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Diffuse optical tomography is used to find the optical parameters of a turbidmediumwith infrared
red light. The problem is mathematically formulated as a nonlinear problem to find the solution
for the diffusion operator mapping the optical coefficients to the photon density distribution on
the boundary of the region of interest, which is also represented by the Born expansion with
respect to the unperturbed photon densities and perturbed optical coefficients. We suggest a new
method of finding the solution by using the second-order Born approximation of the operator.
The error analysis for the suggested method based on the second-order Born approximation is
presented and compared with the conventional linearized method based on the first-order Born
approximation. The suggested method has better convergence order than the linearized method,
and this is verified in the numerical implementation.

1. Introduction

Diffuse optical tomography involves the reconstruction of the spatially varying optical pro-
perties of a turbidmedium. It is usually formulated as inverse problemwith respect to the for-
ward problem describing photon propagation in the tissue for given optical coefficients [1].

The forward model is described by the photon diffusion equation with the Robin
boundary condition. In the frequency domain, it is given by

−∇ · (κ∇Φ) +
(
μa +

iω

c

)
Φ = q in Ω,

Φ + 2aν · (κ∇Φ) = 0 on ∂Ω,

(1.1)

where Ω is a Lipschitz domain in R
n, n = 2, 3, . . ., ∂Ω is its boundary, ν is the unit outward

normal vector on the boundary, Φ is the photon density, q is a source term, a is a refraction
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parameter, and μa, μ′
s, and κ = 1/3(μa + μ′

s) are the absorption, reduced scattering, and
diffusion coefficients, respectively. Assume that a is a constant and κ, μa, μ′

s are scalar func-
tions satisfying

0 < L ≤ κ, μa, μ
′
s, a ≤ U (1.2)

for positive constants L andU. The unique determination of the optical coefficients is studied
in electrical impedance tomography problem [2–5] and some elliptic problem [6], which is
applicable to diffuse optical tomography problem also. Let us denote x = (μa, κ) and Φ =
Φ(x) to emphasize the dependence of Φ on the optical coefficient x.

Assuming we know some a priori information x0 about the structural optical co-
efficients x and the perturbation of the optical coefficients δx = x − x0, the diffuse optical
tomography problem is to find the perturbation of the optical coefficients δx from the differ-
ence Φ(x + δx) − Φ(x) between the perturbed and unperturbed photon density distribution
on the boundary ∂Ω. The relation between δx andΦ(x+ δx)−Φ(x) is given by the following
Born expansion [7, 8]:

Φ(x + δx) −Φ(x) = R1(x, δx) + R2
(
x, (δx)2

)
+ · · · , (1.3)

where

R0(x) = Φ(x),

Ri
(
(δx)i

)
= R
(
δx,Ri−1

(
(δx)i−1, f

))
, i = 1, 2, . . . ,

R(δx, f) = Rμa

(
δx, f

)
+ Rκ

(
δx, f

)
,

Rμa

(
δx, f

)
=
∫
Ω
δμa

(
η
)
R
(·, η)f(η)dη,

Rκ

(
δx, f

)
=
∫
Ω
δκ
(
η
)∇R

(·, η) · ∇f
(
η
)
dη,

(1.4)

and R(·, η) is the Robin function for a source at η, which is the solution of (1.1) for the optical
coefficient x when q is the Dirac delta function. By definition of (1.4), the operator R and R1

are different in the following sense:

R1(δx) = R
(
δx,R0

)
= R(δx,Φ). (1.5)

Let the perturbation of the coefficients be δx† whenwe neglect second-order terms and higher
in the Born expansion (1.3). We can then formulate the linearized diffuse optical tomography
problem to find δx† from the following equation, which is the first-order Born approximation:

R1
(
δx†
)
= Φ(x + δx) −Φ(x). (1.6)
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This linearized diffuse optical tomography problem is simple to implement and widely used
[9, 10].

In this paper, a new method, which is more accurate than the linearized method, will
be suggested (1.6), which is based on the second-order Born approximation. And the method
is faster than the full nonlinear method [11]. Let the solution of the proposed method in this
paper be δxB, and let δx be sufficiently small. Then, the error for the linearized solution δx†

and the proposed solution δxB is given by

∥∥∥δx† − δx
∥∥∥
A
≤ C†‖δx‖2A , (1.7a)∥∥∥δxB − δx

∥∥∥
A
≤ CB‖δx‖3A , (1.7b)

whereA = L∞(Ω)×L∞(Ω) and C† and CB are constants which are independent of δx. Hence,
the error of the proposed solution xB in (1.7b) is of the order O(‖δx‖3A), which is higher than
the order of the error of the linearized solution x†, O(‖δx‖2A).

