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We study the geometry of lightlike submanifolds (M,g, S(TM), S(TM⊥)) of a semi-Riemannian
manifold (˜M, g̃) of quasiconstant curvature subject to the following conditions: (1) the curvature
vector field ζ of ˜M is tangent to M, (2) the screen distribution S(TM) of M is totally geodesic in
M, and (3) the coscreen distribution S(TM⊥) of M is a conformal Killing distribution.

1. Introduction

In the generalization from the theory of submanifolds in Riemannian to the theory of
submanifolds in semi-Riemannian manifolds, the induced metric on submanifolds may
be degenerate (lightlike). Therefore, there is a natural existence of lightlike submanifolds
and for which the local and global geometry is completely different than nondegenerate
case. In lightlike case, the standard text book definitions do not make sense, and one fails
to use the theory of nondegenerate geometry in the usual way. The primary difference
between the lightlike submanifolds and nondegenerate submanifolds is that in the first
case, the normal vector bundle intersects with the tangent bundle. Thus, the study of
lightlike submanifolds becomes more difficult and different from the study of nondegenerate
submanifolds. Moreover, the geometry of lightlike submanifolds is used in mathematical
physics, in particular, in general relativity since lightlike submanifolds produce models of
different types of horizons (event horizons, Cauchy’s horizons, and Kruskal’s horizons).
The universe can be represented as a four-dimensional submanifold embedded in a (4 + n)-
dimensional spacetime manifold. Lightlike hypersurfaces are also studied in the theory of
electromagnetism [1]. Thus, large number of applications but limited information available
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motivated us to do research on this subject matter. Kupeli [2] and Duggal and Bejancu [1]
developed the general theory of degenerate (lightlike) submanifolds. They constructed a
transversal vector bundle of lightlike submanifold and investigated various properties of
these manifolds.

In the study of Riemannian geometry, Chen and Yano [3] introduced the notion of a
Riemannian manifold of a quasiconstant curvature as a Riemannian manifold (˜M, g̃) with the
curvature tensor ˜R satisfying the condition

g̃
(

˜R(X,Y )Z,W
)

= α
{

g̃(Y,Z)g̃(X,W) − g̃(X,Z)g̃(Y,W)
}

+ β
{

g̃(X,W)θ(Y )θ(Z) − g̃(X,Z)θ(Y )θ(W)

+ g̃(Y,Z)θ(X)θ(W) − g̃(Y,W)θ(X)θ(Z)
}

,

(1.1)

for any vector fields X, Y, Z, andW on ˜M, where α, β are scalar functions and θ is a 1-form
defined by

θ(X) = g̃(X, ζ), (1.2)

where ζ is a unit vector field on ˜Mwhich called the curvature vector field. It is well known that
if the curvature tensor ˜R is of the form (1.1), then the manifold is conformally flat. If β = 0,
then the manifold reduces to a space of constant curvature.

A nonflat Riemannian manifold of dimension n(> 2) is defined to be a quasi-Einstein
manifold [4] if its Ricci tensor satisfies the condition

˜Ric(X,Y ) = ag̃(X,Y ) + bφ(X)φ(Y ), (1.3)

where a, b are scalar functions such that b /= 0, and φ is a nonvanishing 1-form such that
g̃(X,U) = φ(X) for any vector field X, where U is a unit vector field. If b = 0, then
the manifold reduces to an Einstein manifold. It can be easily seen that every Riemannian
manifold of quasiconstant curvature is a quasi-Einstein manifold.

The subject of this paper is to study the geometry of lightlike submanifolds of a
semi-Riemannianmanifold (˜M, g̃) of quasiconstant curvature.We prove two characterization
theorems for such a lightlike submanifold (M,g, S(TM), S(TM⊥)) as follows.

Theorem 1.1. Let M be an r-lightlike submanifold of a semi-Riemannian manifold (˜M, g̃) of quasi-
constant curvature. If the curvature vector field ζ of ˜M is tangent toM and S(TM) is totally geodesic
inM, then one has the following results:

(1) if S(TM⊥) is a Killing distribution, then the functions α and β, defined by (1.1), vanish
identically. Furthermore, ˜M,M, and the leafM∗ of S(TM) are flat manifolds;

(2) if S(TM⊥) is a conformal Killing distribution, then the function β vanishes identically. Fur-
thermore, ˜M andM∗ are space of constant curvatures, andM is an Einstein manifold such
that Ric = (r/(m − r))g, where r is the induced scalar curvature ofM.

Theorem 1.2. Let M be an irrotational r-lightlike submanifold of a semi-Riemannian manifold
(˜M, g̃) of quasiconstant curvature. If ζ is tangent to M, S(TM) is totally umbilical in M, and
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S(TM⊥) is a conformal Killing distribution with a nonconstant conformal factor, then the function
β vanishes identically. Moreover, ˜M and M∗ are space of constant curvatures, and M is a totally
umbilical Einstein manifold such that Ric = (c/(m − r))g, where c is the scalar quantity of M.

