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The homotopy analysis method is used to obtain analytical solutions of the Rayleigh equation for
the radial oscillations of a multielectron bubble in liquid helium. The small order approximations
for amplitude and frequency fit well with those computed numerically. The results confirm that
the homotopy analysis method is a powerful and manageable tool for finding analytical solutions
of strongly nonlinear dynamical systems.

1. Introduction

Nonlinear equations are widely used for modeling complex phenomena in various fields of
sciences and engineering. Nonlinear problems are in general difficult to solve analytically.
In recent years, the tool for finding analytical solutions of nonlinear equations known as the
homotopy analysis method (HAM) has been developed by Liao [1–3]. This nonperturbation
technique, independent of small/large physical parameters, allows to effectively control the
convergence and accuracy of the series solution to the model under consideration. HAM has
been applied successfully to many nonlinear problems such as free oscillations of self-excited
systems [4], heat radiation [5], finding travelling-wave solutions of the Kawahara equation
[6], finding solitary wave solutions for the fifth-order KdV equation [7], exponentially
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decaying boundary layers [8], free vibrations of tapered beams [9], and finding solutions
for Duffing equations with cubic and quintic nonlinearities [10].

HAM method is applied in this paper for finding a periodic solution of the Rayleigh
equation, which describes the radial free oscillations of a multielectron bubble (MEB) in
liquid Helium [11, 12]:

R5d
2R

dt2
+
3
2
R4

(
dR

dt

)2

= −1
ρ

[
2σR3 − e2Z2

32π2εε0

]
, (1.1)

subject to the initial conditions

R(0) = ξRc,
dR(0)
dt

= 0, (1.2)

where R is the bubble radius, ρ and σ are the mass density and surface tension of the liquid
Helium, respectively, e is the electron charge, Z is the number of electrons in the bubble, ε is
the dielectric constant of helium, ε0 is thevacuum permittivity, Rc is the equilibrium Coulomb
radius of the MEB, and ξ is a dimensionless parameter.

Another aim of this work is to obtain analytical solutions of the Rayleigh equation
(1.1) with an additional external force driving term, a pressure step function. With this kind
of forcing, Tempere et al. [13, 14] have shown that the angularly undeformedMEB undergoes
cyclic collapses and reexpansions with high frequency (in the order of MHz). During the last
stage of collapse, the radial acceleration is sharp and large (greater than 106 m/s2) resulting
in pulses of electromagnetic radiation or sonoluminescence.

2. Foundations of the HAM

The text sequence used in [9, 10] to show the basic ideas of the HAM is closely followed here.
Consider a nonlinear differential equation expressed by the following:

N[r(t)] = 0, (2.1)

where N is a nonlinear differential operator, t denotes the independent variable; r(t) is an
unknown function.

Applying the transformation τ = ωt, (2.1) can be expressed by the following:

N[r(τ), ω] = 0. (2.2)

Now a homotopy in general form can be constructed as follows:

H
(
φ, q, h,H(τ)

)
=
(
1 − q

)
L
[
φ
(
τ, q

) − r0(τ)
] − qhH(τ)N

[
φ
(
τ, q

)
, ω

(
q
)]
, (2.3)

where q ∈ [0, 1] is an embedding parameter, φ is a function of τ and q, h is a nonzero auxiliary
parameter, H(τ) is a nonzero auxiliary function, and L denotes an auxiliary linear operator.
When the parameter q increases from 0 to 1, ω(q) varies from ω0 to ω, and the solution
φ(τ, q) varies from the initial approximation r0(τ) to the exact solution r(τ). Put differently,
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φ(τ, 0) = r0(τ) is the solution of H(φ, q, h,H(τ))|q=0 = 0, and φ(τ, 1) = r(τ) is the solution of

H(φ, q, h,H(τ))|q=1 = 0. Setting H(φ, q, h,H(τ))| = 0, the zero-order deformation equation is
obtained as

(
1 − q

)
L
[
φ
(
τ, q

) − r0(τ)
]
= qhH(τ)N

[
φ
(
τ, q

)
, ω

(
q
)]
, (2.4)

under the initial conditions:

φ
(
0, q

)
= k,

dφ
(
0, q

)
dτ

= 0, (2.5)

where k is a constant. The functions φ(τ, q) and ω(q) can be expanded as power series of q
using Taylor’s theorem as follows

φ
(
τ, q

)
= φ(τ, 0) +

∞∑
m=1

1
m!

