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We propose an implicit iterative scheme and an explicit iterative scheme for finding a common
element of the set of fixed point of infinitely many strict pseudocontractive mappings and the
set of solutions of an equilibrium problem by the general iterative methods. In the setting of

real Hilbert spaces, strong convergence theorems are proved. Our results improve and extend the
corresponding results reported by many others.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let F be a
bifunction from C x C to R, where R is the set of real numbers.
The equilibrium problem for F : C x C — Ris to find x € C such that

F(x,y) 20 (1.1)

for all y € C. The set of such solutions is denoted by EP(F).
A mapping S of C is said to be a k-strict pseudocontraction if there exists a constant
x € [0,1) such that

15x = SylI” < [lx = y|I* + x| 1 = S)x = (T = )y (1.2)

for all x,y € C; see [1]. We denote the set of fixed points of S by F(S) (ie., F(S) = {x € C:
Sx = «x}).
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Note that the class of strict pseudocontractions strictly includes the class of nonex-
pansive mappings which are mapping S on C such that

15x =Syl < llx -y (1.3)

for all x, y € C. That is, S is nonexpansive if and only if S is a O-strict pseudocontraction.

Numerous problems in physics, optimization, and economics reduce to finding a
solution of the equilibrium problem. Some methods have been proposed to solve the
equilibrium problem (1.1); see, for instance, [2—4]. In particular, Combettes and Hirstoaga [5]
proposed several methods for solving the equilibrium problem. On the other hand, Mann
[6], Shimoji and Takahashi [7] considered iterative schemes for finding a fixed point of
a nonexpansive mapping. Further, Acedo and Xu [8] projected new iterative methods for
finding a fixed point of strict pseudocontractions.

In 2006, Marino and Xu [3] introduced the general iterative method and proved that
the algorithm converged strongly. Recently, Liu [2] considered a general iterative method
for equilibrium problems and strict pseudocontractions. Tian [9] proposed a new general
iterative algorithm combining an L-Lipschitzian and #-strong monotone operator. Very
recently, Wang [10] considered a general composite iterative method for infinite family strict
pseudocontractions.

In this paper, motivated by the above facts, we introduce two iterative schemes and
obtain strong convergence theorems for finding a common element of the set of fixed points
of a infinite family of strict pseudocontractions and the set of solutions of the equilibrium
problem (1.1).

2. Preliminaries

Throughout this paper, we always write — for weak convergence and — for strong
convergence. We need some facts and tools in a real Hilbert space H which are listed as
below.

Lemma 2.1. Let H be a real Hilbert space. There hold the following identities:

(@) llx = yII* = lIxI” - [yI* - 2(x -y, y), Yx,y € H;
(if) [ltx + (1= y[I* = tllx|* + (1= )yl -t - Dllx - y|*, Ve [0,1], ¥x,y € H.

Lemma 2.2 (see [11]). Assume that {a,} is a sequence of nonnegative real numbers such that
ani1 < (1= yn)an + 6n, (2.1)

where {y,} is a sequence in (0,1) and {6,} is a sequence such that
(i) 2nl1 ¥n = 00;
(ii) limy, -, oo SUP(6,/¥n) <0 0r X771 |64] < 00.

Then, lim,, _, xat,, = 0.
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Recall that given a nonempty closed convex subset C of a real Hilbert space H, for any x € H,
there exists a unique nearest point in C, denoted by Pcx, such that

I Pexl < |lx - | (22)

forall y € C. Such a Pc is called the metric (or the nearest point) projection of H onto C. As known,
y = Pcx if and only if there holds the relation:

(x-y,y-2z)>0 VzeC (2.3)

Lemma 2.3 (see [10]). Let A: H — H be a L-Lipschitzian and n-strongly monotone operator on a
Hilbert space H with L > 0,17 >0,0 < p <2n/L? and 0 <t <1.Then, S = (I -tpA): H — H is
a contraction with contractive coefficient 1 — tT and T = (1/2)u(2n — uL?).

Lemma 2.4 (see [1]). Let S : C — C be a x-strict pseudocontraction. Define T : C — C by

Tx = Ax + (1 — A\)Sx for each x € C. Then, as A € [x,1), T is a nonexpansive mapping such that
F(T) = F(S).