2. Lightlike Submanifolds

Let (M,g) be an m-dimensional lightlike submanifold of an (m + n)-dimensional semi-
Riemannian manifold (˜M, g̃). We follow Duggal and Bejancu [1] for notations and results
used in this paper. The radical distribution Rad(TM) = TM ∩ TM⊥ is a vector subbundle of
the tangent bundle TM and the normal bundle TM⊥, of rank r (1 ≤ r ≤ min{m,n}). Then, in
general, there exist two complementary nondegenerate distributions S(TM) and S(TM⊥) of
Rad(TM) in TM and TM⊥, respectively, called the screen and coscreen distribution on M, and
we have the following decompositions:

TM = Rad(TM)⊕orthS(TM); TM⊥ = Rad(TM)⊕orthS
(

TM⊥
)

, (2.1)

where the symbol ⊕orth denotes the orthogonal direct sum. We denote such a lightlike
submanifold by M = (M,g, S(TM), S(TM⊥)). Let tr(TM) and ltr(TM) be complementary
(but not orthogonal) vector bundles to TM in T˜M|M and TM⊥ in S(TM)⊥, respectively, and
let {Ni} be a lightlike basis of Γ(ltr(TM)|U) consisting of smooth sections of S(TM)⊥|U , where
U is a coordinate neighborhood of M, such that

g̃
(

Ni, ξj
)

= δij , g̃
(

Ni,Nj

)

= 0, (2.2)

where {ξ1, . . . , ξr} is a lightlike basis of Γ(Rad(TM)). Then,

T˜M = TM ⊕ tr(TM) = {Rad(TM) ⊕ tr(TM)}⊕orthS(TM)

= {Rad(TM) ⊕ ltr(TM)}⊕orthS(TM)⊕orthS
(

TM⊥
)

.
(2.3)

We say that a lightlike submanifold (M,g, S(TM), S(TM⊥)) of ˜M is
(1) r-lightlike submanifold if 1 ≤ r < min{m,n},
(2) coisotropic submanifold if 1 ≤ r = n < m,
(3) isotropic submanifold if 1 ≤ r = m < n,
(4) totally lightlike submanifold if 1 ≤ r = m = n.

The above three classes (2)∼(4) are particular cases of the class (1) as follows: S(TM⊥) =
{0}, S(TM) = {0}, and S(TM) = S(TM⊥) = {0}, respectively.

Example 2.1. Consider in R
4
2 the 1-lightlike submanifold M given by equations

x3 =
1√
2

(

x1 + x2
)

, x4 =
1
2
log
(

1 +
(

x1 − x2
)2
)

, (2.4)
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then we have TM = span{U1, U2} and TM⊥ = {H1,H2}, where we set

U1 =
√
2
(

1 +
(

x1 − x2
)2
)

∂x1 +
(

1 +
(

x1 − x2
)2
)

∂x3 +
√
2
(

x1 − x2
)

∂x4,

U2 =
√
2
(

1 +
(

x1 − x2
)2
)

∂x2 +
(

1 +
(

x1 − x2
)2
)

∂x3 +
√
2
(

x1 − x2
)

∂x4,

H1 = ∂x1 + ∂x2 +
√
2∂x3,

H2 = 2
(

1 +
(

x2 − x1
)2
)

∂x2 +
√
2
(

x1 − x2
)

∂x3 +
(

1 +
(

x1 − x2
)2
)

∂x4.

(2.5)

It follows that Rad(TM) is a distribution on M of rank 1 spanned by ξ = H1. Choose S(TM)
and S(TM⊥) spanned by U2 and H2 where are timelike and spacelike, respectively. Finally,
the lightlike transversal vector bundle

ltr(TM) = Span
{

N =
1
2
∂x1 +

1
2
∂x2 +

1√
2
∂x3
}

(2.6)

and the transversal vector bundle

tr(TM) = Span{N,H2} (2.7)

are obtained.
Let ˜∇ be the Levi-Civita connection of ˜M and P the projection morphism of Γ(TM) on

Γ(S(TM)) with respect to the decomposition (2.1). For an r-lightlike submanifold, the local
Gauss-Weingartan formulas are given by

˜∇XY = ∇XY +
r
∑

i=1

h

i (X,Y )Ni +

n
∑

α=r+1

hs
α(X,Y )Wα, (2.8)

˜∇XNi = −ANiX +
r
∑

j=1

τij(X)Nj +
n
∑

α=r+1

ρiα(X)Wα, (2.9)

˜∇XWα = −AWαX +
r
∑

i=1

φαi(X)Ni +
n
∑

β=r+1

θαβ(X)Wβ, (2.10)

∇XPY = ∇∗
XPY +

r
∑

i=1

h∗
i (X, PY )ξi, (2.11)

∇Xξi = −A∗
ξi
X −

r
∑

j=1

τji(X)ξj , (2.12)

for any X,Y ∈ Γ(TM), where ∇ and ∇∗ are induced linear connections on TM and S(TM),
respectively, the bilinear forms h


i and hs
α onM are called the local lightlike second fundamental

form and local screen second fundamental form on TM, respectively, and h∗
i is called the local

radical second fundamental form on S(TM). ANi, A
∗
ξi
, and AWα are linear operators on Γ(TM),

and τij , ρiα, φαi, and θαβ are 1-forms on TM.
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Since ˜∇ is torsion-free, ∇ is also torsion-free and both h

i and hs

α are symmetric. From
the fact that h


i (X,Y ) = g̃( ˜∇XY, ξi), we know that h

i are independent of the choice of a screen

distribution. Note that h

i , τij , and ρiα depend on the section ξ ∈ Γ(Rad(TM)|U). Indeed, take

ξi =
∑r

j=1 aijξj , then we have d(tr(τij)) = d(tr(τ̃ij)) [5].
The induced connection ∇ on TM is not metric and satisfies

(∇Xg
)

(Y,Z) =
r
∑

i=1

{

h

i (X,Y )ηi(Z) + h


i (X,Z)ηi(Y )
}

, (2.13)

where ηi is the 1-form such that

ηi(X) = g̃(X,Ni), ∀X ∈ Γ(TM), i ∈ {1, . . . , r}. (2.14)

But the connection ∇∗ on S(TM) is metric. The above three local second fundamental forms
ofM and S(TM) are related to their shape operators by

h

i (X,Y ) = g

(

A∗
ξi
X, Y

)

−
r
∑

k=1

h

k(X, ξi)ηk(Y ), (2.15)

h

i (X, PY ) = g

(

A∗
ξi
X, PY

)