∂mφ
(
τ, q

)
∂qm

∣∣∣∣∣
q=0

qm = r0(τ) +
∞∑
q=1

rm(τ)qm,

ω
(
q
)
= ω0 +

∞∑
m=1

1
m!

∂mω
(
q
)

∂qm

∣∣∣∣∣
q=0

qm = ω0 +
∞∑
q=1

ωmq
m,

(2.6)

where rm(τ) and ωm are called the mth-order deformation derivatives.
Differentiating the zero-order deformation equation with respect to q and then setting

q = 0, yields the first-order deformation equation which gives the first-order approximation
of r(τ) as follows:

L[r1(τ)] = hH(τ)N[r0(τ), ω0], (2.7)

subject to the initial conditions:

r1(0) = 0,
dr1(0)
dτ

= 0. (2.8)

Differentiating Equations (2.4) and (2.5) m times with respect to q, then setting q = 0 and
finally divided them by m!, yields the so called mth-order (m > 1) deformation equation:

L
[
rm(τ) − χmrm−1(τ)

]
= hH(τ)Dm(�rm−1, �ωm−1), (2.9)

subject to the initial conditions

rm(0) = 0,
drm(0)
dτ

= 0, (2.10)
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where Dm(�rm−1, �ωm−1), �rm−1 and �ωm−1 are defined as follows:

Dm(�rm−1, �ωm−1) =
1

(m − 1)!
dm−1N

[
φ
(
τ, q

)
, ω

(
q
)]

dqm−1

∣∣∣∣∣
q=0

, (2.11)

�rm−1 = {r0, r1, r2, . . . , rm−1}, (2.12)

�ωm−1 = {ω0, ω1, ω2, . . . , ωm−1}, (2.13)

χm =

{
0, m ≤ 1,
1, m > 1.

(2.14)

3. Application of the HAM

3.1. Radial Free Oscillations

A nondimensional radius R and time t are defined as follows:

R =
R

[R]
, t =

t

[t]
, (3.1)

where [R] and [t] are characteristic scales.
In terms of the dimensionless variables (3.1), the equation of motion (1.1) becomes

R
5d2R

dt
2
+
3
2
R

4
(

dR

dt

)2

= θ − αR
3
, (3.2)

and the initial conditions (1.2) become

R(0) = A,
dR(0)

dt
= 0, (3.3)

where α, θ, and A are dimensionless parameters given by the following:

α =
2σ[t]2

ρ[R]3
, θ =

e2Z2[t]2

32π2εε0ρ[R]6
, A =

ξRc

[R]
. (3.4)

Introducing the new independent variable τ = ωt, where ω is the dimensionless natural
frequency, (3.2) and the initial conditions (3.3) can be rewritten as follows:

ω2R
5d2R

dτ2
+
3
2
ω2R

4
(

dR

dτ

)2

= θ − αR
3
, (3.5)

R(0) = ξ,
dR(0)
dτ

= 0. (3.6)
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In order to reduce the number of recursions and save computational efforts, this will be
clarified later, an additional transformation is introduced

R(τ) = 3
√
r(τ), (3.7)

then, (3.5) becomes

1
3
ω2r

d2r

dτ2
− 1
18

ω2
(
dr

dτ

)2

+ αr − θ = 0, (3.8)

under the initial conditions

r(0) = ξ3,
dr(0)
dτ

= 0. (3.9)

The free oscillation of the conservative system represented by (3.8) and (3.9) is a periodic
motion, which can be expressed by the following base functions [1]:

{cos(mτ) | m ≥ 0}, (3.10)

in the compact form

r(τ) =
+∞∑
m=0

cm cos(mτ). (3.11)

With the purpose of satisfying the initial conditions (3.9), the initial guess of r(τ) for zero-
order deformation equation is chosen as follows:

r0(τ) =
(
ξ3 − 1

)
cos τ + 1. (3.12)

Under the Rule of Solution Expression denoted by (3.11), the linear operator is selected as:

L
[
r
(
τ ; q

)]
= ω2

0

(
∂2r

(
τ ; q

)
∂r2

+ r
(
τ ; q

))
, (3.13)

with the property

L[C1 sin τ + C2 cos τ] = 0, (3.14)

where C1 and C2 are the integral constants.
From (3.8), the nonlinear operator is written as

N
[
r
(
τ ; q

)
, ω

(
q
)]

=
1
3
ω
(
q
)2
r
(
τ ; q

)∂2r(τ ; q)
∂τ2

− 1
18

ω
(
q
)2(∂r

(
τ ; q

)
∂τ

)2

+ r
(
τ ; q

) − θ.

