hirota’s bilinear
method [13], modified extended direct algebraic method [14], extended tanh method [15],
Backlund transformation [16], bifurcation method [17], Cole-Hopf transformation method
[18], sech-tanh method [19], (G′/G)-expansion method [20–22], modified (G′/G)-expansion
method [23], multiwave method [24], extended (G′/G)-expansion method [25, 26], and
others [27–33] were used to seek exact traveling wave solutions of the nonlinear evolution
equations (NLEEs).
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Recently, He and Wu [34] have presented a novel method called the Exp-function
method for searching traveling wave solutions of the nonlinear evolution equations arising
in mathematical physics. The Exp-function method is widely used to many kinds of
NLPDEs, such as good Boussinesq equations [35], nonlinear differential equations [36],
higher-order boundary value problems [37], nonlinear problems [38], Calogero-Degasperis-
Fokas equation [39], nonlinear reaction-diffusion equations [40], 2D Bratu type equation
[41], nonlinear lattice differential equations [42], generalized-Zakharov equations [43], (3 +
1)-dimensional Jimbo-Miwa equation [44], modified Zakharov-Kuznetsov equation [45],
Brusselator reaction diffusion model [46], nonlinear heat equation [47], and the other
important NLPDEs [48–51].

In this article, we apply the Exp-functionmethod [34] to obtain the analytical solutions
of the nonlinear partial differential equation, namely, (3 + 1)-dimensional modified KdV-
Zakharov-Kuznetsev equation.

2. Description of the Exp-Function Method

Consider the general nonlinear partial differential equation

P
(
u, ut, ux, uy, uz, utt, uxt, uxx, uxy, uyy, uyt, uzz, uzt, uzx, uzy, . . .

)
= 0. (2.1)

The main steps of the Exp-function method [34] are as follows.

Step 1. Consider a complex variable as

u
(
x, y, z, t

)
= u

(
η
)
, η = x + y + z − V t. (2.2)

Now using (2.2), (2.1) converts to a nonlinear ordinary differential equation for u(η)

Q
(
u, u′, u′′, u′′′, . . .

)
= 0, (2.3)

where primes denote the ordinary derivative with respect to η.

Step 2. We assume that the traveling wave solution of (2.3) can be expressed in the form [34]

u
(
η
)
=

∑d
n = −c an exp

(
nη

)

∑q
m = −p bm exp

(
mη

) =
a−c exp

(−cη) + · · · + ad exp
(
dη

)

b−p exp
(−pη) + · · · + bq exp

(
qη

) , (2.4)

where c, d, p, and q are positive integers to be determined later, and an and bm are unknown
constants. Equation (2.4) can be rewritten in the following equivalent form:

u
(
η
)
=

ac exp
(
cη

)
+ · · · + a−d exp

(−dη)

bp exp
(
pη

)
+ · · · + b−q exp

(−qη) . (2.5)

Step 3. In order to determine the values of c and p, we balance the highest order linear term
with the highest order nonlinear term, and, determining the values of d and q, we balance
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Figure 1: Periodic solution for α = −1, y = 0 and z = 0.

the lowest order linear term with the lowest order nonlinear term in (2.3). Thus, we obtain
the values of c, d, p, and q.

Step 4. Substituting the values of c, d, p, and q into (2.5), and then substituted (2.5) into (2.3)
and simplifying, we obtain

∑

i

Ci exp
(±iη) = 0, i = 0, 1, 2, 3, . . . . (2.6)

Then each coefficient Ci = 0 is to set, yields a system of algebraic equations for ac
′s and bp

′s.

Step 5. We assume that the unknown ac
′s and bp

′s can be determined by solving the system
of algebraic equations obtained in Step 4. Putting these values into (2.5), we obtain exact
traveling wave solutions of the (2.1).

3. Application of the Method

In this section, we apply the method to construct the traveling wave solutions of the (3 +
1)-dimensional modified KdV-Zakharov-Kuznetsev equation. The obtained solutions will be
displayed in Figures 1, 2, 3, 4, 5, and 6 by using the software Maple 13.