, g̃
(

A∗
ξi
X,Nj

)

= 0, (2.16)

εαh
s
α(X,Y ) = g(AWαX, Y ) −

r
∑

i=1

φαi(X)ηi(Y ), (2.17)

εαh
s
α(X, PY ) = g(AWαX, PY ), g̃(AWαX,Ni) = εαρiα(X), (2.18)

h∗
i (X, PY ) = g(ANiX, PY ), ηj(ANiX) + ηi

(

ANjX
)

= 0, (2.19)

and εβθαβ = −εαθβα, where X,Y ∈ Γ(TM). From (2.19), we know that the operators ANi are
shape operators related to h∗

i for each i, called the radical shape operators on S(TM). From
(2.16), we know that the operators A∗

ξi
are Γ(S(TM)) valued. Replace Y by ξj in (2.15), then

we have h

i (X, ξj) + h


j (X, ξi) = 0 for all X ∈ Γ(TM). It follows that

h

i (X, ξi) = 0, h


i

(

ξj , ξk
)

= 0. (2.20)

Also, replace X by ξj in (2.15) and use (2.20), then we have

h

i

(

X, ξj
)

= g
(

X,A∗
ξi
ξj
)

, A∗
ξi
ξj +A∗

ξj
ξi = 0, A∗

ξi
ξi = 0. (2.21)

Thus ξi is an eigenvector field of A∗
ξi
corresponding to the eigenvalue 0. For an r-lightlike

submanifold, replace Y by ξi in (2.17), then we have

hs
α(X, ξi) = −εαφαi(X). (2.22)
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From (2.15)∼(2.18), we show that the operators A∗
ξi
and AWα are not self-adjoint on

Γ(TM) but self-adjoint on Γ(S(TM)).

Theorem 2.2. Let (M,g, S(TM), S(TM⊥)) be an r-lightlike submanifold of a semi-Riemannian
manifold (˜M, g̃), then the following assertions are equivalent:

(i) A∗
ξi
are self-adjoint on Γ(TM) with respect to g, for all i,

(ii) h

i satisfy h



i (X, ξj) = 0 for all X ∈ Γ(TM), i and j,

(iii) A∗
ξi
ξj = 0 for all i and j, that is, the image of Rad(TM) with respect to A∗

ξi
for each i is a

trivial vector bundle,

(iv) h

i (X,Y ) = g(A∗

ξi
X, Y ) for all X,Y ∈ Γ(TM) and i, that is, A∗

ξi
is a shape operator on

M, related by the second fundamental form h

i .

Proof. From (2.15) and the fact that h

i are symmetric, we have

g
(

A∗
ξi
X, Y

)

− g
(

X,A∗
ξi
Y
)

=
r
∑

j=1

{

h

k(X, ξi)ηk(Y ) − h


k(Y, ξi)ηk(X)
}

. (2.23)

(i)⇔(ii). If h

i (X, ξj) = 0 for all X ∈ Γ(TM), i and j, then we have g(A∗

ξi
X, Y ) =

g(A∗
ξi
Y, X) for all X,Y ∈ Γ(TM), that is, A∗

ξi
are self-adjoint on Γ(TM) with respect to g.

Conversely, if A∗
ξi
are self-adjoint on Γ(TM)with respect to g, then we have

h

k(X, ξi)ηk(Y ) = h


k(Y, ξi)ηk(X), (2.24)

for all X,Y ∈ Γ(TM). Replace Y by ξj in this equation and use the second equation of (2.20),
then we have h


j (X, ξi) = 0 for all X ∈ Γ(TM), i and j.
(ii)⇔(iii). Since S(TM) is nondegenerate, from the first equation of (2.21), we have

h

i (X, ξj) = 0 ⇔ A∗

ξi
ξj = 0, for all i and j.

(ii)⇔(iv). From (2.16), we have h

i (X,Y ) = g(A∗

ξi
X, Y ) ⇔ h


j (X, ξi) = 0 for any X,Y ∈
Γ(TM) and for all i and j.

Corollary 2.3. Let (M,g, S(TM), S(TM⊥)) be a 1-lightlike submanifold of a semi-Riemannian
manifold (˜M, g̃), then the operators A∗

ξi
are self-adjoint on Γ(TM) with respect to g.

Definition 2.4. An r-lightlike submanifold (M,g, S(TM), S(TM⊥)) of a semi-Riemannian
manifold (˜M, g̃) is said to be irrotational if ˜∇Xξi ∈ Γ(TM) for any X ∈ Γ(TM) and i.

For an r-lightlike submanifoldM of ˜M, the above definition is equivalent to h

j (X, ξi) =

0 and hs
α(X, ξi) = 0 for anyX ∈ Γ(TM). In this case,A∗

ξi
are self-adjoint on Γ(TM)with respect

to g, for all i.
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We need the following Gauss-Codazzi equations (for a full set of these equations see
[1, chapter 5]) for M and S(TM). Denote by ˜R, R, and R∗ the curvature tensors of the Levi-
Civita connection ˜∇ of ˜M, the induced connection ∇ of M, and the induced connection ∇∗

on S(TM), respectively:

g̃
(

˜R(X,Y )Z, PW
)

= g(R(X,Y )Z, PW)

+
r
∑

i=1

{

h

i (X,Z)h∗

i (Y, PW) − h

i (Y,Z)h∗

i (X, PW)
}

+
n
∑

α=r+1

εα{hs
α(X,Z)hs

α(Y, PW) − hs
α(Y,Z)hs

α(X, PW)},

(2.25)

εαg̃
(

˜R(X,Y )Z,Wα

)

= (∇Xh
s
α)(Y,Z) − (∇Yh

s
α)(X,Z)