The detailed statement with proof will be proved in Section 2. Numerical algorithm
involving the detailed computation of the second-order term is given in Section 3. Numerical
implementation of the proposed method and the linearized method is given in Section 4, and
the conclusion of the paper is given in Section 5.

2. Error Analysis

Instead of solving linearized solution δx† in (1.6), we suggest the second order solution δxB

satisfying

R1
(
δxB
)
= (Φ(x + δx) −Φ(x)) − R2

(
δx†
)2
, (2.1)

or equivalently,

R1
(
δxB − δx†

)
= −R2

(
δx†
)2
. (2.2)

In this section, we analyze the error for the linearized solution δx† and the suggested solution
δxB.

Let B = H1(Ω); then, the operator R and Ri, i = 1, 2, . . ., are considered to be the

operators from A × B → B and Ai(=

i times︷ ︸︸ ︷
A × · · · × A) → B, respectively, by the definition given

in (1.4). For the detailed explanation about the definitions of higher-order Fréchet derivative
in diffuse optical tomography and its relation to the Born expansion, see [7].

Proposition 2.1. Let Φ be the solution of (1.1) for the given optical coefficients μa, κ, source q, and
modulating frequency ω. Then one gets the following relation between the operators between R and
Ri, i = 1, 2, . . .:

∥∥∥Ri
∥∥∥
Ai →B

≤ ‖R‖iA×B→B‖Φ‖B (2.3)

for i = 1, 2, . . ..
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Proof. By the induction argument on i = 1, 2, . . . and using (1.5), we get the following ine-
quality:

∥∥∥R1
∥∥∥
A→B

≤ ‖R‖A×B→B‖Φ‖B , (2.4)

which is (2.3) for i = 1. Suppose that (2.3) holds for i = 1, 2, . . . , I − 1. Then we obtain

∥∥∥RI(δx)I
∥∥∥
B
≤ ‖R‖A×B→B‖δx‖A

∥∥∥RI−1(δx)I−1
∥∥∥
B

≤ ‖R‖A×B→B‖δx‖A
∥∥∥RI−1

∥∥∥
AI−1

‖δx‖I−1A

≤ ‖R‖IA×B→B‖δx‖IA‖Φ‖B.

(2.5)

Using (2.5) and the definition of the operator norm ‖ · ‖AI →B, we obtain (2.3) for i = I.
Therefore, by the induction argument, we have proved (2.3) for i = 1, 2, . . ..

By [7], ‖R‖A×B→B is bounded, and thus ‖Ri‖Ai →B, i = 1, 2, . . ., are also bounded by
Proposition 2.1. Let us assume that there exists a bounded operator (R1)† from B to A such
that (R1)†(R1) = idA. (R1)† is usually called the left inverse of R1. Let us denote

‖δx‖ := ‖δx‖A ,

‖Φ(x)‖ := ‖Φ(x)‖B ,
‖R‖ := ‖R‖A×B→B ,∥∥∥Ri

∥∥∥ :=
∥∥∥Ri
∥∥∥
Ai →B

, i = 1, 2, . . . ,

∥∥∥∥
(
R1
)†∥∥∥∥ :=

∥∥∥∥
(
R1
)†∥∥∥∥

B→A
,

(2.6)

for brevity.
Using Proposition 2.1 and the assumption on the left inverse, the main theorem of this

paper is given as follows.

Theorem 2.2. Assume that there exists (R1)† such that (R1)†R1 = id and ‖(R1)†‖ is bounded, and
let

‖δx‖ ≤ 1
2‖R‖ . (2.7a)

Then,

∥∥∥δx† − δx
∥∥∥ ≤ C†‖δx‖2, (2.7b)

∥∥∥δxB − δx
∥∥∥ ≤ CB‖δx‖3, (2.7c)
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where

C† := 2
∥∥∥∥
(
R1
)†∥∥∥∥‖R‖2‖Φ‖,

CB :=

(
C†)3
4‖R‖ +

(
C†
)2

+ ‖R‖C† = C†‖R‖
(

C†

2‖R‖ + 1

)2

.