We consider the (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsev equation

ut + αu2ux + uxxx + uxyy + uxzz = 0, (3.1)

where α is a nonzero constant.
Zayed [52] solved (3.1) using the (G′/G)-expansion method. Later, in article [53], he

solved same equation by the generalized (G′/G)-expansion method.
Here, we will solve this equation by the Exp-function method.
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Figure 2: Periodic solution for β = 2, y = 0 and z = 0.
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Figure 3: Solitons solution for y = 0 and z = 0.

Now, we use the transformation (2.2) into (3.1), which yields

−Vu′ + αu2u′ + 3u′′′ = 0, (3.2)

where primes denote the derivatives with respect to η.
According to Step 2, the solution of (3.2) can be written in the form of (2.5). To

determine the values of c and p, according to Step 3, we balance the highest order linear term
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Figure 4: Solitons solution for y = 0 and z = 0.
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Figure 5: Solitons solution for y = 0 and z = 0.

of u′′′ with the highest order nonlinear term of u2u′ in (3.2), that is, u′′′ and u2u′. Therefore, we
have the following:

u′′′ =
c1 exp

[(
3p + c

)
η
]
+ · · ·

c2 exp
[
4pη

]
+ · · · ,

u2u′ =
c3 exp

[(
p + 3c

)
η
]
+ · · ·

c4 exp
[
4pη

]
+ · · · ,

(3.3)
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Figure 6: Solitons solution for y = 0 and z = 0.

where cj are coefficients only for simplicity; from (3.3), we obtain that

3p + c = p + 3c, which leads p = c. (3.4)

To determine the values of d and q, we balance the lowest order linear term of u′′′ with the
lowest order nonlinear term of u2u′ in (3.2). We have

u′′′ =
· · · + d1 exp

[−(d − q
)
η
]

· · · + d2 exp
[− 4qη

] ,

u2u′ =
· · · + d3 exp

[−3(d − q
)
η
]

· · · + d4 exp
[−4qη] ,

(3.5)

where dj are determined coefficients only for simplicity; from (3.5), we obtain

−(d − q
)
= −3(d − q

)
, which leads q = d. (3.6)

Any real values can be considered for c and d, since they are free parameters. But the final
solutions of (3.1) do not depend upon the choice of c and d.

Case 1. We set p = c = 1 and q = d = 1.
For this case, the trial solution (2.5) reduces to

u
(
η
)
=

a1e
η + a0 + a−1e−η

b1eη + b0 + b−1e−η
. (3.7)
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Since, b1 /= 0, (3.7) can be simplified

u
(
η
)
=

a1e
η + a0 + a−1e−η

e η + b0 + b−1e−η
. (3.8)

By substituting (3.8) into (3.2) and equating the coefficients of exp(± nη), n = 0, 1, 2, 3, . . .,
with the aid of Maple 13, we obtain a set of algebraic equations in terms of a−1, a0, a1, b−1, b0,
and V

1
A

(
C3e

3η + C2e
2η + C1e

η + C0 + C−1e−η + C−2e−2η + C−3e−3η
)
= 0. (3.9)

And, setting each coefficient of exp(± nη), n = 0, 1, 2, 3, . . ., to zero, we obtain

C3 = 0, C2 = 0, C1 = 0, C0 = 0, C−1 = 0, C−2 = 0, C−3 = 0. (3.10)

For determining unknowns, we solve the obtained system of algebraic (3.10) with the aid of
Maple 13, and we obtain four different sets of solutions.

Set 1. We obtain that

b−1 = b−1, a−1 = ∓ 6b−1√−2α
, a0 = 0, a1 = ± 6√−2α

, b0 = 0, V = − 6, (3.11)

where b−1 is free parameter.

Set 2. We obtain that

a0 = a0, b0 = b0, a−1 = ∓ 1

12
√−2α

(
2αa2

0 + 9b20
)
,

a1 = ± 3√−2α
, b−1 =

1
18

αa2
0 +

1
4
b20, V = − 3

2
,

(3.12)

where a0 and b0 are free parameters.