(3.15)
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For complying with the general form of the base functions (3.10), the auxiliary functionH(τ)
is chosen as follows:

H(τ) = 1. (3.16)

Substituting (3.15) into (2.11) and performing the homotopy-derivatives [3], yields:

Dm(τ) =
1
3

m−1∑
i=0

r ′′m−1−i(τ)
i∑

j=0

ri−j(τ)
j∑

�=0

ωj−�ω� − 1
18

m−1∑
i=0

r ′m−1−i(τ)
i∑

j=0

r ′i−j(τ)
j∑

�=0

ωj−�ω�

+ αrm−1(τ) − θ
(
1 − χm

)
,

(3.17)

where a prime indicates first derivative with respect to τ .
At this point, it is worth comparing (3.17) with the mth-order homotopy derivative

corresponding with (3.5), which reads as follows:

Dm(τ) =
m−1∑
i=0

R
′′
m−1−i

i∑
j=0

Ri−j
j∑

�=0

Rj−�
�∑

m=0

R�−m
m∑
p=0

Rm−p
p∑

q=0

Rp−q
q∑

r=0

ωq−rωr

+
3
2

m−1∑
i=0

R
′
m−1−i

i∑
j=0

R
′
i−j

j∑
�=0

Rj−�
�∑

m=0

R�−m
m∑
p=0

Rm−p
p∑

q=0

Rp−q
q∑

r=0

ωq−rωr

+ α
m−1∑
i=0

Rm−1−i
i∑

j=0

Ri−jRj − θ
(
1 − χm

)
.

(3.18)

Clearly, the number of recursions for computing (3.18) is bigger than that using (3.17). Thus,
this last equation is used to save long calculations.

According to the property (3.14) of the auxiliary linear operator L, if the term cos(τ)
exists inDm(τ), the so-called secular term τ sin(τ)will appear in the final solution disobeying
the rule solution expression (3.11). To avoid the secular terms, the coefficient of cos(τ) in
Dm(τ)must be zero.

From (3.17), the first-order approximation (m = 1) of HAM for D1(τ) is as follows:

D1 =
(
α − θ − 7

36
ω2

0 +
14
36

ξ3ω2
0 −

7
36

ξ6ω2
0

)
+
(
ξ3α − α +

1
3
ω2

0 −
1
3
ξ3ω2

0

)
cos(τ)

+
(
10
36

ξ3ω2
0 −

5
36

ω2
0 −

5
36

ξ6ω2
0

)
cos(2τ).

(3.19)

Thus, ω0 results in:

ω0 =
√
3α. (3.20)
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Solving (2.7) subject to conditions (2.8) r1(τ) is obtained as:

r1(τ) = −
h sin2(τ/2)

[
54(θ − α) +ω2

0

(
ξ3 − 1

)2(13 + 5 cos(τ))
]

27ω2
0

. (3.21)

Similarly, from the coefficient of cos(τ) in R2(τ), ω1 is obtained as follows:

ω1 =
h

1296ω3
0(ξ

3 − 1)

(
1944αθ − 1944α2 + 1584αω2

0 − 1224ξ3αω2
0 + 288ξ6αω2

0

−1296θω2
0 + 648ξ3θω2

0 − 137ω4
0 + 315ξ3ω4

0 − 219ξ6ω4
0 + 41ξ9ω4

0

)
.

(3.22)

Solving (2.9) under conditions (2.10) for m = 2, r2(τ) results in:

r2(τ) = − 1
11664ω4

0

×
{
h sin2

(τ
2

) [
−23328hα(α − θ) +ω2

0

(
144Γ8 + Γ21ω0(Γ7ω0 + 864Γ6ω1)

)]}
,

(3.23)

where

Γ1 =
(
ξ3 − 1

)
,

Γ2 =
(
Γ1h

(
29ξ3 − 107

)
− 162

)
,

Γ3 = (27 + 13Γ1h),

Γ4 = α
(
5 + ξ3

)
− 6θ,

Γ5 =
(
216 − 7h + 103ξ3h

)
,

Γ6 = (13 + 5 cos(τ)),

Γ7 =
(
5616 − 1379h + 1859ξ3h + 10Γ5 cos(τ) + 195Γ1h cos(2τ)

)
,

Γ8 = (Γ2α + 6Γ3θ − 5hΓ1Γ4 cos(τ)).

