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We consider a smooth penalty algorithm to solve nonconvex optimization problem based on a
family of smooth functions that approximate the usual exact penalty function. At each iteration
in the algorithm we only need to find a stationary point of the smooth penalty function, so the
difficulty of computing the global solution can be avoided. Under a generalized Mangasarian-
Fromovitz constraint qualification condition (GMFCQ) that is weaker and more comprehensive
than the traditional MFCQ, we prove that the sequence generated by this algorithm will enter the
feasible solution set of the primal problem after finite times of iteration, and if the sequence of
iteration points has an accumulation point, then it must be a Karush-Kuhn-Tucker (KKT) point.
Furthermore, we obtain better convergence for convex optimization problem.

1. Introduction

Consider the following nonconvex optimization problem

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , m,

x ∈ Rn,

(NP)

where f, gi : Rn → R, i = 1, . . . , m, are all continuously differentiable functions. Without loss
of generality, we suppose throughout this paper that infx∈Rnf(x) ≥ 0, because otherwise we
can substitute f(x) by exp(f(x)). Let Ωε = {x ∈ Rn | gi(x) ≤ ε, i = 1, . . . , m} be the relax
feasible set for ε > 0. Then Ω0 is the feasible set of (NP).
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The classical l1 exact penalty function [1] is

fβ(x) = f(x) + β
m∑

i=1

(
gi(x)

)+
, (1.1)

where β > 0 is a penalty parameter, and

(
gi(x)

)+ = max
{
0, gi(x)

}
, i = 1, . . . , m. (1.2)

The obvious advantage of the traditional exact penalty functions such as the l1 exact
penalty function is that when the penalty parameter is sufficiently large, their global optimal
solutions exist and are optimal solutions of (NP). But they also have obvious disadvantage,
that is, their nonsmoothness, which prevent the use of many efficient unconstrained
optimization algorithms (such as Gradient-type or Newton-type algorithm). Therefore the
study on the smooth approximation of exact penalty functions has attracted broad interests
in scholars [2–8]. In recent years based on the smooth approximation of the exact penalty
function, several smooth penalty methods are given to solve (NP). For example, [9] gives
a smooth penalty method based on approximating the l1 exact penalty function. Under the
assumptions that the optimal solution satisfies MFCQ and the iterate sequence is bounded, it
is proved that the iterative sequence will enter the feasible set and every accumulation point
is the optimal solution of (NP). In [10, 11], smooth penalty methods are considered based on
approximating low-order exact penalty functions. Reference [10] proves the similar results
as [9] under very strict conditions (some of them are uneasy to check). The conditions for
convergence of the smooth penalty algorithm in [11] are weaker than that in [10], but in [11]
it is only proved that the accumulation point of the iterate sequence is a Fritz-John (FJ) point
of (NP).

In the algorithms given by [9–11], at each iteration a global optimal solution of the
smooth penalty problem is needed. As we all know, it is very difficult to find a global optimal
point of a nonconvex function. To avoid this difficulty, in this paper we give a smooth penalty
algorithm based on the smooth approximation of the l1 exact penalty function. The feature
of this algorithm lies in that only a stationary point of the penalty function is needed to
compute at each iteration. To prove the convergence of this algorithm, we first establish
a generalized Mangasarian-Fromovitz constraint qualification condition (GMFCQ) weaker
and more comprehensive than the traditional MFCQ. Under this condition, we prove that the
iterative sequence of the algorithmwill enter the feasible set of (NP). Moreover, we prove that
if the iterative sequence has accumulation points, then each of them is a KKT point of (NP).
Finally, we apply this algorithm to solve convex optimization and get better convergence
results.

The rest of this paper is organized as follows. In the next section, we give a family
of smooth penalty functions. In Section 3 based on the smooth penalty functions given in
Section 2, we propose an algorithm for (NP) and analyze its convergence under the GMFCQ
condition. We give an example that satisfies GMFCQ at last in this section.
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2. Smooth Approximation to l1 Exact Penalty Function

In this section we give a family of penalty functions, which decreasingly approximate the l1
exact penalty function. At first we consider a class of smooth function φ : R → R+ with the
following properties:

(I) φ(·) is a continuously differentiable convex function with φ′(0) > 0;

(II) limt→−∞φ(t) = a, where a is a nonnegative constant;

(III) φ(t) ≥ t, for any t > 0;

(IV) limt→+∞(φ(t))/t) = 1.

