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We use extended mapping method and auxiliary equation method for finding new periodic wave
solutions of nonlinear evolution equations in mathematical physics, and we obtain some new
periodic wave solution for the Boussinesq system and the coupled KdV equations. This method is
more powerful and will be used in further works to establish more entirely new solutions for other
kinds of nonlinear partial differential equations arising in mathematical physics.

1. Introduction

The effort in finding exact solutions to nonlinear equations is important for the understanding
of most nonlinear physical phenomena. For instance, the nonlinear wave phenomena
observed in fluid dynamics, plasma, and optical fibers are often modeled by the bell-
shaped sech solutions and the kink-shaped tanh solutions. Many effective methods have
been presented, such as inverse scattering transform method [1], Backlund transformation
[2], Darboux transformation [3], Hirota bilinear method [4], variable separation approach
[5], various tanh methods [6-9], homogeneous balance method [10], similarity reductions
method [11, 12], (G'/G)-expansion method [13], the reduction mKdV equation method [14],
the trifunction method [15, 16], the projective Riccati equation method [17], the Weierstrass
elliptic function method [18], the Sine-Cosine method [19, 20], the Jacobi elliptic function
expansion [21, 22], the complex hyperbolic function method [23], the truncated Painlevé
expansion [24], the F-expansion method [25], the rank analysis method [26], the ansatz
method [27, 28], the exp-function expansion method [29], and the sub-ODE method [30].

The main objective of this paper is using the extended mapping method to construct
the exact solutions for nonlinear evolution equations in the mathematical physics via the
Boussinesq system and the coupled KdV equations.
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2. Description of the Extended Mapping Method

Suppose we have the following nonlinear PDE:
F(u/ U, Uy, Utt, Uxx, Uxt, - - ) = 0/ (21)

where u = u(x,t) is an unknown function, F is a polynomial in u = u(x,t) and its various
partial derivatives in which the highest order derivatives and nonlinear terms are involved.
In the following we give the main steps of a deformation method.

Step 1. The traveling wave variable
u(x, t) =u(§), §&=k(x-wt), (2.2)

where k and w are the wave number and the wave speed, respectively. Under the
transformation (2.2), (2.1) becomes an ordinary differential equation (ODE) as

P(uu',u",u",...) = 0. (2.3)
Step 2. If all the terms of (2.3) contain derivatives in ¢, then by integrating this equation and
taking the constant of integration to be zero, we obtain a simplified ODE.
Step 3. Suppose that the solution (2.3) has the following form:

u@) = ao+ D (af @ +bif Q) + Xaf CROF @ + YAf@OF @, (24)
i=1 i=2

i=—1

where ay, a;, bi, ¢;, and d; are constants to be determined later, while f(¢) satisfies the
nonlinear ODE:

[F@®1 =pfte) +af2@ +r, (2.5)

where p, g, and r are constants.

"1

Step 4. The positive integer “n” can be determined by considering the homogeneous balance
between the highest derivative term and the nonlinear terms appearing in (2.3). Therefore,
we can get the value of n in (2.4).

Step 5. Substituting (2.4) into (2.3) with the condition (2.5), we obtain polynomial in
FiOLF@Y, G=...,-2,-1,0,1,2,...;j = 0,1). Setting each coefficient of this polynomial
to be zero yields a set of algebraic equations for ay, a;, b;, ¢;, di, w, and k.

Step 6. Solving the algebraic equations by use of Maple or Mathematica, we have ay, a;, b;, c;,
d;, and k expressed by p, g, r.
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Step 7. Since the general solutions of (2.5) have been well known for us (see Appendix A),
then substituting the obtained coefficients and the general solution of (2.5) into (2.4), we have
the travelling wave solutions of the nonlinear PDE (2.1).

3. Applications of the Method

In this section, we apply the extended mapping method to construct the exact solutions
for the Boussinesq system and the coupled KdV equations, which are very important
nonlinear evolution equations in mathematical physics and have been paid attention by many
researchers.