+
r
∑

i=1

{

h

i (Y,Z)ρiα(X) − h


i (X,Z)ρiα(Y )
}

+
n
∑

β=r+1

{

hs
β(Y,Z)θβα(X) − hs

β(X,Z)θβα(Y )
}

,

(2.26)

g̃
(

˜R(X,Y )Z,Ni

)

= g̃(R(X,Y )Z,Ni)

+
r
∑

j=1

{

h

j (X,Z)ηi

(

ANjY
)

− h

j (Y,Z)ηi

(

ANjX
)}

+
n
∑

α=r+1

εα
{

hs
α(X,Z)ρiα(Y ) − hs

α(Y,Z)ρiα(X)
}

,

(2.27)

g̃
(

˜R(X,Y )ξi,Nj

)

= g̃
(

R(X,Y )ξi,Nj

)

+
r
∑

k=1

{

h

k(X, ξi)ηj(ANkY ) − h


k(Y, ξi)ηj(ANkX)
}

+
n
∑

α=r+1

{

ρjα(X)φαi(Y ) − ρjα(Y )φαi(X)
}

= g
(

A∗
ξi
X,ANjY

)

− g
(

A∗
ξi
Y,ANjX

)

− 2dτji(X,Y )

+
r
∑

k=1

{

h

k(X, ξi)ηj(ANkY ) − h


k(Y, ξi)ηj(ANkX)
}

+
r
∑

k=1

{

τjk(X)τki(Y ) − τjk(Y )τki(X)
}

+
n
∑

α=r+1

{

ρjα(X)φαi(Y ) − ρjα(Y )φαi(X)
}

,

(2.28)

g̃(R(X,Y )PZ, PW) = g(R∗(X,Y )PZ, PW)

+
r
∑

i=1

{

h∗
i (X, PZ)h


i (Y, PW) − h∗
i (Y, PZ)h


i (X, PW)
}

,
(2.29)
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g(R(X,Y )PZ,Ni) =
(∇Xh

∗
i

)

(Y, PZ) − (∇Yh
∗
i

)

(X, PZ)

+
r
∑

j=1

{

h∗
j (X, PZ)τij(Y ) − h∗

j (Y, PZ)τij(X)
}

.
(2.30)

The Ricci tensor of ˜M is given by

˜Ric(X,Y ) = trace
{

Z −→ ˜R(Z,X)Y
}

, ∀X,Y ∈ Γ
(

T˜M
)

, (2.31)

for any X,Y ∈ Γ(T˜M). Let dim ˜M = m + n. Locally,˜Ric is given by

˜Ric(X,Y ) =
m+n
∑

i=1

εig̃
(

˜R(Ei, X)Y, Ei

)

, (2.32)

where {E1, . . . , Em+n} is an orthonormal frame field of T˜M. If dim(˜M) > 2 and

˜Ric = κ̃g̃, κ̃ is a constant, (2.33)

then ˜M is an Einstein manifold. If dim(˜M) = 2, any ˜M is Einstein, but κ̃ in (2.33) is
not necessarily constant. The scalar curvature r̃ is defined by

r̃ =
m+n
∑

i=1

εi˜Ric(Ei, Ei). (2.34)

Putting (2.33) in (2.34) implies that ˜M is Einstein if and only if

˜Ric =
r̃

m + n
g̃. (2.35)

3. The Tangential Curvature Vector Field

Let R(0,2) denote the induced Ricci tensor of type (0, 2) on M, given by

R(0,2)(X,Y ) = trace{Z −→ R(Z,X)Y}, ∀X,Y ∈ Γ
(

T˜M
)

. (3.1)

Consider an induced quasiorthonormal frame field

{ξ1, . . . , ξr ;N1, . . . ,Nr ;Xr+1, . . . , Xm;Wr+1, . . . ,Wn}, (3.2)
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where {Ni,Wα} is a basis of Γ(tr(TM)|U) on a coordinate neighborhood U of M such that
Ni ∈ Γ(ltr(TM)|U) andWα ∈ Γ(S(TM⊥)|U). By using (2.29) and (3.1), we obtain the following
local expression for the Ricci tensor:

˜Ric(X,Y ) =
n
∑

a=r+1

εag̃
(

˜R(Wa,X)Y,Wa

)

+
r
∑

i=1

g̃
(

˜R(ξi, X)Y,Ni

)

+
m
∑

b=r+1

εbg̃
(

˜R(Xb,X)Y,Xb

)

+
r
∑

i=1

g̃
(

˜R(Ni,X)Y, ξi
)

,

(3.3)

R(0,2)(X,Y ) =
m
∑

a=r+1

εag(R(Xa,X)Y,Xa) +
r
∑

i=1

g̃(R(ξi, X)Y,Ni). (3.4)

Substituting (2.25) and (2.27) in (3.3) and using (2.15)∼(2.18) and (3.4), we obtain

R(0,2)(X,Y ) =˜Ric(X,Y ) +
r
∑

i=1

h

i (X,Y ) trANi +

n
∑

α=r+1

hs
α(X,Y ) trAWα

−
r
∑

i=1

g
(

ANiX,A∗
ξi
Y
)

−
n
∑

α=r+1

εαg(AWαX,AWαY )

−
r
∑

i,j=1

h

j (ξi, Y )ηi

(

ANjX
)

+
r
∑

i=1

n
∑

α=r+1

ρiα(X)φαi(Y )

−
n
∑

α=r+1

εαg̃
(

˜R(Wα,X)Y,Wα

)

−
r
∑

i=1

g̃
(

˜R(ξi, Y )X,Ni

)

,

(3.5)

for anyX, Y ∈ Γ(TM). This shows thatR(0,2) is not symmetric. A tensor fieldR(0,2) ofM, given
by (3.1), is called its induced Ricci tensor if it is symmetric. From now and in the sequel, a
symmetric R(0,2) tensor will be denoted by Ric.