From (I)–(IV), it follows that φ satisfies

(V) 0 ≤ φ′(t) ≤ 1, for any t ∈ R, and limt→−∞φ′(t) = 0, limt→+∞φ′(t) = 1;

(VI) rφ(t/r) increases with respect to r > 0, for any t ∈ R;

(VII) rφ(t/r) ↓ t+(r ↓ 0), for any t ∈ R.

The following functions are often used in the smooth approximation of the l1 exact
penalty function and satisfy properties (I)–(IV).

(1) φ(t) = log(1 + et).

(2) φ(t) = (t +
√
t2 + 4)/2.

(3) φ(t) =
{

et, t≤0;
t+1, t>0.

We now use φ(·) to construct the smooth penalty function

fβ,r(x) = f(x) + r
m∑

i=1

φ

(
βgi(x)

r

)
, (2.1)

where β ≥ 1 is a penalty parameter.
By (VII), we easily know when r → 0+, fβ,r(x) decreasingly converges to fβ(x), that

is,

fβ,r(x) = f(x) + r
m∑

i=1

φ

(
βgi(x)

r

)
↓ f(x) + β

m∑

i=1

(
gi(x)

)+
. (2.2)

Therefore fβ,r(x) smoothly approximates the l1 exact penalty function, where r decreases
to improve the precision of the approximation. It is worth noting that the smooth function
φ(·) and penalty function fβ,r(·) given in this paper make substantive improvement of the
corresponding functions given in [9]. This gives fβ,r(·) better convergence properties (refer
to (2.2) and Theorem 3.9).

3. The Algorithm and Its Convergence

We propose a penalty algorithm for (NP) in this section based on computing the stationary
point of fβ,r(·). We assume that for any β ≥ 1 and 0 < r ≤ 1, fβ,r(·) always has stationary
point.
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Algorithm

Step 0. Given x0 ∈ Rn, β1 = 1, r1 = 1, 0 < η1 < 1, and η2 > 1. Let k = 1.

Step 1. Find xk such that

∇fβk,rk

(
xk
)
= 0. (3.1)

Step 2. Put rk+1 = η1rk,

βk+1 =

{
βk if xk ∈ Ω0,

η2βk otherwise.
(3.2)

Step 3. Let k = k + 1 and return to Step 1.

Let {xk} be the iterative sequence generated by the algorithm. We shall use the
following assumption:

(A1) the penalty function value sequence {fβk,rk(xk)} is bounded.

Lemma 3.1. Suppose that the assumption (A1) holds, then for any ε > 0, there exists k0 ∈ N =
{1, 2, . . .}, such that for k ≥ k0,

xk ∈ Ωε. (3.3)

Proof. Suppose to the contrary that there exist an ε0 > 0 and an infinite sequenceK ⊆ N, such
that for any k ∈ K,

xk /∈ Ωε0 . (3.4)

By the algorithm, we know that

βk −→ +∞ (k −→ ∞). (3.5)

It follows from (3.4) that there exist a subsequence K0 ⊆ K and an index i0 ∈ I = {1, . . . , m},
such that for any k ∈ K0,

gi0

(
xk
)
> ε0. (3.6)
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Thus, from the assumptions about f(·), the properties about φ(·), (3.5) and (3.6), it follows
that

fβk,rk

(
xk
)
= f
(
xk
)
+ rk

m∑

i=1

φ

(
βkgi
(
xk
)

rk

)

≥ f
(
xk
)
+ rkφ

(
βkε0
rk

)

≥
(

φ
(
βkε0/rk

)

βkε0/rk

)
βkε0

−→ +∞ (k −→ ∞, k ∈ K0).

(3.7)

This contradicts with (A1).

Lemma 3.2. Suppose that the assumption (A1) holds, and x∗ is any accumulation point of {xk}, then
x∗ ∈ Ω0, that is, x∗ is a feasible solution of (NP).

Proof. By Lemma 3.1, we obtain that for any ε > 0 and every sufficiently large k, xk ∈ Ωε.
Let x∗ be an accumulation point of {xk}, then there exists a subsequence {xk}k∈K such that
xk → x∗(k ∈ K, k → ∞). Therefore

x∗ ∈ Ωε. (3.8)

By the arbitrariness of ε > 0, we have that x∗ ∈ Ω0.