Example 3.1 (the Boussinesq system). We start the Boussinesq system [32] in the following
form:

1
= — + — ,
Ut 3 Uxxx 3 Ul x (3 1)

Ut = Oy.
The traveling wave variable (2.2) permits us converting (3.1) into the following ODE:

8
"+ —uu' =0,

3 (3.2)
wu +7v =0.

1
wv + gkzu

Integrating (3.2) with respect to ¢ once and taking the constant of integration to be zero, we
obtain

1 4
wv + gkzu" + guz =0, (3.3)

wu+v=0. (3.4)

Suppose that the solutions of (3.3) and (3.4) can be expressed by

u@) =+ 3 (af @ +bif @) + Def 2OF @ + S QF @),
i=1 i=2 i=—1
(3.5)

0@ = Ao+ 3 (AFQ +BF Q) + SLAQS O+ S HL QS @),
i=1 i=2

i=1

where ay, a;, b;, ¢;, d;, A;, B;, L;, and H; are constants to be determined later.
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Considering the homogeneous balance between the highest order derivative #” and
the nonlinear term u? in (3.3), the order of u and v in (3.4), then we can obtain n = m = 2,
hence the exact solutions of (3.5) can be rewritten as,

© . F©
D) = 0+ 1f @ by s+ @“bsz@)* eof @) g ey 66)
o0 = Ao Q)+ B + Ao @)+ By + Laf )+ il Has

where ag, a1, a», b1, by, ¢, di, d», Ay, A1, B1, By, Lo, Hy, and H, are constants to be
determined later. Substituting (3.6) with the condition (2.5) into (3.3) and (3.4) and collecting
all terms with the same power of fi(g) [f’(:j)]j, (i=...,-2,-1,0,1,2,...; = 0,1). Setting each
coefficients of this polynomial to be zero, we get a system of algebraic equations which can
be solved by Maple or Mathematica to get the following solutions.

Case 1. Consider
ap=am=m=bi=c=di=d=A1=A=Bi=Li=Hi=H,=0,

9 r 9 Pr wV3 (3.7)
4 BZ = 7 k == N
84 84 2vq

Ay = arbitrary constant, b, = -

Case 2. Consider
ag=a1=by=bi=cy=di=dry=A1=B,=Bi=Li=H;=H, =0,

Ap = arbitrary constant, a, = — G Ay = , k=+—.
q

Case 3. Consider

a0=a1=a2=b1=cz=d1=A2=A1=Bl=L1=H1=0,

Ay = arbitrary constant, k= %
va
Case 4. Consider
ag=a1=by=cp=di=dr=A1=Bi1=Li=H;=H, =0,
2 2 3 3
7= _9‘;;” 27 _9§)qu A2 = 9qup' Bz = 9;]_qr' (3.10)
Ay = arbitrary constant, k= :I:M

NG
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Note that there are other cases which are omitted here. Since the solutions obtained
here are so many, we just list some of the exact solutions corresponding to Case 4 to illustrate
the effectiveness of the extended mapping method.

Substituting (3.10) into (3.6) yields

1
u() = @2 L
8 2
q f2@) (311)
1
v 8‘1 f @)
where
wV/3
&= iﬁ(x wt). (3.12)
According to Appendix A, we have the following families of exact solutions.
Family 1. X r = 1,9 = —(1 + m?),p = m?, f (&) = sn(¢), then we get
u(@) = (1 — [m sn’(¢) +ns”()|,
(3.13)
00) = g [ @) 5@,
where
w3
_ — wb). 3.14
e o
Family 2. Ifr =1-m?, q=2m?>-1,p = -m?, f(¢) = cn(g), then we get
u(@) = 8(2—2 [r2en’ @) - (1-m?)nc @),
(3.15)
Yw’m?
v®) = =5 -7 | ~ (1-m)n@)],
where
w3
=dt————(x-wt). (3.16)

2v2m? -1
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Family 3. fr =m?>-1,q=2-m? p = -1, f(§) = dn(¢), then we get

u(@) = 8(%“’;2) [ar?(@) - (m* ~1)ne ()],

o (3.17)
00 = ~55 ey [47°@) ~ (2 = @],

where

sy @V

Family 4. fr =m?,q=-(1+m?),p=1, f(¢) = dc(2), then we get

2
u@) = g 4@ + mie @),

o (3.19)
V) = ~51 sy (€@ + e Q)]

where

foa @3
2iV1 + m?