(2.8)

Proof. By (1.3) and (1.6), we obtain

R1
(
δx† − δx

)
= R2(δx)2 +R3(δx)3 + · · · . (2.9)

Therefore we arrive at (2.7b) by the following inequality:

∥∥∥δx† − δx
∥∥∥ ≤
∥∥∥∥
(
R1
)†∥∥∥∥(‖R‖‖δx‖)

2‖Φ‖
1 − (‖R‖‖δx‖) ≤ C†‖δx‖2. (2.10)

From (2.7a) and (2.7b), we obtain the following upper bound of ‖δx†‖:

∥∥∥δx†
∥∥∥ ≤
(
1 + C†‖δx‖

)
‖δx‖ ≤

(
1 +
∥∥∥(R1

)+∥∥∥‖R‖‖Φ‖
)
‖δx‖. (2.11)

Using (2.2) and (2.9), we obtain

R1
(
δx − δxB

)
= R2(δx)2 − R2

(
δx†
)2

+R3(δx)3 + R4(δx)4 + · · · . (2.12)

The second-order term on the righthand side of (2.12) is analyzed as follows:

R2(δx)2 − R2
(
δx†
)2

= R(δx,R(δx,Φ)) − R
(
δx†,R

(
δx†,Φ

))

= R
(
δx,R

(
δx − δx†,Φ

))
+ R
(
δx − δx†,R

(
δx†,Φ

))
.

(2.13)

From (2.12), we obtain

∥∥∥δx − δxB
∥∥∥ ≤
∥∥∥∥
(
R1
)†∥∥∥∥
[∥∥∥∥R2(δx)2 − R2

(
δx†
)2∥∥∥∥ +

∥∥∥R3(δx)3 +R4(δx)4 + · · ·
∥∥∥
]
. (2.14)
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(I) Compute the solution Φ(x) and the Robin function R(x) and its first
and second derivatives.

(II) Find δx† by solving R1(δx†) = Φ(x + δx) −Φ(x) as in (1.6).
(III) Find δxΔ = δxB − δx† by solving R1(δxΔ) = −R2(δx†) as in (2.2).
(IV) Compute δxB by adding δx† and δxΔ.

Algorithm 1: Numerical algorithm (continuous version).

By using (2.3), (2.10), (2.11), (2.13), and the definition of C†, (2.7c) is achieved from (2.14) as
follows:

∥∥∥δx − δxB
∥∥∥ ≤
∥∥∥∥
(
R1
)†∥∥∥∥‖Φ‖

[
‖R‖2

∥∥∥δx − δx†
∥∥∥(‖δx‖ + ∥∥∥δx†

∥∥∥) + (‖R‖‖δx‖)3
1 − ‖R‖‖δx‖

]

≤
∥∥∥∥
(
R1
)†∥∥∥∥‖Φ‖‖R‖2‖δx‖3

[
C†
(
2 +
∥∥∥∥
(
R1
)†∥∥∥∥‖R‖‖Φ‖

)
+ 2‖R‖

]

≤ C†‖δx‖3
[
C†
(
1 +

C†

4‖R‖

)
+ ‖R‖

]

≤ CB‖δx‖3.

(2.15)

3. Numerical Algorithm

Assume that we canmeasure the photon density distributionΦ(x+δx) andΦ(x) on the entire
boundary ∂Ω. That is to say, we have infinite detectors and one source. Then, the numerical
algorithm is given as follows.

The detailed computation of the integral operators R1 and R2, which is introduced in
(1.5), is as follows:

R1(δx) = Rμa

(
δμa,Φ

)
+Rκ(δκ,Φ), (3.1a)

R2(δx) = Rμa

(
δμa,Rμa

(
δμa,Φ

))
+Rμa

(
δμa,Rκ(δκ,Φ)

)
,

+ Rκ

(
δκ,Rμa

(
δμa,Φ

))
+ Rκ(δκ,Rκ(δκ,Φ)).

(3.1b)

3.1. Discretization

Algorithm 1 is based on one source and infinite detectors. However, for practical reasons, we
need to discretize Algorithm 1 to obtain the numerical algorithm for finite sources and finite
detectors for finite frequencies. The following notations will be used for the discretization:

(i) Nd detector positions: rid for id = 1, 2, . . . ,Nd,

(ii) Ns source functions: qis = δis(Dirac delta function) for is = 1, 2, · · · ,Ns,

(iii) Nω frequencies: ωiω for iω = 1, 2, . . . ,Nω,
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(iv) Ne elements: Tie for ie = 1, 2, . . . ,Ne,

(v) Nn nodes: tin for in = 1, 2, . . . ,Nn,

(vi) the measurement index: j = (iω − 1)NsNd + (is − 1)Nd + id,

(vii) the optical coefficient index: k = (iμκ − 1)Ne + ie, where iμκ is 1 (the absorption
coefficient) or 2 (the diffusion coefficient).