Given x ∈ Ω0, we denote that I(x) = {i ∈ I | gi(x) = 0}.

Definition 3.3 (see [12]). We say that x ∈ Ω0 satisfies MFCQ, if there exists a h ∈ Rn such that

∇gi(x)
Th < 0, for any i ∈ I(x). (3.9)

In the following we propose a kind of generalized Mangasarian-Fromovitz constraint
qualification (GMFCQ).

LetK ⊆ N be a subsequence, and for sequence {zk}k∈K in Rn denote two index sets as

I+(K) =

{
i ∈ I lim sup

k∈K,k→∞
gi
(
zk
)
≥ 0

}
,

I−(K) =

{
i ∈ I lim sup

k∈K,k→∞
gi
(
zk
)
< 0

}
.

(3.10)

Definition 3.4. We say that the sequence {zk}k∈K satisfies GMFCQ, if there exist a subsequence
K0 ⊆ K and a vector h ∈ Rn such that

lim sup
k∈K0, k→∞

∇gi
(
zk
)T

h < 0, for any i ∈ I+(K0). (3.11)
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Under some circumstances, the sequence {xk}may satisfy that ‖xk‖ → +∞ (k → ∞),
which can be seen for the example in the last part of this section. At this time MFCQ can
not be applied, but GMFCQ can. The following proposition shows that Definition 3.4 is a
substantive generalization of Definition 3.3.

Proposition 3.5. Suppose that {zk}k∈K satisfies

lim
k∈K, k→∞

zk = z∗ ∈ Ω0. (3.12)

If z∗ satisfies MFCQ, then {zk}k∈K satisfies GMFCQ.

Proof. By (3.12), we know that lim supk∈K,k→∞gi(z
k) ≥ 0 if and only if

lim
k∈K,k→∞

gi
(
zk
)
= gi(z∗) = 0. (3.13)

Thus, I+(K) = I(z∗). By the assumption, there exists a h ∈ Rn such that

lim sup
k∈K, k→∞

∇gi
(
zk
)T

h < 0, for any i ∈ I+(K). (3.14)

We need two assumptions in the following:

(A2) the sequence {∇f(xk)} and {∇gi(xk)}, i = 1, . . . , m are both bounded;

(A3) any subsequence of {xk} satisfies GMFCQ.

Theorem 3.6. Suppose that the assumptions (A1), (A2), and (A3) hold, then

(1) there exists a k0 such that for any k ≥ k0,

xk ∈ Ω0; (3.15)

(2) any accumulation point of {xk} is a KKT point of (NP).

Proof. If (1) does not hold, that is, there exists a subsequenceK ⊆ N such that for any k ∈ K,
it holds that

xk /∈ Ω0. (3.16)

By the algorithm, we know that

lim
k→∞

βk = +∞. (3.17)
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From the assumption (A3) and (3.16), it follows that there exist K0 ⊆ K and h ∈ Rn such that

lim sup
k∈K0, k→∞

∇gi
(
xk
)T

h < 0, for any i ∈ I+(K0), (3.18)

I∗(K0) =
{
i ∈ I | gi

(
xk
)
> 0, for any k ∈ K0

}
/= ∅, I∗(K0) ⊆ I+(K0). (3.19)

By (3.18) and the definition of I−(K0), there exists a δ > 0, such that for all k ∈ K0,

∇gi
(
xk
)T

h ≤ −δ, for any i ∈ I+(K0), (3.20)

gi
(
xk
)
≤ −δ, for any i ∈ I−(K0). (3.21)

From the algorithm, we know that xk satisfies

∇f
(
xk
)
+

m∑

i=1

βkφ
′
(

βkgi
(
xk
)

rk

)
∇gi
(
xk
)

= 0. (3.22)

Let k ∈ K0, from (3.22)we obtain that

∇f
(
xk
)T
h

βk
+
∑

i∈I−(K0)

φ′
(

βkgi
(
xk
)

rk

)
∇gi
(
xk
)T

h +
∑

i∈I+(K0)

φ′
(

βkgi
(
xk
)

rk

)
∇gi
(
xk
)T

h = 0.

(3.23)

We now analyze the three terms on the left side of (3.23).