Lemma 2.5 (see [9]). Let H be a Hilbert space and f : H — H be a contraction with coefficient
O<a<1land A: H — H an L-Lipschitzian continuous operator and n-strongly monotone with
L>0,7>0.Then for0 <y < un/a:

(x-y, (A=yf)x = (A=Yf)y) > (un-ya)|x-y|’, xyeH. (2.4)

That is, A — y f is strongly monotone with coefficient un — ya.
Let {S,} be a sequence of «,-strict pseudo-contractions. Define S, = 6,1 + (1 -6,)S,,0, €
[xn,1). Then, by Lemma 2.4, S}, is nonexpansive. In this paper, consider the mapping W, defined by
un,n+1 = I/
un,n = tns’nun,rwl + (1 - tn)I/

un,n—l =t S;_lun,n + (1 - tn—l)Ir

cey

(2.5)
Uy = S Ui + (1 - 1)1,

un,Z = t25,2un,3 + (1 - tZ)I/
Wn = un,l = t15’1Un,2 + (1 - tl)I/
where t1,ty,. .. are real numbers such that 0 < t, < 1. Such a mapping W, is called a W-mapping

generated by S}, S, ... and ti,t,,.. .. It is easy to see W, is nonexpansive.

Lemma 2.6 (see [7]). Let C be a nonempty closed convex subset of a strictly convex Banach space
E, let S},S, ... be nonexpansive mappings of C into itself such that N, F(S}) # @ and let ty,t5, ... be
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real numbers such that 0 <t; <b <1, foreveryi=1,2,.... Then, for any x € C and k € N, the limit
lim,, _, o U, X exists.
Using Lemma 2.6, one can define the mapping W of C into itself as follows:

Wx = lim Wyx = lim U,1x, xe€C. (2.6)

n— oo

Lemma 2.7 (see [7]). Let C be a nonempty closed convex subset of a strictly convex Banach space E.
Let S, S, ... be nonexpansive mappings of C into itself such that N, F(S}) # @ and let t1,t,,... be
real numbers such that 0 <t; <b <1, for all i > 1. If K is any bounded subset of C, then

lim sup||Wx - W,x|| = 0. (2.7)

T PxeK

Lemma 2.8 (see [12]). Let C be a nonempty closed convex subset of a Hilbert space H, let {S;: C —
C} be a family of infinite nonexpansive mappings with N2, F(S;) #0, let t1,t,,... be real numbers
suchthat 0 <t; <b <1, foreveryi=1,2,.... Then F(W) = nZ F(S).

For solving the equilibrium problem, assume that the bifunction F satisfies the following
conditions:

(Al) F(x,x) =0forall x € C;
(A2) F is monotone, that is, F(x,y) + F(y,x) <0 forany x,y € C;
(A3) for each x,y,z € C, limsup,_ F(tz+ (1-t)x,y) < F(x,y);

(A4) F(x,-) is convex and lower semicontinuous for each x € C.
Recall some lemmas which will be needed in the rest of this paper.

Lemma 2.9 (see [13]). Let C be a nonempty closed convex subset of H, let F be bifunction from
C x C to R satisfying (A1)—(A4), and let v > 0 and x € H. Then, there exists z € C such that

F(z,y)+%(y—z,z—x>20, Vy eC. (2.8)
Lemma 2.10 (see [5]). Forr >0, x € H, define a mapping T, : H — C as follows:
T,(x):{zeClF(z,y)+%<y—z,z—x>20, VyeC} (2.9)
forall x € H. Then, the following statements hold:
(i) T, is single-valued;
(ii) T, is firmly nonexpansive, that is, for any x,y € H,
|| T - Try”2 <(T,x-T,y,x-y); (2.10)

(iii) F(T,) = EP(F);
(iv) EP(F) is closed and convex.
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Lemma 2.11 (see [14]). Let {x,} and {z,} be bounded sequences in a Banach space and let {f,} be
a sequence of real numbers such that 0 < liminf, . .f, < limsup, ,_p, <1foralln=0,1,2,....
Suppose that x,.1 = (1-f) zp+Puxn foralln =0,1,2,...and limsup,, | _[|Zus1=Znull= | Xni1—24] <
0. Then lim,, _, o ||z, — x| = 0.