If we use piecewise linear or bilinear finite element method, the finite element solution
is represented by

uh(x) =
Nn∑
in=1

uh(in)φin(x), (3.2)

where φin is the piecewise linear or the bilinear function which is 1 on the inth node and 0 on
all the other nodes. Assume μa and κ are piecewise constant function, which is constant for
each Ne finite elements. Therefore, in diffuse optical tomography inverse problem, we have
NωNsNd measurement information contents and 2Ne variables to find.

We should discretize R1 and R2 to obtain a discretized version of Algorithm 1. Let the
Jacobian and Hessian matrices, which is the discretization of integral operators R1 and R2, be
J andH. The relation between higher order derivatives for the diffusion operator and higher
order terms of Born expansions including R1 and R2 is analyzed in [7].

Firstly, let us discretize δx, Φ, and the Robin function R as follows:

δx ≈
(

Ne∑
ie=1

δμieχTie ,
Ne∑
ie=1

δκieχTie

)
, (3.3a)

Φiω,is ≈
Nn∑
in=1

Φiω,is
in

φin , (3.3b)

Riω(·, ris) ≈
Nn∑
in=1

Riω,is
in

φin . (3.3c)

Since we chose the source function qs as the Dirac delta function at the isth source point,
Φiω,is = Riω(·, ris). However, we will discriminate these two functions in this paper, since they
are different for general source function qwhich is different from the Dirac delta function. We
will use δμ instead of δμa for notational convenience.

Let the vector γ0 which corresponds to the discretization of δx in (3.3a) be defined as

γ0 =
(
δμ1, δμ2, . . . , δμNe , δκ1, δκ2, . . . , δκNe

)
. (3.4)

By the adjoint method [12], Riω(rid , ·) = (Riω(·, rid))∗, where ∗ denotes complex conjugate.
Likewise for (3.3a), let γ , γ†, γΔ, and γB be the discretization of δx, δx†, δxΔ, and δxB,
respectively.
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For a function f and a measurable set T , let us denote f ∈ T if the intersection of the
support of f and T is not empty. The discretization of the linearized solution γ† is attained by
solving the following equation:

Jγ† = b, (3.5)

where

J
(
j, k
)
=
∑

φin1∈Tie

∑
φin2∈Tie

(
Riω,id

in1

)∗
Eie(in1, in2)Φ

iω,is
in2

when iμκ = 1,

J
(
j, k
)
=
∑

φin1∈Tie

∑
φin2∈Tie

− 3
(
Riω,id

in1

)∗
κ2
ie
Fie(in1, in2)Φ

iω,is
in2

when iμκ = 2,

b
(
j
)
= Φiω,is(x + δx)(rid) −Φiω,is(x)(rid),

Eie(in1, in2) =
∫
Tie

φin1(ξ)φin2(ξ)dξ,

Fie(in1, in2) =
∫
Tie

∇φin1(ξ) · ∇φin2(ξ)dξ.

(3.6)

The discretized solution γΔ is obtained by solving the following equation:

JγΔ =
(
γ†
)t
Hγ†, (3.7)

where

H
(
j, ie1, ie2

)
=
∑

φin1∈Tie1

∑
φin2∈Tie2

(
Riω,id

in1

)∗(
Hμμ +Hμκ +Hκμ +Hκκ

)
(ie1, ie2 ; in1, in2)Φ

iω,is
in2

, (3.8)

where Hμμ, Hμκ, Hκμ, and Hκκ are the discretization of corresponding terms in (3.1b) such
that

Hμμ(ie1, ie2; in1, in2) =
∫
Tie1

∫
Tie2

φin1(ξ)R
iω
(
ξ, η
)
φin2

(
η
)
dξdη,

Hμκ(ie1, ie2; in1, in2) =
∫
Tie1

∫
Tie2

φin1(ξ)∇ηR
iω
(
ξ, η
) · ∇ηφin2

(
η
)
dξdη,

Hκμ(ie1, ie2; in1, in2) =
∫
Tie1

∫
Tie2

∇ξφin1(ξ) · ∇ξ

(
Riω
(
ξ, η
))
φin2

(
η
)
dξdη,

Hκκ(ie1, ie2; in1, in2) =
∫
Tie1

∫
Tie2

∇ξφin1(ξ) ·
[
∇ξ∇ηR

iω
(
ξ, η
)]∇ηφin2

(
η
)
dξdη.