(3.24)

The higher-order approximations of rm(τ) and ωm−1(τ), form > 2, are calculated similarly.



8 Journal of Applied Mathematics

3.2. Driven Oscillations

The Rayleigh equation (1.1)with a driving pressure step p is written as follows:

R5d
2R

dt2
+
3
2
R4

(
dR

dt

)2

= −1
ρ

[
2σR3 + pR4 − e2Z2

32π2εε0

]
, (3.25)

subject to the initial conditions

R(0) = Rc,
dR(0)
dt

= 0. (3.26)

A nondimensional radius x and time t are defined as follows:

x =
R

[R]
, t =

t

[t]
. (3.27)

In terms of the dimensionless variables (3.27), the equation of motion (3.25) becomes

x5d
2x

dt
2
+
3
2
x4
(
dx

dt

)2

= θ − αx3 − βx4, (3.28)

and the initial conditions (3.26) become

x(0) = a,
dx(0)

dt
= 0, (3.29)

where α, β, θ, and a are dimensionless parameters given by the following:

α =
2σ[t]2

ρ[R]3
, β =

p[t]2

ρ[R]2
, θ =

e2Z2[t]2

32π2εε0ρ[R]6
, a =

Rc

[R]
. (3.30)

Under the transformation τ = ωt, where ω is the dimensionless natural frequency, (3.28) and
the initial conditions (3.29) can be rewritten as follows:

ω2x5d
2x

dτ2
+
3
2
ω2x4

(
dx

dτ

)2

+ βx4 + αx3 − θ = 0, (3.31)

x(0) = a,
dx(0)
dτ

= 0. (3.32)

Equation (3.31) can be integrated once [13], yielding:

ω2x4
(
dx

dτ

)2

+
2
3
βx4 + αx3 −

(
α +

2
3
β + 2θ

)
x + 2θ = 0. (3.33)
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The form of (3.33) is simpler than that of (3.31) implying less computations.
In other words, the homotopy-derivative of the first term of (3.31) (i.e.,∑m−1

i=0 x′′
m−1−i

∑i
j=0 xi−j

∑j

�=0 xj−�
∑�

m=0 x�−m
∑m

p=0 xm−p
∑p

q=0 xp−q
∑q

r=0 ωq−rωr , which is at
the order of magnitude n8) is no longer present in (3.33). Only remains the second
term of (3.31) (without the numeric factor 3/2) whose homotopy-derivative (i.e.,∑m−1

i=0 x′
m−1−i

∑i
j=0 x

′
i−j

∑j

�=0 xj−�
∑�

m=0 x�−m
∑m

p=0 xm−p
∑p

q=0 xp−q
∑q

r=0 ωq−rωr) is at the order of
magnitude n8. Even though the term (α + (2/3)β + 2θ)x appears in (3.33), its homotopy-
derivative (i.e., (α + (2/3)β + 2θ)xm−1) is only at the order of magnitude n1.

An additional simplification is found when (3.33) is substituted into (3.31), resulting
in

ω2x5d
2x

dτ2
− 1
2
αx3 +

(
3
2
α + β + 3θ

)
x − 4θ = 0. (3.34)

Now, the first term of (3.31) is recovered instead of the first term of (3.33). This is not advan-
tageous because both terms involve the same number of recursions, but the second term in
(3.33) and its corresponding recursions (i.e., (2/3)β(

∑m−1
i=0 xm−1−i

∑i
j=0 xi−j

∑j

�=0 xj−�x�)) are
absent, thus saving computations.

From now on, the system represented by (3.34) and the initial conditions (3.32), is
adopted to be solved by HAM.

The oscillation of the conservative system (3.34) and (3.32) after the application of the
step pressure is a periodic motion which can be expressed by the following base functions:

{cos(mτ) | m ≥ 0}, (3.35)

in the form

x(τ) =
+∞∑
m=0

cm cos(mτ). (3.36)

It should be noted that the system (3.34) and (3.32) oscillates between the initial radius x(0) =
a and theminimum radius xmin, that is, when bubble wall velocity becomes zero (dx/dτ) = 0;
then from (3.33):

xmin = −1
3
− α

2β
+

(
3α − 4β

)(
3α + 2β

)
6βΦ

+
Φ
6β

, (3.37)

where Φ is given by the following:

Φ =
{
324β2θ − (

3α − 7β
)(
3α + 2β

)2

+9β
[
8θ

(
3α + 2β

)2(7β − 3α
) − (

α − 2β
)(
3α + 2β

)3 + 1296β2θ2
]1/2}1/3

.