Set 3. We obtain that

a1 = a1, b0 = b0, a−1 =
b20
(
2αa2

1 + 9
)

8αa1
,

a0 =
b0
(
αa2

1 + 9
)

αa1
, b−1 =

b20
(
2αa2

1 + 9
)

8αa2
1

, V = 3 + αa2
1,

(3.13)

where a1 and b0 are free parameters.
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Set 4. We obtain that

a0 = a0, a−1 = 0, a1 = 0, b−1 =
1
72

αa2
0, b0 = 0, V = 3, (3.14)

where a0 is free parameter.
Now, substituting (3.11) into (3.8), we obtain traveling wave solution

u
(
η
)
=

±6 eη ∓ 6b−1e−η√−2α (eη + b−1e−η)
. (3.15)

Equation (3.15) can be simplified as

u
(
η
)
=

±6√−2α

[

1 − 2b−1
(
cosh η − sinh η

)

(1 + b−1) cosh η + (1 − b−1) sinh η

]

, (3.16)

where η = x + y + z + 6t.
If b−1 = 1 from (3.16), we obtain

u
(
η
)
=

±6i√
2α

tanh η. (3.17)

Substituting (3.12) into (3.8) and simplifying, we get traveling wave solution

u
(
η
)
=

±3√−2α

⎡

⎢
⎣1 +

12
(
±a0

√−2α + 3b0
)
− 2

(
2αa2

0 + 9b20
)(
cosh η − sinh η

)

(
36 + 2αa2

0 + 9b20
)
cosh η +

(
36 − 2αa2

0 − 9b20
)
sinh η + 36b0

⎤

⎥
⎦, (3.18)

where η = x + y + z + (3/2)t.
If α is negative, that is, α = −β, β > 0, b0 = 2 and a0 = 0, then from (3.18), we obtain

u
(
η
)
=

±3
√
2β

tanh
η

2
. (3.19)

Substituting (3.13) into (3.8) and simplifying, we obtain

u
(
η
)
= a1

[

1 +
72b0{

8αa2
1 + b20

(
2αa2

1 + 9
)}

cosh η +
{
8αa2

1 − b20
(
2αa2

1 + 9
)}

sinh η + 8αa2
1b0

]

,

(3.20)

where η = x + y + z − (3 + αa2
1)t.

If b0 = 1, α = 6, and a1 = 1/2, (3.20) becomes

u
(
η
)
=

1
2
+

3
1 + 2 cosh η

. (3.21)
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Substituting (3.14) into (3.8) and simplifying, we obtain

u
(
η
)
=

72a0(
72 + αa2

0

)
cosh η +

(
72 − αa2

0

)
sinh η

, (3.22)

where η = x + y + z − 3t.
If a0 = 3 and α = 8, (3.22) becomes

u
(
η
)
=

3
2
sechη. (3.23)

Case 2. We set p = c = 2 and q = d = 1.
For this case, the trial solution (2.5) reduces to

u
(
η
)
=

a2e
2η + a1e

η + a0 + a−1e−η

b2e2η + b1eη + b0 + b−1e−η
. (3.24)

Since, there are some free parameters in (3.24), for simplicity, we may consider that b2 = 1
and b−1 = 0. Then the solution (3.24) is simplified as

u
(
η
)
=

a2e
2η + a1e

η + a0 + a−1e−η

e2η + b1eη + b0
. (3.25)

Performing the same procedure as described in Case 1, we obtain four sets of solutions.

Set 1. We obtain that

b0 = b0, a−1 = 0, a0 = ∓ 6b0√−2α
, a1 = 0, a2 = ± 6√−2α

, b1 = 0, V = − 6,

(3.26)

where b0 is free parameter.

Set 2. We obtain that

a1 = a1, b1 = b1, a−1 = 0, a0 = ∓ 1

12
√−2α

(
2αa2

1 + 9b21
)
,

a2 = ± 3√−2α
, b0 =

1
18

αa2
1 +

1
4
b21, V =

−3
2
,

(3.27)

where a1 and b1 are free parameters.
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Set 3. We obtain that

a2 = a2, b1 = b1, a−1 = 0, a0 =
b21
(
2αa2

2 + 9
)

8αa2
,

a1 =
b1
(
αa2

2 + 9
)

αa2
, b0 =

b21
(
2αa2

2 + 9
)

8αa2
2

, V = αa2
2 + 3,

(3.28)

where a2 and b1 are free parameters.