Using (2.28), (3.5), and the first Bianchi identity, we obtain

R(0,2)(X,Y ) − R(0,2)(Y,X) =
r
∑

i=1

{

g
(

A∗
ξi
X,ANiY

)

− g
(

A∗
ξi
Y,ANiX

)}

s

+
r
∑

i, j=1

{

h

j (X, ξi)ηi

(

ANjY
)

− h

j (Y, ξi)ηi

(

ANjY
)}

+
r
∑

i=1

n
∑

α=r+1

{

ρiα(X)φαi(Y ) − ρiα(Y )φαi(X)
}

−
r
∑

i=1

g̃
(

˜R(X,Y )ξi,Ni

)

.

(3.6)

From this equation and (2.28), we have

R(0,2)(X,Y ) − R(0,2)(Y,X) = 2d
(

tr
(

τij
))

(X,Y ). (3.7)
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Theorem 3.1 (see[5]). Let M be a lightlike submanifold of a semi-Riemannian manifold (˜M, g̃),
then the tensor field R(0,2) is a symmetric Ricci tensor Ric if and only if each 1-form tr(τij) is closed,
that is, d(tr(τij)) = 0, on any U ⊂ M.

Note 1. Suppose that the tensor R(0,2) is symmetric Ricci tensor Ric, then the 1-form tr(τij)
is closed by Theorem 3.1. Thus, there exist a smooth function f on U such that tr(τij) = df.
Consequently, we get tr(τij)(X) = X(f). If we take ˜ξi =

∑r
j=1 αijξj , it follows that tr(τij)(X) =

tr(τ̃ij)(X) + X(lnΔ). Setting Δ = exp(f) in this equation, we get tr(τ̃ij)(X) = 0 for any X ∈
Γ(TM|U). We call the pair {ξi,Ni}i on U such that the corresponding 1-form tr(τij) vanishes
the canonical null pair ofM.

For the rest of this paper, let M be a lightlike submanifold of a semi-Riemannian
manifold ˜M of quasiconstant curvature. We may assume that the curvature vector field ζ

of ˜M is a unit spacelike tangent vector field ofM and dim ˜M > 4,

˜Ric(X,Y ) =
{

(n +m − 1)α + β
}

g(X,Y ) + (n +m − 2)βθ(X)θ(Y ), (3.8)

g̃
(

˜R(ξi, Y )X,Ni

)

= αg(X,Y ) + βθ(X)θ(Y ), (3.9)

εαg̃
(

˜R(Wα, Y )X,Wα

)

= αg(X,Y ) + βθ(X)θ(Y ), (3.10)

for all X,Y ∈ Γ(TM). Substituting (3.8)∼(3.10) into (3.5), we have

R(0,2)(X,Y ) =
{

(m − 1)α + β
}

g(X,Y ) + (m − 2)βθ(X)θ(Y )

+
r
∑

i=1

h

i (X,Y ) trANi +

n
∑

α=r+1

hs
α(X,Y ) trAWα

−
r
∑

i=1

g
(

ANiX,A∗
ξi
Y
)

−
n
∑

α=r+1

εαg(AWαX,AWαY )

−
r
∑

i,j=1

h

j (ξi, Y )ηi

(

ANjX
)

+
r
∑

i=1

n
∑

α=r+1

ρiα(X)φαi(Y ).

(3.11)

Definition 3.2. We say that the screen distribution S(TM) of M is totally umbilical [1] in M if,
on any coordinate neighborhoodU ⊂ M, there is a smooth function γi such thatANiX = γi PX
for any X ∈ Γ(TM), or equivalently,

h∗
i (X, PY ) = γig(X,Y ), ∀X,Y ∈ Γ(TM). (3.12)

In case γi = 0 on U, we say that S(TM) is totally geodesic inM.
A vector field X on ˜M is said to be a conformal Killing vector field [6] if ˜LXg̃ = −2δg̃ for

any smooth function δ, where ˜LX denotes the Lie derivative with respect to X, that is,

(

˜LXg̃
)

(Y,Z) = X
(

g̃(Y,Z)
) − g̃([X,Y ], Z) − g̃(Y, [X,Z]), ∀X,Y,Z ∈ Γ

(

T˜M
)

. (3.13)
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In particular, if δ = 0, then X is called a Killing vector field [7]. A distribution G on ˜M is called
a conformal Killing (resp., Killing) distribution on ˜M if each vector field belonging to G is a
conformal Killing (resp., Killing) vector field on ˜M. If the coscreen distribution S(TM⊥) is a
Killing distribution, using (2.10) and (2.17), we have

g̃
(

˜∇XWα, Y
)

= −g(AWαX, Y ) +
r
∑

i=1

φαi(X)ηi(Y ) = −εαhs
α(X,Y ). (3.14)

Therefore, since hs
α are symmetric, we obtain

(

˜LWαg̃
)

(Y,Z) = −2εαhs
α(X,Y ). (3.15)

Theorem 3.3. Let M be an r-lightlike submanifold of a semi-Riemannian manifold (˜M, g̃), then the
coscreen distribution S(TM⊥) is a conformal Killing (resp., Killing) distribution if and only if there
exists a smooth function δα such that

hs
α(X,Y ) = εαδαg(X,Y ), {resp. hs

α(X,Y ) = 0, } ∀X,Y ∈ Γ(TM). (3.16)

Theorem 3.4. Let M be an irrotational r-lightlike submanifold of a semi-Riemannian manifold
(˜M, g̃) of quasiconstant curvature. If the curvature vector field ζ of ˜M is tangent to M, S(TM)
is totally umbilical inM, and S(TM⊥) is a conformal Killing distribution, then the tensor field R(0,2)

is an induced symmetric Ricci tensor of M.