(3.38)
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To satisfy the initial conditions (3.32), the initial guess of x(τ) for zero-order deformation
equation is chosen as follows:

x0(τ) =
(a − xmin)

2
cos τ +

(a + xmin)
2

. (3.39)

Under the Rule of Solution Expression denoted by (3.36), the linear operator for this case
is identical to that chosen for free oscillations, that is, (3.13) and its corresponding property
denoted by (3.14).

From (3.34), the nonlinear operator is defined by the following:

N
[
x
(
τ ; q

)
, ω

(
q
)]

= ω2(q)x5(τ ; q)∂2x
(
τ ; q

)
∂τ2

− 1
2
αx3(τ ; q) +

(
3
2
α + β + 3θ

)
x
(
τ ; q

) − 4θ.

(3.40)

The solution must comply with the general form of the base functions (3.35). Hence, the
auxiliary function H(τ) must be chosen as follows:

H(τ) = 1. (3.41)

Substituting (3.40) into (2.11) and performing the homotopy-derivatives, yields:

Dm(τ) =
m−1∑
i=0

x′′
m−1−i

i∑
j=0

xi−j
j∑

�=0

xj−�
�∑

m=0

x�−m
m∑
p=0

xm−p
p∑

q=0

xp−q
q∑

r=0

ωq−rωr

− 1
2
α

m−1∑
i=0

xm−1−i
i∑

j=0

xi−jxj +
(
3
2
α + β + 3θ

)
xm−1 − 4θ

(
1 − χm

)
.

(3.42)

As before, to avoid the secular terms, the coefficient of cos(τ) in Dm(τ) must be zero. Thus,
the frequency ω0 is obtained by setting to zero the coefficient of cos(τ) in D1(τ), yielding:

ω0 =
2
√
2
√
−(a − xmin)

(
3(5a2 − 16)α − 32

(
β + 3θ

)
+ 3αxmin(6a + 5xmin)

)
√
93a6 − 68a5xmin − 15a4x2

min + 15a2x4
min + 68ax5

min − 93x6
min

. (3.43)

Then solving (2.7) under the conditions (2.8), x1(τ) is obtained as follows:

x1(τ)

= −hsin
2(τ/2)

215040ω2
0

[
1680K1 + a6K2ω

2
0 + 5a2K3x

4
minω

2
0 − 4aK4x

5
minω

2
0 +K5x

6
minω

2
0 − 4xmin

×
(
420K6+a5K7ω

2
0

)
+5ax2

min

(
336αK8+a3K9ω

2
0

)

+80x3
min

(
−21αK10−16a3K11ω

2
0sin

4
(τ
2

))]
,

(3.44)
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where

K1 = −192aα + 49a3α − 128aβ + 1024θ − 384aθ + 18a3α cos(τ) + a3α cos(2τ),

K2 = 71087 + 53974 cos(τ) + 9974 cos(2τ) + 1674 cos(3τ) + 199 cos(4τ) + 12 cos(5τ),

K3 = −2255 − 310 cos(τ) + 74 cos(2τ) + 38 cos(3τ) − 103 cos(4τ) + 36 cos(5τ),

K4 = 10013 + 5326 cos(τ) − 1454 cos(2τ) + 516 cos(3τ) − 139 cos(4τ) + 18 cos(5τ),

K5 = 56737 + 25274 cos(τ) − 4726 cos(2τ) + 974 cos(3τ) − 151 cos(4τ) + 12 cos(5τ),

K6 = 192α − 13a2α + 128β + 384θ + 22a2α cos(τ) + 3a2α cos(2τ),

K7 = 15963 + 17226 cos(τ) + 4846 cos(2τ) + 1216 cos(3τ) + 211 cos(4τ) + 18 cos(5τ),

K8 = 19 − 10 cos(τ) + 3 cos(2τ),

K9 = −1345 + 1510 cos(τ) + 1334 cos(2τ) + 738 cos(3τ) + 274 cos(4τ) + 36 cos(5τ),

K10 = −47 − 14 cos(τ) + cos(2τ),

K11 = 42 + 49 cos(τ) + 18 cos(2τ) + 3 cos(3τ).
(3.45)

The higher order approximations forωm−1 and xm(τ)whenm > 1 can be similarly calculated.
Two sets of results are presented. The first one is for free oscillations (Figures 1–7) and

the second one is for driven oscillations (Figures 8–11).
The following characteristic scales were chosen to study the effect of varying both the

initial radius of the MEB (by changing ξ) and the quantity of electrons in its surface (by
changing θ):