Set 4. We obtain that

a1 = a1, a−1 = 0, a0 = 0, a2 = 0, b0 =
αa2

1

72
, b1 = 0, V = 3, (3.29)

where a1 is a free parameter.
Using (3.26) into (3.25) and simplifying, we obtain that

u
(
η
)
=

±6√−2α

[

1 − 2b0
(
cosh η − sinh η

)

(1 + b0) cosh η + (1 − b0) sinh η

]

. (3.30)

If b0 = 1, from (3.30), we obtain that

u
(
η
)
=

±6i√
2α

tanh η, (3.31)

where η = x + y + z + 6t.
Substituting (3.27) into (3.25) and simplifying, we obtain that

u
(
η
)
=

±3√−2α

⎡

⎢
⎣1 +

12
(
±a1

√−2α + 3b1
)
− 2

(
2αa2

1 + 9b21
)(
cosh η − sinh η

)

(
36 + 2αa2

1 + 9b21
)
cosh η +

(
36 − 2αa2

1 − 9b21
)
sinh η + 36b1

⎤

⎥
⎦. (3.32)

If α is negative, that is, α = −β, β > 0, b1 = 2 and a1 = 0, (3.32) can be simplified as

u
(
η
)
=

±3
√
2β

tanh
η

2
, (3.33)

where η = x + y + z + (3/2)t.
Substituting (3.28) into (3.25) and simplifying, we obtain that

u
(
η
)
= a2

[

1 +
72b1{

8αa2
2 + b21

(
2αa2

2 + 9
)}

cosh η +
{
8αa2

2 − b21
(
2αa2

2 + 9
)}

sinh η + 8αa2
2b1

]

.

(3.34)
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If b1 = 1, α = 6, and a2 = 1/2, (3.34) becomes

u
(
η
)
=

1
2
+

3
1 + 2 cosh η

, (3.35)

where η = x + y + z − (3 + α a2
2)t.

Using (3.29) into (3.25) and simplifying, we obtain that

u
(
η
)
=

72a1(
72 + αa2

1

)
cosh η +

(
72 − αa2

1

)
sinh η

. (3.36)

If a1 = 3, and α = 8, (3.36) becomes

u
(
η
)
=

3
2
sechη, (3.37)

where η = x + y + z − 3t.

Case 3. We set p = c = 2 and q = d = 2.
For this case, the trial solution (2.5) reduces to

u
(
η
)
=

a2e
2η + a1e

η + a0 + a−1e−η + a−2e−2η

b2e2η + b1eη + b0 + b−1e−η + b−2e−2η
. (3.38)

Since, there are some free parameters in (3.38), we may consider b2 = 1, a−2 = 0, b−2 = 0, and
b−1 = 0 so that the (3.38) reduces to the (3.25). This indicates that the Case 3 is equivalent to
the Case 2. Equation (3.38) can be rewritten as

u
(
η
)
=

a2e
η + a1 + a0e

−η + a−1e−2η + a−2e−3η

b2eη + b1 + b0e−η + b−1e−2η + b−2e−3η
. (3.39)

If we put a−2 = 0, a−1 = 0, b2 = 1, b−2 = 0, and b−1 = 0 into (3.39), we obtain the
solution form as (3.8). This implies that the Case 3 is equivalent to the Case 1.

Also, if we consider p = c = 3 and q = d = 3, it can be shown that this Case is also
equivalent to the Cases 1 and 2.

Therefore, we think that no need to find the solutions again.

It is noted that the solution (3.17) and (3.31) are identical, solution (3.19) and (3.33) are
identical, solution (3.21) and (3.35) are identical, and solution (3.23) and (3.37) are identical.

Beyond Table 1, Zayed [52] obtained another solution (3.39). But, we obtain two more
new solutions (3.21) and (3.23).

Graphical Representations of the Solutions

The above solutions are shown with the aid of Maple 13 in the graphs.