Lemma 2.12 (see [4]). Let C, H, F, and T,x be as in Lemma 2.10. Then, the following holds:
-t
I Tox - Tox|? < %(Tsx—Ttx,Tsx—x) (2.11)

forall s,t >0and x € H.

Lemma 2.13 (see [10]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H,
and T : C — C a nonexpansive mapping with F(T) #0. If {x,,} is a sequence in C weakly converging
to x and if {(I — T)x,} converges strongly to y, then (I - T)x = y.

3. Main Result

Throughout the rest of this paper, we always assume that f is a contraction of H into itself
with coefficient « € (0,1), and A is a L-Lipschitzian continuous operator and #-strongly
monotone on H with L > 0,77 > 0. Assume that 0 < y <217/L?* and 0 < y < pu(n—(uL?/2))/a =
T/a.

Define a mapping V,, = I+ (1-p,)W,T,,. Since both W, and T, are nonexpansive, it
is easy to get V, is also nonexpansive. Consider the following mapping G, on H defined by

Gux = anyf(x)+ (I —ayuA)Vyx, VxeH, neN, (3.1)

where a, € (0,1). By Lemmas 2.3 and 2.10, we have
G = Gayll <@ ) = £ + 1= ) [V Vi
< apyal|x —y|| + 1 -a,7)||x -y (3.2)
= (1-an(7 —ya))|lx - yl|

Since 0 < 1 — a, (T — ya) < 1, it follows that G, is a contraction. Therefore, by the Banach
contraction principle, G, has a unique fixed pointed x£ € H such that

x = anyf<x£> +(I- (xn‘uA)ani. (3.3)

For simplicity, we will write x,, for x£ provided no confusion occurs. Next we prove
the sequences {x,} converges strongly to a x* € Q = N¥, F(5;) N EP(F) which solves the
variational inequality:

((rf ~nA)x",p-x") <0, VpeQ. (3.4)

Equivalently, x* = Po(I — pA +yf)x*.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and F a bifunction
from C x C to R satisfying (A1)—(A4). Let S; : C — C be a family x;-strict pseudocontractions for
some 0 < x; < 1. Assume the set Q = N2 F(S;) N EP(F) #0. Let f be a contraction of H into itself
with a € (0,1) and let A be a L-Lipschitzian continuous operator and n-strongly monotone with
L>0,7>0, 0<p<2n/L?and 0 <y < p(n— (uL?/2))/a = T/a. For every n € N, let W, be the
mapping generated by S’ and t; as in (2.5). Let {x, } and {u,} be sequences generated by the following
algorithm:

Uy = Tr,,xn/
Yn = ﬁnxn + (1 - ﬁn)Wnunz (35)

X = oy f (Xn) + (I — payA)yy.

If{an}, {Bn}, and {r,} satisfy the following conditions:

(@) {an} € (0,1), limy— oty = 0;
(ii) 0 < liminf, ., f, < limsup,_, fBn <1;

(iii) {r,} € (0,0), liminf,_, .7, > 0.
Then, {x,} converges strongly to a point x* € Q, which solves the variational inequality (3.4).
Proof. The proof is divided into several steps.
Step 1. Show first that {x,} is bounded.
Take any p € Q, by (3.5) and Lemma 2.3, we derive that
[l =PIl = llan (yf (xn) = pAP) + (I = pan A)yn = (I - pan A)p|
< apay|lxn = pl| + anllyf (p) - pApll + (1 - &) [ya - p (3.6)
<(L-an(r—ym)||xn = pll + allyf (p) - pAp||-
It follows that [|lx, — pll < (Y f(p) — nApll)/ (T - ya).
Hence, {x,} is bounded, so are {u,} and {y,}. It follows from the Lipschitz continuity

of A that {Ax,} and { Au,} are also bounded. From the nonexpansivity of f and W, it follows
that { f(x,)} and {W,x,} are also bounded.