[R] = Rc, [t] =

√
ρR3

c

2σ
, (3.46)

thus, the parameters (3.4) become

α = 1, θ =
e2N2

64π2εε0σR
3
c

, A = ξ. (3.47)

Figure 1 shows the curves ofω as function of h for different order approximations. The curves
indicate that the valid regions of h (i.e., the interval where ω versus h is a horizontal line) are
−3 < h < −2 and −3 < h < −1 for the 2nd and 5th-order approximations, respectively. Clearly,
the convergence region of the series of the frequency ω increases with increasing the order
approximation.

The 2nd-order approximation for a proper value of h chosen in the valid interval −3 <
h < −2 is compared with the numerical solution by Runge-Kutta scheme as illustrated in
Figure 2.

Solutions in Figure 2 correspond to aMEB containing 104 electrons, as that numerically
simulated by Salomaa and Williams [11], accordingly its equilibrium Coulumb radius Rc is
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Figure 1: The h-curves for the frequency ω. Dash-dotted curve: 2nd-order approximation; solid line: 5th-
order approximation (ξ = 1.063, α = 1, θ = 0.999939).
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Figure 2: Comparison between 2nd-order HAM approximations (solid lines) and Runge-Kutta numerical
solutions (open symbols) for: r(τ) (circles), r ′(τ) (squares), and r ′′(τ) (triangles); ξ = 1.063, α = 1, θ =
0.999939, h = −2.3.

about 1.064 microns. The initial radius of the MEB is 1.063 (precisely the value of ξ) times
bigger than the equilibrium radiusRc; thus, after time zero, the bubble begins to oscillate with
frequency aroundMHz. Clearly the 2nd-order HAM approximation is in excellent agreement
with numerical solutions. This is quantified by computing the relative error for theMth-order
approximation as follows

Relative Error =

∣∣∣r(τ)N −∑M
m=0 rm(τ)

∣∣∣
r(τ)N

× 100, (3.48)

where r(τ)N is the solution by Runge-Kutta method.
The maximum relative error, indicated with a filled triangle in Figure 3, between 2nd-

order approximation and numerical solution is about 0.129%. When increasing the order of
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Figure 3: The relative error between HAM approximations and numerical solutions for the radius r(τ)
(ξ = 1.063, α = 1, θ = 0.999939, h = −2.3). Dotted curve: 2nd-order approximation; solid curve: 5th-order
approximation.
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Figure 4: Comparison between HAM approximations (hollow symbols) and Runge-Kutta numerical
solutions (solid lines) for r(τ) (circles), r ′(τ) (squares), and r ′′(τ) (stars); (a) 2nd-order approximation, (b)
5th-order approximation. The parameters for both the HAM and numerical solutions were set to: ξ = 1.15,
α = 1, θ = 0.999939, h = −2.3.

the approximation, the maximum relative error becomes smaller; accordingly, the maximum
relative error between 5th-order HAM approximation and numerical solution is reduced to
0.063% (indicated in Figure 3 with a hollow triangle), which is acceptably low.

The effect of incrementing the initial radius of the MEB is depicted in Figure 4. As
before, a bubble containing 104 electrons is considered but now the initial dimensionless
radius is fixed to ξ = 1.15. Seemingly, the 2nd-order approximation in Figure 4(a) describes
well the behavior of both the radius and the bubble wall velocity. Nevertheless, some devia-
tion between HAM approximation and numerical solutions for the bubble wall acceleration
is observed. This is overcome by increasing the order of approximation; consequently, the
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Figure 5: Comparison of the 1st, 2nd, and 5th-order HAM approximations of ω with the numerical results
(α = 1, θ = 0.999939, h = −2.3). Symbols: Runge-Kutta numerical results; dotted line: 1st-order; dash-dotted
line: 2nd-order; solid line: 5th-order.
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Figure 6: The relative error for the frequency ω (α = 1, θ = 0.999939, h = −2.3). Dash-dotted line with
symbols: relative error between 2nd-order HAM approximation and numerical results; solid line with
symbols: relative error between 5th-order HAM approximation and numerical results.

5th-order HAM solution exhibits good agreement with the numerical solution as shown in
Figure 4(b).