(3.9)
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(I) Compute the solution Φ(γ0)
iω,is
in

and the Robin function R(γ0)
iω
id,in

for
iω = 1, · · · ,Nω, is = 1, . . . ,Ns, in = 1, . . . ,Nn as in (3.3b) and (3.3c),
respectively.

(II) Find γ† by solving the equation (3.5).
(III) Find γΔ by solving the equation (3.7).
(IV) Compute γB by adding γ† and γΔ.

Algorithm 2: Numerical algorithm (discretized version).

Even though the Hessian is not discretized, we obtain the following discretized numerical
algorithm (Algorithm 2), expecting the Hessian is simply discretized and approximated in
the next subsection:

3.2. Approximation of Hessian

In this subsection we approximate Hμμ, by assuming κ and μ′
s are constant in Ω. The appro-

ximation is progressed in three ways.
First, we approximate the Robin function R(ξ, η) when (ξ, η) ∈ Ω \ ∂Ω by its leading

term R0(ξ, η) defined by

R0
(
ξ, η
)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1(
p − 2

)
gpκ
(
η
)∣∣ξ − η

∣∣2−p p ≥ 3,

1
ω2κ
(
η
) log

(
2S∣∣ξ − η
∣∣
)

p = 2,

(3.10)

where gp is the hypersurface area of the unit sphere in R
p, p = 2, 3, . . . and S = supξ,η∈Ω|ξ − η|.

Some important relations between R and R0 are found in [13].
Second, when ie1 /= ie2 , the Robin function R and φin are approximated by constant

values R0(c(ie1), c(ie2)) and φin(c(ie)) in Tie , respectively, where c(ie) of the center of the ele-
ment Tie . That is to say, when ie1 /= ie2, (3.9) is approximated as follows:

Hμμ(ie1, ie2; in1, in2) = R0(c(ie1), c(ie2))
∫
Tie1

φin1(ξ)dξ
∫
Tie2

φin2

(
η
)
dη. (3.11)

Third, when ie1 = ie2, we use the following lemma.

Lemma 3.1. Let the measurable set T be contained in R
p, p = 2, 3, . . ., and 0 < m < p; then, the fol-

lowing inequality holds for T :

∫∫
T

∣∣ξ − η
∣∣−mdξ dη ≤ p1−m/p

p −m
g
m/p
p |T |2−m/p, p ≥ 2, (3.12a)

∫∫
T

log

(
2S∣∣ξ − η
∣∣
)
dξ dη ≤ 1

4π

(
1 + log

(
4S2π

|T |

))
|T |2, p = 2, (3.12b)

where |T | is the volume of T .
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Figure 1: Jindex = Nx ∗Ny ∗ 0.4, Jalpha = 6.4920e − 009, 10% noise, sources (∗), and detectors (o).

Proof. If a ball with a radius r has the same volume as T , we have

r =

(
|T | p

gp

)1/p

(3.13)

for the space dimensions p = 2, 3, . . .. Let the ball of radius r with center ξ ∈ T be Bξ. Let
T0 = T ∩ Bξ, T+ = T \ Bξ, and T− = Bξ \ T . Noting that |T+| = |T−|, we obtain

∫
T

∣∣ξ − η
∣∣−mdη =

∫
T0

∣∣ξ − η
∣∣−mdη +

∫
T+

∣∣ξ − η
∣∣−mdη

≤
∫
T0

∣∣ξ − η
∣∣−mdη +

∫
T−

∣∣ξ − η
∣∣−mdη =

∫
Bξ

∣∣ξ − η
∣∣−mdη

≤
∫ r

0
ρp−m−1gpdρ =

gp

p −m
rp−m

≤ gp

p −m

(
|T | p

gp

)1−m/p

(3.14)
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Figure 2: Jindex = Nx ∗Ny ∗ 0.4, Jalpha = 6.5711e − 009, 10% noise, sources (∗), and detectors (o).

for all ξ ∈ T . Therefore,

∫∫
T

∣∣ξ − η
∣∣−mdηdξ ≤ gp|T |

p −m

(
|T | p

gp

)1−m/p

=
p1−m/p

p −m
g
m/p
p |T |2−m/p. (3.15)

Equation (3.12b) is derived in the same manner.