Step 2. Show that
Jim [fup = xu| =0, lim [Juey =yl = 0. (3.7)
Notice that

”un - yn” < Hlun = x4 + ”xn - yn” = ||un = xn|| + lxn“Yf(xn) - .uAyn” (3.8)
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By Lemma 2.10, we have

1
[t = pl|* = | T, 20 = T, p|1* < (xu = pstn — p) = z(llun =plI? + len = I = llxn = ).
(3.9)
It follows that
Nt =21 < |20 =PI = N2 = 2]l (3.10)

Thus, from Lemma 2.1 and (3.10), we get

I = pII*
= llan (v f (xn) = pAP) + (I = patu Ay = (I - pan A)p||*
< (1=t |lyn = plI* + 200 (y fCea) =¥ £ (P) +Yf (P) = AP, %0~ )
< (1= ay7)||un = pl|* + 2an(y f (xa) = £ (P) + Y (P) — AP, X0 — )
< (1= ant)([lxn = pI = Il = al®) + 2a0yall s = pl|* + 200l f (p) — APl |0~ p|
= (1-2an (r=ya) +(@n1)?) [ n=p||*~ (1=aum)? |tu =P+ 2 [y f (p) ~ Ap ||| x|

< |xn = pIIP + (@am)?|| 200 = pII” = (1 = aa)? [0 = wall® + 20 ||y £ (p) = wAP|| |26 = p|-

(3.11)
It follows that
(1= a)?l2n = tall” < (@) [l 20 = pI|* + 20|y £ () — 1 AP|l |0 = |- (3.12)
Since a,, — 0, we have
Him [luy = x| = 0. (3.13)
From (3.8), it is easy to get
Tim [|uy = yn| = 0. (3.14)
Step 3. Show that
im [Ju, = W[ = 0, (3.15)
lltn = Wtt|l < |[ttn = || + || yn = Wattn|| = ||ttn = || + Bullotn = sull + 110 = Wit ).

(3.16)
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This implies that
(1 - ﬂn)”un - Wy < ”un - ]/n” + ﬁn”xn — Uy (3.17)
From condition (ii), (3.13), and (3.14), we have

ll1n = Watty|| — 0. (3.18)

Notice that

llun = Wn|| < [[ttn = Wittu || + [[Wntty — W] (3.19)

By Lemma 2.7 and (3.18), we get (3.15).
Since {u,} is bounded, so there exists a subsequence {u,, } which converges weakly to

*

X

Step 4. Show that x* € Q.

Since C is closed and convex, C is weakly closed. So, we have x* € C.

From (3.15), we obtain Wu,, — x*. From Lemmas 2.8, 2.4, and 2.13, we have x* €
F(W) =nZ F(S}) = N2 F(S)).

By u, =T, x,, for all n > 1, we have

1
F(un,y) + r—(y —Up, Uy —Xy) 20, VyeC. (3.20)
It follows from (A2) that

%(y —Up, Up —Xn) > F(y,u,), VyeC (3.21)

Hence, we get

1 <y — Uy, Un; — xnj> > F(y, un].>, Vy e C. (3.22)

Tn,
It follows from condition (iii), (3.13), and (A4) that
0>F(y,x*), VyeC (3.23)

ForswithO<s<landy € C,letys, = sy + (1 - s)x*. Since y € C and x* € C, we obtain
ys € C and hence F(ys, x*) < 0. So, we have

0=f(ysys) <sF(ys,y) + (1= 9)F(ys,x*) < sF(ys,y)- (3.24)
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Dividing by s, we get
F(ys,y) 20, VyeC (3.25)
Letting s — 0 and from (A3), we get
F(x",y) 20 (3.26)
forall y € C and x* € EP(F). Hence x* € Q.
Step 5. Show that x,, — x*, where x* = Po(I — pA +yf)x*:
Xp —x* = an (yf(xn) — pAx*) + (I — pa, Ay, — (I — pax, A)x*. (3.27)
Hence, we obtain

I, = x*||* = an(yf(xn) = pAx*, 3 — x*) + (I = pay Ay — (I — pay A)x*, x, — x*); (328)
< an(yf(xn) — pAX*, xp = x*) + (1 — an7)||x, — x| '

It follows that
x12 1 * *
e = 217 < —(y f (en) = pAX", 20 = x7)
1 * * * * *
= —(r(f o) = F(x"), 200 = x") + (Y f(x7) = pAX", x = 7)) (329)
1 * * * *
< —(rallw, - I + (rf () - pAx 2, - ).
This implies that
*Y\ A * n— *
1y — | < SO~ pAX 0 = 7). (3.30)
T-ya
In particular,
x*) — uAx*, x, — x*
N E () ' ) (331)
! T-ya

Since x,; — x*, it follows from (3.31) that x,, — x* as j — oo. Next, we show that x*
solves the variational inequality (3.4).
By the iterative algorithm (3.5), we have