(a) By (3.17) and (A2),

lim
k∈K0, k→∞

∇f
(
xk
)T
h

βk
= 0. (3.24)

(b) By (3.21), for any i ∈ I−(K0), we have

lim
k∈K0, k→∞

βkgi
(
xk
)

rk
= −∞. (3.25)

From the properties of φ(·) and (A2), we have that the second term satisfies

lim
k∈K0, k→∞

∑

i∈I−(K0)

φ′
(

βkgi
(
xk
)

rk

)
∇gi
(
xk
)T

h = 0. (3.26)
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(c) From (3.19), (3.20), and the properties of φ(·), it follows that

∑

i∈I+(K0)

φ′
(

βkgi
(
xk
)

rk

)
∇gi
(
xk
)T

h ≤ −δ
∑

i∈I+(K0)

φ′
(

βkgi
(
xk
)

rk

)

≤ −δ
∑

i∈I∗(K0)

φ′
(

βkgi
(
xk
)

rk

)

≤ −δ|I∗(K0)|φ′(0),

(3.27)

where |I| denotes the number of the elements in I.

Now, by letting k → ∞, k ∈ K0, and taking the limit on both sides of (3.23), we obtain from
(a)–(c) that

δ|I∗(K0)|φ′(0) ≤ 0. (3.28)

But by (3.19) and the properties of φ(·), δ|I∗(K0)|φ′(0) > 0. This contradiction completes the
proof of (1).

By (1) we know that there exists a k0, such that if k ≥ k0, then xk ∈ Ω0. Thus by the
algorithm, when k ≥ k0, we have that

βk = βk0 . (3.29)

Suppose that x∗ is an accumulation point of {xk}, then there exists a subsequence {xk}k∈K,
such that

lim
k∈K,k→∞

xk = x∗. (3.30)

By Lemma 3.2, x∗ is a feasible point of (NP), that is, x∗ ∈ Ω0. Thus by (3.22), we obtain that

∇f
(
xk
)
+
∑

i∈I\I(x∗)

βk0φ
′
(

βk0gi
(
xk
)

rk

)
∇gi
(
xk
)
+
∑

i∈I(x∗)

βk0φ
′
(

βk0gi
(
xk
)

rk

)
∇gi
(
xk
)
= 0. (3.31)

In the second term of (3.31), because i ∈ I \ I(x∗), so by (3.30) and the properties of φ′(·), we
have

lim
k∈K,k→∞

φ′
(

βk0gi
(
xk
)

rk

)
= 0. (3.32)

In the third term of (3.31), from the properties of φ′(·), the sequence {φ′(βk0gi(x
k)/rk)}, i ∈ I

is nonnegative and bounded. Thus, there exists a subsequence K0 ⊆ K such that

lim
k∈K0,k→∞

βk0φ
′
(

βk0gi
(
xk
)

rk

)
= λi ≥ 0, for any i ∈ I(x∗). (3.33)



Journal of Applied Mathematics 9

At last by letting k → ∞, k ∈ K0, and taking the limit on both sides of (3.31), we obtain from
(3.30)(3.32) and (3.33) that

∇f(x∗) +
∑

i∈I(x∗)

λi∇gi(x∗) = 0. (3.34)

By Lemma 3.2, Proposition 3.5, and Theorem 3.6, we obtain the following conclusion.

Corollary 3.7. Suppose that (A1) holds, {xk} is bounded, and any accumulation point x∗ of {xk}
satisfies MFCQ, then

(1) there exists a k0 such that for any k ≥ k0

xk ∈ Ω0; (3.35)

(2) any accumulation point of {xk} is a KKT point of (NP).

When (NP) is a convex programming problem, that is, the functions f and gi, i ∈ I of
(NP) are all convex functions, the algorithm has better convergence results.

Theorem 3.8. Suppose (NP) is a convex programming problem, then every accumulation point of
{xk} is an optimal solution of (NP).

Proof. Since f(·), gi(·), i ∈ I are convex, and φ(·) is increasing, then for any β > 0 and r >
0, fβ,r(·) is convex. Thus ∇fβk,rk(x

k) = 0 is equivalent to

xk ∈ argmin
x∈Rn

fβk,rk(x). (3.36)

Therefore by (3.36) and the properties of φ(·), we have for any x ∈ Ω0,

fβk,rk

(
xk
)
= f
(
xk
)
+ rk

m∑

i=1

φ

(
βkgi
(
xk
)

rk

)

≤ f(x) + rk
m∑

i=1

φ

(
βkgi(x)

rk

)

≤ f(x) + rkmφ(0).