(x — wt). (3.20)

Family 5. fr =1,q=2-m? p=1-m?, f(¢) = sc(¢), then we get

u®) =g (1)@ + @),

o@) = 5

(3.21)
(29—#1112) [(1 - mz)SCZ(é) + csz(é)],

where

poa Y3

= :|:2\/2—_7(x - wt) (322)

Family 6. If r=1/4,9=(1/2)(1 - 2m?), p=1/4, f(¢) =ns(¢) £ cs(¢), then we get

(@) = 9w (1 —2n52(§))’
8(1—2m2)
(1 - (3.23)
o(p = 20 2070),

8(1-2m?)
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where

w3

24/(1/2) (1 - 2m2)

Family 7. M r = (1/4)(1 -m?), g = (1/4)(1 + m?), p = (1/4)(1 - m?), f(¢) = nc(¢) + sc(¢), then
we get

{== (x — wt).

(3.24)

9e? (1 - m?) (sc(§) +nc?(§))

u() =- 4(1 + m2) ’
(3.25)
9w (1-m?) (sP(@) + nct(R))
(o) = 4(1 + m?) ’
where
E== wV3 (x — wt). (3.26)
1+m?

Similarly, we can write down the other families of exact solutions of (3.1) which are omitted
for convenience.

Example 3.2 (the coupled KdV equations). In this subsection, consider the coupled KdV
equations [32]:

U = Uyxy + O6UUy + 6DV,

(3.27)
UVt = Uypxx + OUDy + 60U,
Substituting (2.2) into (3.27) yields
wi + K" +302 +0%) =0,
(3.28)

w?v' + k*0" +6(uv)’ = 0.

Integrating (3.2) with respect to ¢ once and taking the constant of integration to be zero, we
obtain

wu + K2 + 3<u2 + vz> =0, (3.29)

wv + k*0" + 6(uv) = 0. (3.30)
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Suppose that the solutions of (3.27) can be expressed by

u(@) = ao+ 3 (a:f @ + bif @) + Def 2OF @ + DA @ F @),

i=1 i=2 1i—1 (331)
v(@) = a0+ Y (af @) + B @) + DrfRRF @) + Deif @F ©),

i=1 i=2 i=—1

where ay, a;, bi, ci, di, ai, Bi, vi, and e; are constants to be determined later.
Balancing the order of #” and v in (3.29), the order of " and uv in (3.30), then we can
obtain n = m = 2, so (3.31) can be rewritten as

Q) = a0+ 1 £ @)+ br s + f Q)+ bas + o @)+ L8 dz}%, .
0@) = a0+ @£ Q)+ Py + SO + P S O+ ek

where ag, a1, az, by, by, ¢, di, da, a0, a1, B1, P2, 12, €1, and e, are constants to be determined
later. Substituting (3.31) with the condition (2.5) into (3.29) and (3.30) and collecting all
terms with the same power of fi(g) F@), G=...,-2,-1,0,1,2,...;j = 0,1). Setting each
coefficient of this polynomial to be zero, we get a system of algebraic equations which can be
solved by Maple or Mathematica to get the following solutions.

Case 1. Consider

a Wi+ 9 b wr
0 Ty R 7 =,

12 \a* = 3pr 4\/q* = 3pr (3.33)
ay = ﬂ 1+ q , ﬂz wr k=+ \/E

Case 2. Consider

m=bi=bh=c=di=db=m1=pi=p=e1=ex=1=0,

a w 1+ q a “p
0= —7A~ S ’ 2= T
12
q* - 3pr 4/q* - 3pr (3.34)
ag = 2 1+ q , an “p k=+ \/a
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Case 3. Consider