12 Journal of Applied Mathematics

Table 1: Comparison between Zayed [52] solutions and our solutions.

Zayed [52] solutions Our solutions
(i) If λ = 2, μ = 0, equation (3.40) becomes

u(η) = ± 6i√
2α

tanh η. (i) Solution (3.17) is u(η) = ± 6i√
2α

tanh η.

(ii) If 1 + λ2 = 4μ and α is replaced with β, equation

(3.38) becomes u(η) = ± 3i
√
2β

tan
η

2
.

(ii) If η is replaced with iη, solution (3.19) becomes

u(η) = ± 3i
√
2β

tan
η

2
.

4. Conclusions

Using the Exp-function method, with the aid of symbolic computation software Maple 13,
new exact traveling wave solutions of the (3 + 1)-dimensional modified KdV-Zakharov-
Kuznetsev equation are constructed. It is important that some of the obtained solutions are
identical to the solutions available in the literature and some are new. These solutions can be
used to describe the insight of the complex physical phenomena.
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[5] T. Öziş and A. Yildirim, “Traveling wave solution of Korteweg-de vries equation using He’s
Homotopy Perturbation Method,” International Journal of Nonlinear Sciences and Numerical Simulation,
vol. 8, no. 2, pp. 239–242, 2007.

[6] E.M. E. Zayed, T. A. Nofal, and K. A. Gepreel, “On using the homotopy perturbationmethod for find-
ing the travelling wave solutions of generalized nonlinear Hirota-Satsuma coupled KdV equations,”
International Journal of Nonlinear Science, vol. 7, no. 2, pp. 159–166, 2009.

[7] S. T. Mohyud-Din, A. Yildirim, and G. Demirli, “Traveling wave solutions of Whitham-Broer-Kaup
equations by homotopy perturbation method,” Journal of King Saud University (Science), vol. 22, no. 3,
pp. 173–176, 2010.

[8] D. Feng and K. Li, “Exact traveling wave solutions for a generalized Hirota-Satsuma coupled KdV
equation by Fan sub-equation method,” Physics Letters. A, vol. 375, no. 23, pp. 2201–2210, 2011.

[9] A. Salas, “Some exact solutions for the Caudrey-Dodd-Gibbon equation,” arXiv: 0805.2969v2 [math-
ph] 21 May 2008.

[10] J. Biazar, M. Eslami, and M. R. Islam, “Differential transform method for nonlinear parabolic-
hyperbolic partial differential equations,”Applications and AppliedMathematics, vol. 5, no. 10, pp. 1493–
1503, 2010.



Journal of Applied Mathematics 13

[11] S. M. Taheri and A. Neyrameh, “Complex solutions of the regularized long wave equation,” World
Applied Sciences Journal, vol. 12, no. 9, pp. 1625–1628, 2011.

[12] P. Sharma and O. Y. Kushel, “The first integral method for Huxley equation,” International Journal of
Nonlinear Science, vol. 10, no. 1, pp. 46–52, 2010.

[13] A.-M. Wazwaz, “Non-integrable variants of Boussinesq equation with two solitons,” Applied Math-
ematics and Computation, vol. 217, no. 2, pp. 820–825, 2010.

[14] A. A. Soliman and H. A. Abdo, “New exact solutions of nonlinear variants of the RLW, and PHI-four
and Boussinesq equations based on modified extended direct algebraic method,” International Journal
of Nonlinear Science, vol. 7, no. 3, pp. 274–282, 2009.

[15] A. M. Wazwaz, “New travelling wave solutions to the Boussinesq and the Klein-Gordon equations,”
Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 5, pp. 889–901, 2008.

[16] L. Jianming, D. Jie, and Y. Wenjun, “Backlund transformation and new exact solutions of the Sharma-
Tasso-Olver equation,” Abstract and Applied Analysis, vol. 2011, Article ID 935710, 8 pages, 2011.

[17] M. Song, S. Li, and J. Cao, “New exact solutions for the (2+1)-dimensional Broer-Kaup-Kupershmidt
equations,” Abstract and Applied Analysis, vol. 2010, Article ID 652649, 9 pages, 2010.
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