Proof. From (2.17)∼(2.20), (2.22), (3.16), and (3.11), we have

hs
α(X,Y ) = εαδαg(X,Y ), φαi(X) = 0, AWαX = δαPX +

r
∑

i=1

εαρiα(X)ξi, (3.17)

R(0,2)(X,Y ) =

{

(m − 1)α + β + (m − r − 1)
n
∑

α=r+1

εαδ
2
α +

n
∑

α=r+1

r
∑

i=1

δαρiα(ξi)

}

g(X,Y )

+ (m − 2)β θ(X)θ(Y )

+ (m − r − 1)
r
∑

i=1

γig
(

A∗
ξi
X, Y

)

, ∀X,Y ∈ Γ(TM).

(3.18)

Using (3.17), we show that R(0,2) is symmetric.

4. Proof of Theorem 1.1

As h∗
i = 0, we get g̃(R(X,Y )PZ,Ni) = 0 by (2.30). From (2.27) and (3.16), we have

g̃
(

˜R(X,Y )PZ,Ni

)

=
n
∑

α=r+1

δα
{

g(X, PZ)ρiα(Y ) − g(Y, PZ)ρiα(X)
}

. (4.1)
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By Theorems 3.1 and 3.4, we get dτ = 0 on TM. Thus, we have g̃( ˜R(X,Y )ξi,Ni) = 0 due to
(2.28). From the above results, we deduce the following equation:

g̃
(

˜R(X,Y )Z,Ni

)

=
n
∑

α=r+1

δα
{

g(X, PZ)ρiα(Y ) − g(Y, PZ)ρiα(X)
}

. (4.2)

Taking X = ξi and Z = X to (4.2) and then comparing with (3.9), we have

βθ(X)θ(Y ) = −
{

α +
n
∑

α=r+1

δαρiα(ξi)

}

g(X,Y ), ∀X,Y ∈ Γ(TM). (4.3)

Case 1. If S(TM⊥) is a Killing distribution, that is, δα = 0, then we have

βθ(X)θ(Y ) = −αg(X,Y ), ∀X,Y ∈ Γ(TM). (4.4)

Substituting (4.3) into (1.1) and using (2.25) and the facts g̃( ˜R(X,Y )Z, ξi) = 0 and
g̃( ˜R(X,Y )Z,Ni) = 0 due to (1.1), we have

R(X,Y )Z = −α{g(Y,Z)X − g(X,Z)Y
}

, ∀X,Y,Z ∈ Γ(TM). (4.5)

Thus, M is a space of constant curvature −α. Taking X = Y = ζ to (4.3), we have β = −α.
Substituting (4.3) into (3.18) with δα = γi = 0, we have

Ric(X,Y ) = 0, ∀X,Y ∈ Γ(TM). (4.6)

On the other hand, substituting (4.5) and g(R(ξi, Y )X,Ni) = 0 into (3.4), we have

Ric(X,Y ) = − (m − 1)αg(X,Y ), ∀X,Y ∈ Γ(TM). (4.7)

From the last two equations, we get α = 0 as m > 1. Thus, β = 0, and ˜M and M are flat
manifolds by (1.1) and (4.5). From this result and (2.29), we show that M∗ is also flat.

Case 2. If S(TM⊥) is a conformal Killing distribution, assume that β /= 0. Taking X = Y = ζ to
(4.3), we have β = −{α +

∑n
α=r+1 δαρiα(ξi)}. From this and (4.3), we show that

g(X,Y ) = θ(X)θ(Y ), ∀X,Y ∈ Γ(TM). (4.8)

Substituting (4.8) into (1.1) and using (2.25) with h∗
i = 0 and (3.16), we have

g(R(X,Y )Z,W) =

(

α + 2β +
n
∑

α=r+1

εαδ
2
α

)

{

g(Y,Z)g(X,W) − g(X,Z)g(Y,W)
}

, (4.9)
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for all X,Y,Z,W ∈ Γ(TM). Substituting (4.8) into (3.18)with γi = 0, we have

Ric(X,Y ) = (m − r − 1)

{

α + β +
n
∑

α=r+1

εαδ
2
α

}

g(X,Y ), ∀X,Y ∈ Γ(TM), (4.10)

by the fact that
∑n

α=r+1 δαρiα(ξi) = −(α+β). On the other hand, from (2.27), (3.9), and (4.3), we
have g(R(ξi, Y )X, Ni) = 0. Substituting this result and (4.9) into (3.4), we have

Ric(X,Y ) = (m − r − 1)

{

α + 2β +
n
∑

α=r+1

εαδ
2
α

}

g(X,Y ), ∀X,Y ∈ Γ(TM). (4.11)

The last two equations imply β = 0 as m − r > 1. It is a contradiction. Thus, β = 0 and
˜M is a space of constant curvature α. From (2.29) and (4.9), we show that M∗ is a space of
constant curvature (α +

∑n
α=r+1 εαδ

2
α). But M is not a space of constant curvature by (3.17)3.