am=bi=g=di=dy=1=ph=e1=e=1=0,
SN (ORI N S S
12 \/q* + 12pr 44/q* + 12pr 44/q* + 12pr
(3.35)
ao_—ﬂ 1—# azzL ﬂzzL
12 \/q> + 12pr 44/q* + 12pr 44/q* + 12pr
k = iL
24/q* + 12pr
Case 4. Consider
m=bi=bh=di=dbo=a1=p1=pr=e1=e=0,
w q wp w\/p
a=—-—7| 1+ —— |, a=——F—, C=——F—,
12 \/g* + 12pr 21/g* + 12pr 24/q* + 12pr
(3.36)
a0=£ 1+—q cx2=—wp yz=—w\/ﬁ
12 \/g* + 12pr 21/q* + 12pr 24/g* + 12pr
k = iL.
\/q% + 12pr

Note that there are other cases which are omitted here. Since the solutions obtained here are
so many, we just list some of the exact solutions corresponding to Case 4 to illustrate the
effectiveness of the extended mapping method.

Substituting (3.36) into (3.32) yields

q

w@=-2( 14 - py- P _p,
\/q* + 12pr 24/q* + 12pr 24/g* + 12pr
(3.37)
0@ = 1+ =L |+ L _pe s P g,
12 \/q* + 12pr 24/q% + 12prf 24\/q* + 12prf
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where

w
é = :I:L(x — wt). (338)
\/g* + 12pr
According to Appendix A, we have the following families of exact solutions.

Family 1. Ifr =1,q=2m? - 1,p = m*(m?> - 1), f(¢) = sd(2), then we get
_wm?(m? = 1)sd’(¢)  wmvm? — Ind(@)cd (@)

w 2m? -1
u@=-=(1+
12 16m*—16m2+1/ 2V16m*—16m2+1  2V16m* —16m? +1
wm?(m? - 1)sd*(Z) . wmvm? — Ind(¢)cd (&)

w 2m? -1
@) = (1+ +
12 lom* —16m?2+1/) 2V1em*—16m?+1  2V1em* —16m? +1
(3.39)
where
§=%— V@ (x — wt). (3.40)
16m* — 16m2 +1
Family 2. fr =m?>(m*>—1),q =2m?> - 1,p = 1, f(¢) = ds(¢), then we get
2 2
(@) = _£<1 . 2m? -1 > B wds?(2) wes(2)ns(¢) ,
12 Viem* —16m2+1/ 2V16m* —16m2 +1 2V16m* —16m? + 1
2 2
o) = & < L. 2m? -1 > N wds?(Z) _ wes(@)ns(@) ,
12 Viem*—16m2+1/ 2V1em* —16m2+1 2V16m* —16m? +1
(3.41)
where
L (x — wt). (3.42)

§=+
4 1
Vi1em™ —16m? +1

Family 3. Ifr =m?/4,q = (1/2)(m? - 2), p = m*/4, f(¢) = sn(¢) +icn(¢), then we get
_wm?(sn(§) + icn(¢))? _ wm(cn(§)dn($) Fisn(§)dn(¢))

u(@) =2 (10 12
12 2vVmA - m2+1 8vVm* —m? + 1 4vVmt —m? +1
> wm?(sn(¢) +icn(g))* L wm(en(@)dn(¢) Fisn(g)dn(f))

m2-2

w
”@):E(“zm

8Svmt-m?+1 4vVmt—m2+1
(3.43)
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where

N

=+
m* —m? +1

(x — wt). (3.44)

4

Family4. Ifr=1,q=—-(1+m?), p=m?, f(¢) = sn(¢), then we get

(@) = _w(l 1+m? _ wm’sn®*(§)  wmen(§)dn(§)
12 Vmr v 1dmi+1) 2VmArdm2+1 2Vmdt + dm2 + 1
(3.45)
2 22
V(@) = w(y_ 1+m L wmsn €3 N wmen(¢)dn(¢) ,
12 Vm* +14m? + 1 2Vmr+14m2 +1  2Vmt + 14m? + 1
where
Jw
=+— Y (x—wt). 3.46
ey yew. e AL (3.46)

