
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 587834, 10 pages
doi:10.1155/2012/587834

Research Article
Viscous Flow over Nonlinearly Stretching Sheet
with Effects of Viscous Dissipation

Javad Alinejad1 and Sina Samarbakhsh2

1 Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari 48161-19318, Iran
2 Azmoon Pardazesh Research Institute, No. 2, Malekloo Street, Narmak, Tehran 1483764874, Iran

Correspondence should be addressed to Javad Alinejad, alinejad javad@iausari.ac.ir

Received 19 November 2011; Revised 25 January 2012; Accepted 10 February 2012

Academic Editor: M. F. El-Amin

Copyright q 2012 J. Alinejad and S. Samarbakhsh. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

The flow and heat transfer characteristics of incompressible viscous flow over a nonlinearly
stretching sheet with the presence of viscous dissipation is investigated numerically. The similarity
transformation reduces the time-independent boundary layer equations for momentum and
thermal energy into a set of coupled ordinary differential equations. The obtained equations,
including nonlinear equation for the velocity field f and differential equation by variable
coefficient for the temperature field θ, are solved numerically by using the fourth order of Runge-
Kutta integration scheme accompanied by shooting technique with Newton-Raphson iteration
method. The effect of various values of Prandtl number, Eckert number and nonlinear stretching
parameter are studied. The results presented graphically show some behaviors such as decrease
in dimensionless temperature θ due to increase in Pr number, and curve relocations are observed
when heat dissipation is considered.

1. Introduction

The study of two-dimensional boundary layer flow, heat, and mass transfer over a nonlinear
stretching surface is very important as it finds many practical applications in different
areas. Some industrial applications of viscous flow over a stretching sheet are aerodynamic
extrusion of plastic sheets, condensation process of metallic plate in a cooling bath, and
extrusion of a polymer sheet from a dye. During the manufacture of these sheets, the melt
issues from a slit and is subsequently stretched to achieve the desired thickness. The final
products of desired characteristics are notably influenced by the stretching rate, the rate of
the cooling in the process, and the process of stretching. Viscous dissipation changes the
temperature distributions by playing a role like an energy source, which leads to affecting
heat transfer rates. The merit of the effect of viscous dissipation depends on whether the
sheet is being cooled or heated. The problem of nonlinear stretching sheet for different cases
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of fluid flow has also been analyzed by different researchers. Sakiadis [1] initiated the study
of boundary layer flow over a continuous solid surface moving with constant speed as
result of ambient fluid movement; this boundary flow is generally different from boundary
layer flow over a semi-infinite flat plate. Erickson [2] studied this problem to the case in
which the transverse velocity at the moving surface is nonzero with the effects of heat and
mass transfer being taken in to account. Danberg and Fansler [3], using nonsimilar solution
method, studied the flow inside the boundary layer past a wall that is stretched with a
velocity proportional to the distance along the wall. P. S. Gupta A. S. Gupta [4], using similar
solution method, analyzed heat and mass transfer in the boundary layer over a stretching
sheet subject to suction or blowing. The laminar boundary layer on an inextensible continues
flat surface moving with a constant velocity in a non-Newtonian fluid characterized by a
power-law model is studied by Fox et al. [5], using both exact and approximate methods.
Rajagopal et al. [6] studied the flow behavior of viscoelastic fluid over stretching sheet and
gave an approximate solution to the flow field. Recently Troy et al. [7] presented an exact
solution for Rajagopal problem. Vajravelu and Roper [8] studied the flow and heat transfer
in a viscoelastic fluid over a continues stretching sheet with power law surface temperature,
including the effects of viscous dissipation, internal heat generation or absorption, and work
due to deformation in the energy equation. Vajravelu [9] studied the flow and heat transfer
characteristics in a viscous fluid over a nonlinearly stretching sheet without heat dissipation
effect. Cortell [10, 11] has worked on viscous flow and heat transfer over a nonlinearly
stretching sheet. Raptis and Perdikis [12] studied viscous flow over a nonlinear stretching
sheet in the presence of a chemical reaction and magnetic field. Abbas and Hayat [13]
addressed the radiation effects on MHD flow due to a stretching sheet in porous space.
Cortell [14] investigated the influence of similarity solution for flow and heat transfer of
a quiescent fluid over a nonlinear stretching surface. Awang and Hashim [15] obtained
the series solution for flow over a nonlinearly stretching sheet with chemical reaction and
magnetic field. In the present paper an analysis is carried out to study the flow and heat
transfer phenomenon in a viscous fluid over a nonlinearly stretching sheet by considering the
effects of heat dissipation. In order to arrive nonlinear ordinary deferential equations, stream
function is defined differently (compared to the linear stretching case) and these nonlinear
deferential equations along with pertinent boundary condition are solved.

2. Flow and Heat Transfer Analysis

Consider the steady laminar flow of a viscous incompressible over a nonlinearly stretching
sheet. The governing boundary layer equations of mass conservation, momentum, and ener-
gy with viscous dissipation are
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where u and v are the velocity components in x and y axes, respectively, T is the temperature,
ν the kinematic viscosity, ρ the density, μ the dynamic viscosity, k the thermal conductivity,
and Cp the specific heat at constant pressure. The boundary conditions to the case are

u = cxn, v = 0, T = Tw at y = 0, (2.2)

u −→ 0, T −→ T∞ as y −→ ∞. (2.3)

These conditions suggest transforming into the corresponding nonlinear ordinary differential
equations by choosing the similarity transformation as given by Vajravelu [9]:

η = y
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(2.4)

where a prime denotes differentiation with respect to η. The transformed nonlinear, coupled
ordinary differential equations and boundary conditions are

f ′′′ + ff ′ −
(

2n
n + 1

)(
f ′)2 = 0, (2.5)

f ′ = 1, f = 0 at η = 0, (2.6)

θ′′ + Prfθ′ + PrEc
(
f ′′)2 = 0, (2.7)

θ = 1 at η = 0, (2.8)

θ −→ 0 as η −→ ∞, (2.9)

where dimensionless parameters are defined as
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(2.10)
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The shear stress at the surface of the sheet is defined as

τw = μ
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)
y=0

,

τw = cμ

√
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x(3n−1)/2f ′′(0).