Figure 5 illustrates the first, second and fifth-order approximations of ω versus
numerical results from Runge-Kutta method. As before, higher-order HAM solutions agree
better with numerical results. The comparisons indicate that the 5th-order approximation
agrees well with the numerical results even for a large initial dimensionless radius ξ = 1.2. In
fact, the maximum relative error between 5th-order approximation and numerical solution
is about 0.066%; instead, the maximum error between the 2nd-order HAM solution and
the numerical one is around 0.948%, as shown in Figure 6. It is interesting to note that
the exponential growth tendency of the error curve for the 2nd-order approximation is
dramatically reduced by increasing the order of HAM series. Clearly, the error curve for the
5th-order approximation shows slight upward trend with regard to that for the 2nd-order.
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Figure 7: (a) Comparison between 5th-order HAM solution (hollow symbols) and Runge-Kutta numerical
solution (solid lines) of r(τ) for different values of θ with the following fixed values: ξ = 1.15, α = 1,
h = −2.3. Square symbols: Z = 10 electrons, Rc = 125 Å and θ = 0.617405; triangular symbols: for Z = 100
electrons, Rc = 525 Å and θ = 0.83334; diamond symbols: for Z = 104 electrons, Rc = 1.064μm and
θ = 0.999939; circular symbol: for Z = 108 electrons, Rc = 486μm and θ = 1.05049. (b) Effect of varying
the dimensionless initial radius ξ. Comparison between 5th-order HAM solution (hollow symbols) and
Runge-Kutta numerical solution (solid lines) for r(τ) with: ξ = 1.2 and h = −1.36 (square symbols), ξ = 1.3
and h = −1.25 (circular symbols), ξ = 1.4 and h = −0.97 (triangular symbols). The remaining parameters
are set to: α = 1, θ = 0.999939.

Figure 7 shows the validity of the 5th-order HAM solutions for r(τ) when compared
with numerical integrations. The effect of varying the quantity of electrons in the MEB while
fixing its initial radius ξ is analyzed via changing the value of θ. Figure 7(a) illustrates
that smaller bubbles collapse more violently implying both smaller minimum radiuses and
higher oscillation frequencies, for example, a small bubble containing 10 electrons attains at
the first main collapse a minimum dimensionless radius ≈0.23 and develops an oscillation
dimensionless frequency ω ≈ 0.33, whereas a big bubble containing 108 electrons attains at
the first main collapse a minimum dimensionless radius ≈0.72 and develops a dimensionless
frequency ω ≈ 0.27. Clearly, the analytical approximations for different values of θ closely
approach the numerical results. Accordingly, in quantitative terms, the maximum relative
errors (0.418, 0.154, 0.152, and 3.068%) for the respective values of θ (0.617, 0.833, 0.999, and
1.05) are acceptably low; even for the biggest bubble which contains 108 electrons.

In Figure 7(b), the robustness of the 5th-order HAM solution is analyzed for high
values of the initial radius ξ while fixing the quantity of electrons in the MEB. For ξ ≈ 1.07,
the bubble implodes reaching both high acceleration (≥1 × 106 m/s2) and a minimum radius
more andmore close to zero. This strong collapse conditionsmight involve sonoluminescence
phenomenon as suggested by Tempere et al. [13]. Even for ξ as high as 1.4 the analytical
solution agrees to some extent with the numerical results, the maximum relative error in
this case is around 5%. It is worthy of note that the parameter h was varied to ensure the
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Figure 8: Comparison between 4th-order HAM solutions (hollow symbols) and Runge-Kutta numerical
solutions (solid lines) for: x(τ), x′(τ) and x′′(τ) at different values of β. (a) α = 1, β = 0.443495 (p = 300 Pa),
θ = 1, a = 1.00002, h = −1.4; (b) α = 1, β = 1.47832 (p = 1000 Pa), θ = 1, a = 1.00002, h = −1.7. All parameter
values are for a MEB containing 104 electrons with an equilibrium radius Rc = 1.06441μm.

convergence of the analytical solution, the freedom of changing conveniently h is precisely
one of the virtues of the HAM [1, 6, 9].

In order to study the effect of varying the driving pressure p in (3.25), the following
scales where chosen:

[R] =
1
4

3

√
e2N2

π2εε0σ
, [t] =

eN

8πσ

√
ρ

2εε0
, (3.49)

then the parameters (3.30), become

α = 1, β =
p

8
3

√
e2N2

π2εε0σ4
, θ = 1, a = 4Rc

3

√
π2εε0σ

e2N2
. (3.50)
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Figure 9: Relative error between 4th-order HAM solution and the corresponding numerical integration for
displacement x(τ); (a) and (b) parts of this figure match with those in Figure 8.
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Figure 10: The curve of ω changing with β. Symbols: numerical results; solid line: 4th-order HAM approx-
imation.