Family 5. Ifr =1-m?, q=2m>-1,p = -m?, f(¢) = cn(&), then we get

2 2.2 .
() = _2(1 N 2m= -1 > N wm*cn=(¢) . icomsn(¢)dn(g) ,
12 Viem* —16m?+1/) 2V16m* —16m2 +1 2V1em* — 16m? + 1
- < . 2m? -1 >  wmlan®(Q) _iwmsn(¢)dn(2)
12 lom* —16m2+1/) 2V16m' —16m2+1 2V16m* —16m?+1
(3.47)
where
E=x - vw (x — wt). (3.48)
Viem* - 16m2? +1
Family 6. fr=1-m?,g=2-m?,p=1, f(¢) = cs(¢), then we get
— 2 2
u() = _wili, 2-m B wes*(§) . wns(&)ds(¢) ,
12 Vm* —16m? + 16 2Vmt —16m2 +16  2vVm* —16m? + 16
(3.49)
— 2 2
V() = wily, 2-m N wcs= (&) B wns(¢)ds(¢é) ,
12 Vm* —16m? + 16 2vVmt - 16m? +16  2vVm* —16m? + 16
where
== vw (x — wt). (3.50)
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Table 1
p q r (@) f'()
i ~(1+m?) 1 sn(g) cn(g)dn(¢)
—m? 2m? -1 1-m? en(@) —sn(¢)dn ()
-1 2 - m? m? -1 dn(¢) —m?sn(&)cn(&)
1 —(1+m?) m? ns(¢) —ds(&)cs(2)
m? -1 2 —m? -1 nd(¢) m? sd(é)ed (&)
1 2 - m? 1-m? cs(2) -ns(¢)ds (&)
1-m? 2 - m? 1 sc(g) nc(g)dc(g)
m?(m? —1) 2m? -1 1 sd(g) nd(&)cd ()
1 2m? -1 m?(m? - 1) ds(2) —cs(&)ns(@)
! L(1-2m) 7 ns(@) + cs(¢) ~ds(2)cs(2) Fns(@)ds(?)
10-m?) 10 10 -m?) ne(@) +sc(?) sc(@)de(?) £ ne(@)de(?)
2 2
mT %(m2 -2) mf sn(¢) +icn(g) cn(g)dn(g) Fisn(&)dn(¢)
Table 2
sn(¢) — tanh(¢) cn(¢) — sech() dn(¢) — sech(¢) ns(¢) — coth(¢)
cs(é) — csch(é) ds(§) — csch(¢) sc(§) — sinh(¢) sd(§) — sinh($)

Family 7. Ifr = -1, =2-m?p =m? -1, f(§) =nd(¢), then we get

w@) =1, 2 ~w(m-1)nd*¢)  wmVm? =1sd(¢)cd (@)
IRV Vm* —16m? + 16 m* —16m? + 16 omr—16mi+16

o@) = (142 -m? , @O - nd’Q)  wmvm? ~Tsd(@)cd(?)
12 Vm* —16m? + 16 m* —16m? + 16 2Vm* —16m? + 16

(3.51)

where

Jw
6= jE\4/1114 —-16m? + 16 (et 25

4. Conclusion

The main objective of this paper is that we have found new exact solutions for the Boussinesq
system and the coupled KdV equations by using the extended mapping method with the
auxiliary equation method. Also, we conclude according to Appendix B that our results
in terms of Jacobi elliptic functions generate into hyperbolic functions when m — 1 and
generate into trigonometric functions when m — 0. This method provides a powerful
mathematical tool to obtain more general exact solutions of a great many nonlinear PDEs
in mathematical physics.
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Table 3
0-38 w8 wod -
Appendices

A. The Jacobi Elliptic Functions

The general solutions to the Jacobi elliptic equation (2.3) and its derivatives [31] are listed in
Table 1, where 0 < m < 1 is the modulus of the Jacobi elliptic functions and i = v-1.

B. Hyperbolic Functions

The Jacobi elliptic functions sn(¢), cn(¢), dn(¢), ns(¢), cs(é), ds(¢), sc(¢), sd(¢) generate into
hyperbolic functions when m — 1 as in Table 2.

C. Relations between the Jacobi Elliptic Functions

See Table 3.
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