(2.11)

And the local wall heat flux is defined as

qw = −k
(
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)
y=0

,

qw = −k(Tw − T∞)
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2ν
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(2.12)

Since there is no exact solution for nonlinearly stretching boundary problem, the differential
(2.5) and (2.7) are investigated numerically in accordance with the boundary condition (2.6)
and (2.7).

3. Numerical Analysis

The nonlinear boundary value problem represented by (2.5) and (2.7) is solved numerically
using fourth-order Runge-Kutta shooting technique. Equations (2.5) and (2.7) have been
discretized to five first-order equations as follows:

y′
1 = y2,

y′
2 = y3,

y′
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(
2n
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y2
2 − y1y3,

y′
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y′
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3 ,

(3.1)

where y1 = f, y2 = f ′, y3 = f ′′, y4 = θ, y5 = θ′. Boundary conditions (2.6) and (2.9) become

y1 = 0, y2 = 1, y4 = 1 at η = 0,

y2 −→ 0, y4 −→ 0 as η −→ ∞.
(3.2)

Regarding the above boundary conditions three values out of five that required initial values
are known, andwe begin solution procedure by two initial guesses and the procedure corrects
them using Newton-Raphson iteration scheme. Initial guesses to initiate the shooting process
are very crucial in this process and it should be noted that convergence is not guaranteed,
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Figure 1: Dimensionless temperature profile θ versus similarity parameter η-Effect of heat dissipation
with Pr = 7, n = 1.
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Figure 2: Dimensionless temperature profile θ versus similarity parameter η-Effect of heat dissipation
with Pr = 0.71, n = 1.

especially if a poor guess for themissing starting boundary values is made. Another challenge
to solve this equations system is the values of y2 and y4 at η → ∞. It is necessary to estimate
η by a known value in which dimensionless temperature profile (θ) reaches its asymptotic
state.
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Figure 3: Dimensionless temperature profile θ versus similarity parameter η-Effect of heat dissipation
with Pr = 7, n = 5.

0
1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Without heat dissipation

θ

η

With heat dissipation 

With heat dissipation Ec < 0

Ec > 0

Figure 4: Dimensionless temperature profile θ versus similarity parameter η-Effect of heat dissipation
with Pr = 0.71, n = 5.

4. Results and Discussion

Figures 1, 2, 3, 4, 5, and 6 described the behavior of dimensionless temperature profile
(θ) versus similarity variable ηwhich are compared for two cases of without heat dissipation
and by considering heat dissipation effects. It can be seen that in cases with positive values
of the Eckert number, the curves are shifted to the right-hand side and in cases with
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Figure 5: Dimensionless temperature profile θ versus similarity parameter η-Effect of heat dissipation
with Pr = 7, n = 10.
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Figure 6: Dimensionless temperature profile θ versus similarity parameter η-Effect of heat dissipation
with Pr = 0.71, n = 10.

negative values of the Eckert number the curves are shifted to the left-hand side. This is
due to involvement of heat dissipation. Furthermore, it is obvious that the dimensionless
temperature θ increases with increases in the nonlinear stretching parameter n (Figures 7
and 8).

It is seen that the dimensionless temperature θ at a point in the flow decreases with
an increase in the Prandtl number (Figure 9). Since the Prandtl number is a criterion of
relative diffusion effects of momentum and energy in velocity and thermal boundary layer,
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Figure 7:Dimensionless temperature profile θ versus similarity parameter η-Effect of heat dissipation and
nonlinear parameter n with Pr = 7.
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Figure 8:Dimensionless temperature profile θ versus similarity parameter η-Effect of heat dissipation and
nonlinear parameter n with Pr = 0.71.

respectively, therefore, this result is consistent with the fact that the thermal boundary layer
thickness decreases with an increase in the Prandtl number (see the scales of Figures 1 and
2).

In cases with small Prandtl number (Pr < 1, Figures 2, 4, and 6), there is a very low
difference at the end of diagram between the curves with and without heat dissipation (the
end of boundary layer thickness) which caused by this fact that, in these cases, the thickness
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Figure 9:Dimensionless temperature profile θ versus similarity parameter η-Effect of Pr number for n = 5,
Ec = −1.

of thermal boundary layer is greater than that of velocity boundary layer and at the end
of thermal boundary layer in which velocity gradient is reduced to zero, the curves have
conformity on each other because the effect of the energy produced by viscosity is destroyed.
In cases with large Prandtl number (Pr > 1) and negative Eckert number, the dimensionless
temperature θ gains a negative value after reaching zero and, at the end of path, it reaches
zero again (Figures 1, 3, and 5). The reason for being negative of θ in a specific domain is
the presence of velocity gradient outside the thermal boundary layer. These negative values
by considering larger Eckert number are more significant. As soon as velocity gradient is
removed (at the end of velocity boundary layer) the θ reaches zero again. In Figure 9, for a
constant Eckert number the dimensionless temperature θ is drawn based on different Prandtl
number. It is observed that, in larger Prandtl number due to the above-mentioned reasons,
θ has smaller value. The dimensionless temperature profiles presented in Figures 1–9 show
that the far-field boundary conditions are satisfied asymptotically, which support the validity
of the numerical results presented.
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