Figure 8 depicts comparisons between the 4th-order HAM solutions and numerical inte-
grations of: x(τ), x′(τ), and x′′(τ) for two values of the pressure step. Excellent agreement
between analytical and numerical solutions is clearly seen for p = 300 Pa (β = 0.443495);
accordingly, the maximum relative error between numerical and analytical results for x(τ) is
0.304%, indicated by a hollow triangle in Figure 9(a). Nevertheless, when the pressure step
is increased to p = 1000 Pa (β = 1.47832), some disagreement between HAM approximations
and numerical solutions of: x(τ), x′(τ), and x′′(τ) is observed. In this case the maximum
relative error for x(τ) is 4.664%, which might be acceptable if rough estimations are required.
Even higher disagreement is clearly observed between HAM approximation and numerical
integration for x′′(τ). This discrepancy might be reduced by incrementing the order of
the HAM approximation; but this would imply larger and larger analytical solutions, and
therefore more and more difficult to handle with. For the current example, an explicit
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Figure 11: Relative error between 4th-order HAM approximation and numerical solutions for the fre-
quency ω.

expression for the 4th-order x(τ) solution would require several pages to write upon. As
pointed out by Liao [3], in present time of computer with huge data storage capacities
and high-speed CPU, an analytical expression with many terms might be accepted by most
researchers. However, an important factor to be taken into account is the CPU time for
evaluating an analytical solution with many terms (of course this time tends to increase
together with the number of terms). The CPU time consumed in evaluating the 4th-order
approximation for x(τ) is 12.933 s (computed by Timing command of Mathematica 5.1 in
a Windows PC with Intel Core i7 processor at 3.4GHz), which is around 275 times longer
than time for computing a numerical solution of (3.27) and (3.28) for x(τ) using the fourth
order Runge-Kutta algorithm (this time is computed by Timing and NDSolve commands
of Mathematica 5.1 in a Windows PC with Intel Core i7 processor at 3.4GHz). Of course,
this result does not invalidate the 4th-order analytical approximations but it makes them
unsuitable for certain situations. For instance, an analysis of shape instabilities of bubbles
using the 4th-order approximations for x(τ), x′(τ) and x′′(τ) would imply more computing
time and less accuracy than those obtained by a numerical scheme.

Figure 10 illustrates the variation of dimensionless bubble frequency ω versus β.
Clearly, the analytical approximation for ω (solid line) is very close to the numerical
calculations (symbols). Even though the relative error has a tendency to grow exponentially
as shown in Figure 11, its values are acceptably low for large magnitude of the step forcing,
for example, for β = 2 (p = 1360 Pa) the relative error is just about 1.15%.

4. Conclusions

In this study the HAM has been used to obtain analytical solutions of the Rayleigh equation
for the radial oscillations of a MEB in liquid helium. The small-order HAM approximations
for freely oscillating bubbles agree very well with numerical solutions even for bubbles
with initial radial amplitudes as high as 1.6 times the equilibrium Coulomb radius. The
analytical solutions for radius, velocity and acceleration of the freely oscillating bubble wall
are accurate enough to accomplish surface stability studies (both parametric and Rayleigh-
Taylor instabilities could be computed) with the possibility of both saving calculations and
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giving a bigger understanding of bubble shape instabilities when compared to solutions from
a numerical scheme.

In the case of forced oscillations, the fourth-order HAM solutions for displacement
and velocity of the bubble wall agree well with those computed numerically. Nevertheless,
when the magnitude of pressure step is large enough (β = 1.47832, p = 1000 Pa), noticeable
differences are observed between analytical and numerical curves for acceleration. It was
shown that higher order approximations can be adapted to increase the convergence of the
solution but at the expense of a huge number of terms in it, which might be impractical. Even
this inconvenience, current analytical approximations show the great potential of the HAM
for complex problems with strong nonlinearities. HAM offers the possibility of controlling in
a convenient way the convergence of approximation series; this fundamental characteristic
is what makes the HAM more powerful than other nonperturbation techniques such as
Adomian decomposition method [15] and the homotopy perturbation method (HPM) [16].
It was confirmed here that convergence of solutions is ensure by choosing h parameter in an
appropriate way.
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