Xn = oY f (Xn) + (I = panA)yn = any f (xn) + (I — pa, A) Vyx,. (3.32)
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Therefore, we have

Uy AXy — Y f(Xn) = pay Axy — X + (I — paty, A)Vyxy, (3.33)
that is,

(MA—=yf)x, = _al((I = Vo) xn — paty (Axy, — AVy)xy). (3.34)
Hence, forp € Q,

<(/lA - Yf)x"' Xn — p) = _ai<(1 - Vn)xn - /’lan(Axn - Avnxn)/ Xn — P)

= —al<(I = V) xXp = (I = Vo)p, x5 — p) + p(Axy — AVy Xy, X — p)

< p{Axy, — AVpxy, X, — p).
(3.35)

Since I - V,, is monotone (i.e., (x -y, (I = Vy,)x — (I = V,,)y) > 0, for all x, y € H). This
is due to the nonexpansivity of V,,.
Now replacing 7 in (3.35) with n; and letting j — oo, we obtain

(A -yf)x*,x* —p) = lim <(#A_ ¥Yf)%Xn;, X, _P> S hm”<Ax"f = AVnXn;, Xy _P> =0
joo Iz
(3.36)

Thatis, x* € Qs a solution of (3.4). To show that the sequence {x,} converges strongly
to x*, we assume that x,, — X. By the same processing as the proof above, we derive x € Q.
Moreover, it follows from the inequality (3.36) that

(A -yf)x*,x* —x) <0. (3.37)
Interchanging x* and X, we get
((MA-yf)x,x—x*) <0. (3.38)
By Lemma 2.5, adding up (3.37) and (3.38) yields
(k= ya)llx* = xI” < ((pA - yf)x* = (RA =y f)%,x" = %) < 0. (3.39)
Hence x* = x and, therefore, x, — x*asn — oo,

(I-pA+yf)x*=x*,x*-p) >0, VpeQ. (3.40)
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This is equivalent to the fixed point equation:
Po(I-pA+yf)x" =x" (3.41)
O

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H and F a bifunction
from C x C to R satisfying (A1)—(A4). Let S; : C — C be a family x;-strict pseudocontractions for
some 0 < x; < 1. Assume the set Q = N F(S;) N EP(F) #0. Let f be a contraction of H into itself
with &« € (0,1) and let A be a L-Lipschitzian continuous operator and n-strongly monotone with
L>0,7>00<pu<2n/L?%and 0 <y < pu(n— (uL?/2))/a = T/a. For every n € N, let W, be the
mapping generated by S: and 0 < t; <b < 1. Given x; € H, let {x,,} and {u,} be sequences generated
by the following algorithm:
Up = Trnxn/

Yn = Puxn + (1= fu) Watts, (3.42)

X1 = Y f (xn) + (I = pay A) Yy

If {an}, {Pu} and {r,} satisfy the following conditions:
(i) {an} € (0,1), lim,, e, = 0and 357, ay = o0;
(ii) 0 < liminf, B, <limsup, ,_ p. <1
(iii) {ry} € (0,00), liminf, _, 1, > 0 and lim,, _, o |ry41 — 11| = 0.
Then, {x,} converges strongly to x* € Q, which solves the variational inequality (3.4).

Proof. The proof is divided into several steps.

Step 1. Show first that {x,} is bounded.
Taking any p € Q, we have

l|xne1 = pl| = l|an (yf (xn) = pAp) + (I = panA)yn - (I - pan A)p||
<an(|lyfCen) =vf P+ Ivf(p) - nAp|) + A = awt) lya - pl
< anayl|xn = p|| + anllyf (p) - pAp|| + Q1 - awt)|lya - p|

lyf(p) - nAp||

T-ay

(3.43)
= (1-an(t—ay))||lxn = p|| + an(z - ay)

_P”/ ”Yf(p) _.“Ap” }

Smax[”xn r——

By induction, we obtain ||x,—p|| < max{|lx1—p||, |y f (p)-uAp)||/(t—ay)}, n > 1. Hence, {x,}
is bounded, so are {u,} and {y,}. It follows from the Lipschitz continuity of A that {Ax,} and
{Au,} are also bounded. From the nonexpansivity of f and W, it follows that { f(x,)} and
{W,x,} are also bounded.
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Step 2. Show that