Therefore, when ie1 = ie2, (3.9) is approximated using the inequality in Lemma 3.1 as
follows:

Hμμ(ie1, ie1; in1, in2) ≈ φin1(cie1)φin2(cie1) ·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p2/p|Tie1 |1+2/p

2
(
p − 2

)
g
2/p
p κ(c(ie1))

p ≥ 3,

1
8π2κ(c(ie1))

(
1 + log

(
4S2π

|Tie1 |

))
|Tie1 |2 p = 2.

(3.16)

4. Numerical Implementation

In the numerical implementation, the following parameters are used:
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Figure 3: Jindex = Nx ∗Ny ∗ 0.3, Jalpha = 1.8227e − 7, 10% noise, sources (∗) and detectors (o).

(i) Ω = [0, 6] × [0, 6] (cm2),

(ii) Nd = 16,

(iii) Ns = 16,

(iv) Nω = 1,

(v) Nx = Ny = 16,

(vi) Ne = Nx ∗Ny,

(vii) Nn = (Nx + 1) ∗ (Ny + 1),

(viii) μa = 0.05 + (0.2 − 0.05)χD (cm−1),

(ix) μ′
s = 8 (cm−1),

(x) κ = 1/3 ∗ (μa + μ′
s) = 1/3 ∗ (0.05 + 8),

(xi) ω = 2π ∗ 300MHz,

(xii) a = 1,

(xiii) Jindex = Nx ∗Ny ∗ 0.4.
Since the diffusion coefficient κ is constant, the right-hand side b is a Ns ∗Nd column

vector, Jacobian J is a (Ns∗Nd)×Ne matrix, the HessianH is aNe×(Ns∗Nd)×Ne third-order
tensor, and (γ†)tHγ† is Ns ∗Nd column vector in (3.5) and (3.7). H = Hμμ is approximated
by (3.11) and (3.16).
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Figure 4: Jindex = Nx ∗Ny ∗ 0.4, Jalpha = 6.5029e − 009, 10% noise, sources (∗), and detectors (o).

In the above setting, we reconstruct the obstacle D which has different absorption
coefficient (0.2 cm−1) compared to the background absorption coefficient (0.05 cm−1). Four
cases of the obstacle D are considered in Figures 1, 2, 3, and 4. The reconstruction of the
absorption coefficient μa = 0.05+ (0.2− 0.05)χD (cm−1) is implemented using two algorithms.
One is the suggested Algorithm 2 based on the second-order Born approximation. The other
is linearized method based on the first-order Born approximation, which is equivalent to
the step I and II in Algorithm 2. We denoted these two methods in the figures: the 2nd
order approximation and the 1st-order approximation, respectively. On the upper-left part
of the figures, original μa and source/detector locations are plotted. The initial guess (μa0

or γ0) for the absorption coefficient is plotted on the upper-right part of the figures. In the
lowerleft and lowerright part of each figure, reconstructed absorption coefficients by the first
approximation (μ†

a or γ†) and the second approximation (μB
a or γB) are plotted, respectively.

In all four cases, 10% noise is added. Truncated singular value decomposition(SVD)
is used. Jindex is the number of largest singular values used in the truncated SVD method.
We used the Tikhonov regularization parameter Jalpha as the value of the Jindexth largest
singular values.

As is shown in the figure, the discrimination between background and the obstacle
is clearer in the second-order approximation than the first-order approximation. The recon-
structed image resolution depends on the distance from the boundary of the tissue, which
is verified by comparing Figures 1 and 2 with Figures 3 and 4. And the resolution also de-
pends on the size of obstacle, which is verified by comparing Figures 1 and 3 with Figures 2
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and 4. Due to the diffusion property of near infrared light, the reconstructed image is much
blurred especially in Figure 3. The sensitivity to the noise made some kind of irregular check-
erboard pattern near the boundary (Figures 1, 3, and 4).

5. Conclusions

We derived a new numerical method based on the second-order Born approximation. The
method is a method of order 3, which is more accurate than the well-known linearized meth-
od based on the first-order Born approximation. The error analysis for the method is proved,
and the computation of the second-order term is explained using some approximation and
integral inequalities. The comparison between the suggested and the linearized method is
implemented for four different kinds of absorption coefficients. In the implementation, the
suggested method shows more discrimination between the optical obstacle and the back-
ground than the linearized method. If more accurate numerical quadrature with more
efficient approximation of the Robin function is used, the efficiency of the present methodwill
be elaborated. The simultaneous reconstruction of the absorption and the reduced scattering
coefficients based on the proper approximation on the second derivatives of the Robin
function would be an interesting topic.
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