Let κ = (m − r − 1)(α +
∑n

α=r+1 εαδ
2
α), then the last two equations reduce to

R(0,2)(X,Y ) = Ric(X,Y ) = κg(X,Y ), ∀X,Y ∈ Γ(TM). (4.12)

Thus M is an Einstein manifold. The scalar quantity r of M [8], obtained from R(0,2) by the
method of (2.34), is given by

r =
r
∑

i=1

R(0,2)(ξi, ξi) +
m
∑

a=r+1

εaR
(0,2)(Xa,Xa). (4.13)

Since M is an Einstein manifold satisfying (4.12), we obtain

r = κ
r
∑

i=1

g(ξi, ξi) + κ
m
∑

a=r+1

εag(Xa,Xa) = κ(m − r). (4.14)

Thus, we have

Ric(X,Y ) =
r

m − r
g(X,Y ) , (4.15)

which provides a geometric interpretation of half lightlike Einstein submanifold (the same as
in Riemannian case) as we have shown that the constant κ = r/(m − r).
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5. Proof of Theorem 1.2

Assume that ζ is tangent toM, S(TM) is totally umbilical, and S(TM⊥) is a conformal Killing
vector field. Using (1.1), (2.26) reduces to

(∇Xh
s
α)(Y,Z) − (∇Yh

s
α)(X,Z) =

r
∑

i=1

{

h

i (X,Z)ρiα(Y ) − h


i (Y,Z)ρiα(X)
}

+
n
∑

β=r+1

{

hs
β(X,Z)θβα(Y ) − hs

β(Y,Z)θβα(X)
}

,

(5.1)

for all X,Y,Z ∈ Γ(TM). Replacing W byN to (1.1), we have

g̃
(

˜R(X,Y )Z,Ni

)

=
{

αηi(X) + eiβθ(X)
}

g(Y,Z)

− {αηi(Y ) + eiβθ(Y )
}

g(X,Z) + β
{

θ(Y )ηi(X) − θ(X)ηi(Y )
}

θ(Z),
(5.2)

for all X,Y,Z ∈ Γ(TM) and where ei = θ(Ni). Applying ∇X to (3.12) and using (2.13), we
have

(∇Xh
∗
i

)

(Y, PZ) =
(

X
[

γi
])

g(Y, PZ) + γi
r
∑

j=1

h

j (X, PZ)ηj(Y ), (5.3)

for all X,Y,Z ∈ Γ(TM). Substituting this equation into (2.30), we obtain

g̃(R(X,Y )PZ,Ni) =

⎧

⎨

⎩

X
[

γi
] −

r
∑

j=1

γjτij(X)

⎫

⎬

⎭

g(Y, PZ) −
⎧

⎨

⎩

Y
[

γi
] −

r
∑

j=1

γjτij(Y )

⎫

⎬

⎭

g(X, PZ)

+ γi
r
∑

j=1

h

j (X, PZ)ηj(Y ) − γi

r
∑

j=1

h

j (Y, PZ)ηj(X), ∀X,Y,Z ∈ Γ(TM).

(5.4)

Substituting this equation and (5.2) into (2.27) and using θ(ξi) = 0, we obtain

⎧

⎨

⎩

X
[

γi
] −

r
∑

j=1

γjτij(X) − αηi(X) − eiβθ(X) −
n
∑

α=r+1

δαρiα(X)

⎫

⎬

⎭

g(Y,Z)

−
⎧

⎨

⎩

Y
[

γi
] −

r
∑

j=1

γjτij(Y ) − αηi(Y ) − eiβθ(Y ) −
n
∑

α=r+1

δαρiα(Y )

⎫

⎬

⎭

g(X,Z)

= γi

⎧

⎨

⎩

r
∑

j=1

h

j (Y, PZ)ηj(X) −

r
∑

j=1

h

j (X, PZ)ηj(Y )

⎫

⎬

⎭

+ β
{

θ(Y )ηi(X) − θ(X)ηi(Y )
}

θ(Z), ∀X,Y,Z ∈ Γ(TM).

(5.5)
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Replacing Y by ξi to this and using (2.20)1 and the fact θ(ξi) = 0, we have

γih


i (X,Y ) =

⎧

⎨

⎩

ξi
[

γi
] −

r
∑

j=1

γjτij(ξi) − α −
n
∑

α=r+1

δαρiα(ξi)

⎫

⎬

⎭

g(X,Y ) − βθ(X)θ(Y ), (5.6)

for all X,Y ∈ Γ(TM). Differentiating (3.16) and using (5.1), we have

r
∑

i=1

{

δαηi(X) − εαρiα(X)
}

h

i (Y,Z) −

r
∑

i=1

{

δαηi(Y ) − εαρiα(Y )
}

h

i (X,Z)

=

⎧

⎨

⎩

X[δα] + εα
n
∑

β=r+1

εβδβθβα(X)

⎫

⎬

⎭

g(Y,Z)

−
⎧

⎨

⎩

Y [δα] + εα
n
∑

β=r+1

εβδβθβα(Y )

⎫

⎬

⎭

g(X,Z).

(5.7)

Replacing Y by ξi in the last equation and using (2.20)1, we obtain

{

δα − εαρiα(ξi)
}

h

i (X,Z) =

⎧

⎨

⎩

ξi[δα] + εα
n
∑

β=r+1

εβδβθβα(ξi)

⎫

⎬

⎭

g(X,Z). (5.8)

As the conformal factor δα is nonconstant, we show that δα − εαρiα(ξi)/= 0. Thus, we have

h

i (X,Y ) = σig(X,Y ), ∀X,Y ∈ Γ(TM), (5.9)

where σi = {ξi[δα] + εα
∑n

β=r+1 εβδβθβα(ξi)}(δα − εαρiα(ξi))
−1. From (3.17)1 and (5.9), we

show that the second fundamental form tensor h, given by h(X,Y ) =
∑r

i=1 h


i (X,Y )Ni +

∑n
α=r+1 h

s
α(X,Y )Wα, satisfies

h(X,Y ) = Hg(X,Y ), ∀X,Y ∈ Γ(TM). (5.10)

Thus, M is totally umbilical [5]. Substituting (5.9) into (5.6), we have

⎧

⎨

⎩

ξi
[

γi
] −

r
∑

j=1

γjτij(ξi) − γiσi − α −
n
∑

α=r+1

δαρiα(ξi)