271 = 2]l — 0. (3.44)

Observe that
1 = uall = Ty, Xne1 — T, Xl

<TrqXne1 = T,

Tn+1

Xnll + 1T, %0 = Ty, Xn|| (3.45)

< lxns1 = xull + [T, %0 = Tr, 2l

and from (2.5), we have

”Wn+1un - Wnun” = ||t15,1un+1,2un - tlsllun,Zun”
< tlllun+1,2un - un,Zun”
=ty || 2S5 U a1 31 — 12SHU 314y ||

< it U g1 3ty — U 3y ||
<... (3.46)

n
< Hti”un+1,n+1un - un,n+1un”
i=1

< Mlﬁtir
i=1

where M = Supn{ ”un+1,n+lun - un,n+1un|| }
Suppose X1 = Puxn + (1 = Pu)zn, then z, = (xpi1 = Prxn)/ (1 = ) = (any f(xn) + (I -
I/lanA)yn - ﬂnxn)/(l - ﬂn)

Hence, we have

“n+1)’f(xn+1) + (I - ﬂan+1A)yn+l - ,Bn+1xn+1 3 “an(xn) + (I - I"“nA)yn - ,ann

Zp+l — Zn = 1- ,Hn+1 1- ﬁn

_ Xpt1 (Yf(xrwl) - #Aynn) + Yn+l — ,ﬁn+1xn+1 _ an (Yf(xn) - ﬂAyn) _Yn— ﬂnxn
1_ﬂn+1 1_ﬂn+l 1_ﬂn 1_ﬂn

_ O (Yf(xn+1) - ,uAynH) + ,Bn+1xn+1 + (1 - ﬂn+1)wn+lun+l - ,Bn+1xn+1
1- ﬁn+1 1- ,ﬁn+1

_ A (vf (xn) = pAYn) 3 Prxn + (1= Bn) Wity = Puxn
1- ﬂn 1- ﬂn
n+ n+l) = A n+ n n) A n
¢ G (0fCon1) = pAYnar) _ an(yf () = pAYn) Wit — W,

1- ,Bn+1 1- ﬁn
(3.47)
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It follows from (3.45), (3.46), and the above result that

13

||Zn+1 - Zn”
[24
< 1 r:[-;—l (”Yf(xr”l)“ + II#AyrH—l“) + 7‘1[5 (||Yf(xn)|| + ||‘[,[Ayn||) + ||Wn+1un+] _ Wnun”
n
< ( An+1 + )Mz + [[Whsittne1 — Wasattn|| + [|Wahsrttn — Wty ||
1- pn+1 1- ﬂn
: (1 fngiﬂ 1z pn>M2 + une1 = n|| + [[Waiattn — Wit ||

n
Ayl (24
< et = %l + [Tt~ Tl + (25 22 )0 ML T
1- ﬂn+1 1- ﬂn i=1

where My = sup, {|ly f(x,)[l + LAY, ||}. Hence, we get

Apil a 1
2 = 2ol = n = 3l € ITr = Tl + (2 4 22 )Mo+ AT T

1_ﬂn+1 1_ﬁn

i=1
From condition (i), (iii), 0 < f, < b < 1, and Lemma 2.12, we obtain

limsup(”ZrHl = Zn|l = [|Xn41 — xn|]) £0

n—oo
By Lemma 2.11,we have lim, _, ||z, — x,|| = 0. Thus,

lim [|x,0 — x4 = lim (1 - B,)]|zn — x4 = 0.
n—oo n—oo

By Lemma 2.12, (3.45) and (3.44), we obtain
lltn1 = tnl| — 0.
Step 3. Show that
lln = W || — 0.
Observe that
|30 = Waxull < [l = Wattn| + [[Wnttn = Waxtu|| < |2t = Watt| + [[un — x4,

||xn - Wnun” < ”xn - xn+1|| + ”xn+1 - yn” + ”yn - Wnun” = “xn - xn+1||

+ ”xn+1 - anI + Pulllun = x|l + [[30 — Wautn]]).