(3.37)

From (3.37), the arbitrariness of x ∈ Ω0 and the nonnegativity of φ(·), it follows that

f
(
xk
)
≤ inf

x∈Ω0

f(x) + rkmφ(0). (3.38)
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Suppose that x∗ is an accumulation point of {xk}, there exists a subsequenceK ⊆ N such that
limk∈K,k→∞xk = x∗. Thus, by (3.38), we have

f(x∗) ≤ inf
x∈Ω0

f(x). (3.39)

On the other side, (3.37) implies that (A1) holds. Then fromLemma 3.2, we know x∗ ∈ Ω0.

Theorem 3.9. Suppose that (NP) is a convex programming problem, and the assumptions (A2), (A3)
hold, then

(1) there exists a k0, for any k ≥ k0, {fβk,rk(xk)} decreases to infx∈Ω0f(x).

(2) limk→∞f(xk) = infx∈Ω0f(x).

Proof. Note that for (NP)which is convex, (A1) holds. By Theorem 3.6 there exists a k0, such
that xk ∈ Ω0 when k ≥ k0. Therefore from the algorithm, we have for any k ≥ k0, βk = βk0 . By
(3.36) and the property (VI) of φ(·), when k ≥ k0,

fβk0 ,rk+1

(
xk+1

)
≤ fβk0 ,rk+1

(
xk
)

= f
(
xk
)
+ rk+1

m∑

i=1

φ

(
βk0gi

(
xk
)

rk+1

)

≤ f
(
xk
)
+ rk

m∑

i=1

φ

(
βk0gi

(
xk
)

rk

)

≤ fβk0 ,rk

(
xk
)
.

(3.40)

Notice that xk ∈ Ω0(k ≥ k0), by (3.37) and the properties of φ(·), we have for k ≥ k0 that

inf
x∈Ω0

f(x) ≤ f
(
xk
)

≤ fβk0 ,rk

(
xk
)

≤ inf
x∈Ω0

f(x) + rkmφ(0).

(3.41)

Combining (3.40) with (3.41), we obtain the conclusion.

Example 3.10. Consider that minx∈Ω0f(x) = (1/4)(x1−x2)
2, Ω0 = {x ∈ R2 | g(x) = x1−x2 ≤ 0}.

This is a convex case. Denote its optimal solution by Ω∗
0 = {x∗ ∈ Ω0 | x∗

1 − x∗
2 = 0} and

let φ(t) = (t +
√
t2 + 4)/2. We consider fβ,r(·), that is,

fβ,r(x) =
1
4
(x1 − x2)2 +

r

2

⎛

⎝
√

β2

r2
(x1 − x2)2 + 4 +

β

r
(x1 − x2)

⎞

⎠. (3.42)
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Because fβ,r(·) is convex, thus ∇fβ,r(x∗) = 0 if and only if x∗ ∈ arg minx∈R2fβ,r(x). By the
algorithm, we get stationary points as

xk =
(

k
k + αk

)
, k = 0, 1, . . . , (3.43)

where αk > 0 and limk→∞αk = 0. Here {xk} has no accumulation point, that is, limk→∞‖xk‖ =
+∞. Thus in the analysis of convergence, MFCQ may not be appropriate to be applied as a
constraint qualification condition for this example. But for any k ∈ N, we have ∇f(xk) =
(−(1/2)αk, (1/2)αk)

T , ∇g(xk) = (1,−1)T , which implies that assumption (A2) is satisfied. we
can also check that {xk} satisfies GMFCQ. In fact, choose h = (−1, 1)T , then we have

lim
k→∞

g
(
xk
)
= lim

k→∞
αk = 0,

lim
k→∞

∇g
(
xk
)T
h = (1,−1)T (−1, 1) = −2 < 0.

(3.44)

On the other side, by the algorithm, we have xk ∈ Ω0 and βk = 1, for all k. By letting k → ∞,
we get fβk,rk(x

k) ↓ 0 and f(xk) → 0. So by the algorithm we get a feasible solution sequence
which is also optimal.
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