⎫

⎬

⎭

g(X,Y ) = βθ(X)θ(Y ), (5.11)

for all X,Y ∈ Γ(TM). Taking X = Y = ζ to this equation, we have

β = ξi
[

γi
] −

r
∑

j=1

γjτij(ξi) − γiσi − α −
n
∑

α=r+1

δαρiα(ξi). (5.12)
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Assume that β /= 0, then we have

g(X,Y ) = θ(X)θ(Y ), ∀X,Y ∈ Γ(TM). (5.13)

Substituting (5.13) into (1.1) and using (2.25), (3.12), (3.17)1, and (5.9), we have

g(R(X,Y )Z,W)

=

(

α + 2β +
r
∑

i=1

σiγi +
n
∑

α=r+1

εαδ
2
α

)

{

g(Y,Z)g(X,W) − g(X,Z)g(Y,W)
}

,
(5.14)

for all X,Y,Z,W ∈ Γ(TM). Substituting (5.9) and (5.13) into (3.18), we have

Ric(X,Y ) =

{

(m − 1)
(

α + β
)

+ (m − r − 1)

(

r
∑

i=1

σiγi +
n
∑

α=r+1

εαδ
2
α

)

+
n
∑

α=r+1

r
∑

i=1

δαρiα(ξi)

}

g(X,Y ).

(5.15)

On the other hand, substituting (5.14) and the fact that

g̃(R(ξi, Y )X,Ni) =

{

α + β +
n
∑

α=r+1

εαδαρiα(ξi)

}

g(X,Y ) (5.16)

into (3.4), we have

Ric(X,Y ) =

{

(m − 1)α + 2(m − 1)β + (m − r − 1)

(

r
∑

i=1

σiγi +
n
∑

α=r+1

εαδ
2
α

)

+
n
∑

α=r+1

r
∑

i=1

δαρiα(ξi)

}

g(X,Y ).

(5.17)

Comparing (5.15) and (5.17), we obtain (m − 1)β = 0. As m > 1, we have β = 0, which is a
contradiction. Thus, we have β = 0. Consequently, by (1.1), (2.29), and (5.14), we show that
˜M andM∗ are spaces of constant curvatures α and (α+2

∑r
i=1 σiγi+

∑n
α=r+1 εαδ

2
α), respectively.

Let

κ =

{

(m − 1)α + (m − r − 1)

(

r
∑

i=1

σiγi +
n
∑

α=r+1

εαδ
2
α

)

+
n
∑

α=r+1

r
∑

i=1

δαρiα(ξi)

}

, (5.18)

then (5.15) and (5.17) reduce to

R(0,2)(X,Y ) = Ric(X,Y ) = κg(X,Y ), ∀X,Y ∈ Γ(TM). (5.19)
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Thus, M is an Einstein manifold. The scalar quantity c of M is given by

c =
r
∑

i=1

R(0,2)(ξi, ξi) +
m
∑

a=r+1

εaR
(0,2)(Xa,Xa)

=
r
∑

i=1

κg(ξi, ξi) + κ
m
∑

a=r+1

εa g(Xa,Xa) = κ(m − r).
(5.20)

Thus, we have

Ric(X,Y ) =
c

m − r
g(X,Y ). (5.21)

Example 5.1. Let (M,g) be a lightlike hypersurface of an indefinite Kenmotsu manifold
M equipped with a screen distribution S(TM), then there exist an almost contact metric
structure (J, ζ, ϑ, g) onM, where J is a (1, 1)-type tensor field, ζ is a vector field, ϑ is a 1-form,
and g is the semi-Riemannian metric on M such that

J2X = −X + ϑ(X)ζ, Jζ = 0, ϑ ◦ J = 0, ϑ(ζ) = 1,

ϑ(X) = g(ζ,X), g(JX, JY ) = g(X,Y ) − ϑ(X)ϑ(Y ),

∇Xζ = −X + ϑ(X)ζ,
(

∇XJ
)

Y = −g(JX, Y )ζ + ϑ(Y )JX,

(5.22)

for any vector fields X, Y on M, where ∇ is the Levi-Civita connection of M. Using the
local second fundamental forms B and C of M and S(TM), respectively, and the projection
morphism P of M on S(TM), the curvature tensors R, R, and R∗ of the connections ∇, ∇,
and ∇∗ on M, M, and S(TM), respectively, are given by (see [9])

g
(

R(X,Y )Z, PW
)

= g(R(X,Y )Z, PW)

+ B(X,Z)C(Y, PW) − B(Y,Z)C(X, PW),

g(R(X,Y )PZ, PW) = g(R∗(X,Y )PZ, PW)

+ C(X, PZ)B(Y, PW) − C(Y, PZ)B(X, PW),

(5.23)

for anyX,Y,Z,W ∈ Γ(TM). In case the ambient manifoldM is a space formM(c) of constant
J-holomorphic sectional curvature c, R is given by (see [10])

R(X,Y )Z = g(X,Z)Y − g(Y,Z)X. (5.24)

Assume that M is almost screen conformal, that is,

C(X, PY ) = ϕB(X, PY ) + η(X)ϑ(Y ), (5.25)
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where ϕ is a nonvanishing function on a neighborhood U in M, and ζ is tangent to M, then,
by the method in Section 2 of [9], we have

B(X,Y ) = ρ
{

g(X,Y ) − ϑ(X)ϑ(Y )
}

, (5.26)

where ρ is a nonvanishing function on a neighborhood U. Then the leaf M∗ of S(TM) is a
semi-Riemannian manifold of quasiconstant curvature such that α = −1 + 2ϕρ2, β = −2ϕρ2,
and θ = ϑ in (1.1).
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