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)
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From condition (i) and (3.5),we can obtain

(1 - ﬁn)”xn - Wnun” S ||xn_xn+1||+ ||xn+1_yn||+ﬁn”un_xn”
(3.55)

< loen— xn+1||+“n||Yf(xn)_lflAyn” + Pullun — xa]|-

By Lemma 2.10, we get

1
e =p|I* = 1T 2= T, |* < (T 2=, xa=p) = 5 (=PI + [l = P + l1n = )

(3.56)
This implies that
lien =PI < llen = pII” = 100 =l (3.57)
By nonexpansivity of W, we have
lyn =PI < Bullxn = pI* + (1= Bl = p* < Nl = I = (1= o)l = wal®. - (3:58)
It follows from (3.42) that
%01 =PI = llan (v f Gen) = p) + (I = pan Ay = (I = pan A)p + an(p — pAp) |I°
< anllyf ) = pl* + (1= awn)[lyn = pII” + aullp - pap]*
< anlyf ) = pl*+ (1 = awm) (|lxn = pII* = (1= o) Ilxn = l) + aa|p — pAp|*

< ||y f Gen) = Pl + [l = pI* = (1= Bu) ln — ttall® + aa||p - pAP||*.
(3.59)

This implies that

(1= o) lxa = all* S @n (£ ) = pII* + [l = 1API) + %0 = pII* = 0 =

< an(|lyfGen) =PI+ o = pApI) + (lxn = pll + %0 = Pl 1t =l
(3.60)

From condition (i), (ii), and (3.44), we have

llxn — un|l — 0. (3.61)

Further we have ||x, — Wy,u,|| — 0. Thus we get

lxn = Whxn|| — 0. (3.62)
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On the other hand, we have

ll2¢n = Won|| < [|xn = Wil + [[Wnxn = Wxu|| < |30 = Waxu|| + SuP”ann - Wxy||. (3.63)

x,€C

Combining (3.62), the last inequality, and Lemma 2.7, we obtain (3.53).

Step 4. Show that

limsup((yf - pA)x*,x, - x*) <0, (3.64)

n—oo

where x* = Po(I — pA +y f)x* is a unique solution of the variational inequality (3.4). Indeed,
take a subsequence {x, } of {x,} such that

limsup((yf - pA)x", xy = 7) = lim ((rf = pA)x", x - x*). (3.65)

n—oo

Since {xn;} is bounded, there exists a subsequence {x,, } of {x,} which converges
weakly to g. Without loss of generality, we can assume x,; — g. From (3.53), we obtain
Wx,, — g.

By the same argument as in the proof of Theorem 3.1, we have g € Q. Since x* =
Po(I — pA +yf)x*, it follows that

limsup((yf - pA)x", x4 = x*) = jlgn;o<(vf — pA)X X0, =) = ((rf — pA) X, g - x°) <0.

n—oo

(3.66)
Step 5. Show that
X, — X", (3.67)
Since
((rf = pA)X" xp1 = x7) = ((vf = pA) X", X1 = Xu) + (Y f = pA) X", 200 — x7) (3.68)

<N f = pA) x| 1201 = xall + ((vF = pA) X", % — x7).
It follows from (3.44) and (3.66) that

limsup((yf — pA)x*, xp1 — x*) < 0.

n— oo
%1 = %"

2

= ||lany f(xn) + (I - pa,A)y, — x*

= || (1 = pan A)yu = (I = pan A)x" + an (yf (xa) = pAX") ||°
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< || (I = pan A yn = (I = pan A)X"||* + 200 (y f (%) = HAX", X1 = X°)
< (1= ay7)||yn = || + 20 (y £ (ea) = Y F (X7, X1 = %7) + 20 ((y f = pA) X", X1 = X°)

< (1= ayr)ley = 21 + apary (I = 277 + 1w = °17) + 2000 { (5 f = AR, 21 = x°).

(3.69)
This implies that
%041 — ™|
La- alxn_fc);;anaruxn P+ %((ﬁ AR Xt — %)

200, (T — 2
< (1 - M) 0 = X1+ T2 (1 = AN, =)+ 1,

1-aay 1-ayay 1-ayay
(3.70)

where M3 = sup, [[x, — x*||?, n>1.1tis easily to see that y, = 2a,(7 — ay) /(1 — a,ay). Hence,
by Lemma 2.2, the sequence {x, } converges strongly to x*. O

Remark 3.3. If F = 0, then Theorem 3.2 reduces to Theorem 3.1 of Wang [10].
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