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We propose a new mathematical framework for estimating pulse arrival time (PAT). Existing
methods of estimating PAT rely on local characteristic points or global parametric models: local
characteristic point methods detect points such as foot points, max points, or max slope points,
while global parametric methods fit a parametric form to the anacrotic phase of pulse signals.
Each approach has its strengths and weaknesses; we take advantage of the favorable properties
of both approaches in our method. To be more precise, we transform continuous pulse signals
into scalar timing codes through three consecutive transformations, the last of which is a linear
transformation. By training the linear transformation method on a subset of data, the proposed
method yields results that are robust to noise.We apply this method to real photoplethysmography
(PPG) signals and analyze the agreement between our results and those obtained using a
conventional approach.

1. Introduction

The importance of arterial stiffness as a cardiovascular disease index has been emphasized
in recent years [1–6], because arterial stiffness can be acquired using inexpensive and
noninvasive methods such as pulse wave velocity (PWV) [7, 8]. PWV is considered to
be a good indicator for assessing arterial stiffness because it shows a strong correlation
with cardiovascular events and mortality [1, 9–15]. Furthermore, PWV can be used for the
continuous assessment of cardiovascular homeostasis and regulation [16].

One approach to assess PWV in vivo relies on tracking pressure pulses that arise from
the onset of left ventricular ejection. This is the common method for acquiring PWV in
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the arterial trees which uses ECG and two pressure pulses that are measured simultaneously.
In general, pressure pulses are measured at the carotid and femoral arteries, respectively,
and PWV is calculated as the distance between the two sites divided by the time for the pulse
wave to travel that distance. The time that it takes the pulse pressure to travel from the carotid
artery to the femoral artery is called pulse arrival time (PAT) [17].

To measure pressure pulses at the carotid and femoral arteries, a catheter is
generally used. However, it is difficult to measure pressure pulses without clinical assistance
because this is an invasive method. For this reason, intensive efforts have been made to
improve the performance of external skin transducers that can measure PWV in recent
years. Several techniques have been developed to record pressure pulses. Among these,
photoplethysmography (PPG) is particularly popular as a noninvasive, nonobstructive
technique that is based on the temporal patterns of light absorption in living tissues because
morphological characteristics of PPG are similar to pressure pulse, especially in the arteries
[18].

Pulse arrival time of PPG pulse is typically measured by detecting local characteristic
points: the foot determined by the start point of the anacrotic phase (FOOT), the maximum-
slope of the anacrotic phase (MS), and the maximum amplitude of the pulse (MAX)
[15, 19, 20]. Unfortunately, however, these characteristic points often yield unstable and
unreliable results when used to analyze PPG pulses with morphological variation due to
underlying conditions [15]. Thus, the design of robust extraction techniques that are capable
of estimating PAT from PPG pulses remains an unsolved problem. Solà and colleagues
suggested that PAT could be estimated by parametric modeling of the anacrotic phase of
pressure pulses in PPG. However, although their method produces robust and reliable results
under noisy conditions, it is relatively computationally complex because of the need to fit a
parametric function to every single pulse [21].

Therefore, our aim was to develop a method to measure PAT with accuracy and
reliability using simple operations. In the next section, we outline the mathematical
framework that we developed to estimate PAT.

2. Methods

2.1. Representation of PPG Signals in Vector Space

Let Ω be the set of all continuous PPG signals measured from human arteries. We can define
a sampling process ξM as follows:

ξM : Ω −→ R
M, (2.1)

where R
M is an M-dimensional Euclidean space. The mapping ξM reduces a continuous

signal to anM-dimensional vector point. The vector point forms a lower-dimensional cluster
in an M-dimensional space. Let us consider the cluster as being embedded by the manifold
Υ. Our goal in this paper is to find a mapping τ between this manifold and PAT:

τ : Υ −→ R
1. (2.2)

Then, the parametric estimation of PAT is given by the composition of two mappings: PAT =
τ ◦ ξM.
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Figure 1: The estimation of PAT using a linear transformation approach.

However, manifolds constructed through normal sampling at a constant frequency
are highly curved. Training this type of manifold and mapping PAT using this manifold are
challenging [22]. Let us consider simple translations of Gaussian peaks, as shown in Figure 1.
The manifold constructed using simple translations is spirally curved. If slight variation is
added to Gaussian peaks, it is not feasible to parameterize the manifold with well-defined
functions.

Now, suppose that we find the sampling process ξM such that the manifold Υ can be
flat and isometric along PAT. For instance, if three vectors f, g, h ∈ Υ are collinear and have
isometric timing codes tf , tg , th, that is, (th−tg)f +(tf −th)g+(tg−tf)h = 0, then we can always
find the linear transformation ω such that tf = ωTf , tg = ωTg, and th = ωTh. This means that
the special sampling process allows the mapping τ to be the simplest form by ω. However,
we failed to find such a sampling process, regardless of the sampling frequencies applied to
the continuous signals; convex combination of two different vectors f, g ∈ Υ cannot be used
to represent the human artery PPG signal.

In this context, we propose adding another transformation between ξM and τ . By
considering the new mapping, we intend to keep the mapping, τ , the linear transformation.
If we denote the novel mapping as ζ, we can estimate the PAT of the PPG signals as

PAT = τ ◦ ζ ◦ ξM. (2.3)

We refer to this as a linear transformation approach for estimating PAT. In following
subsections, we describe the new transformation ζ in more detail.

2.2. Conjugate Transformations

In the previous subsection, we framed a set of three transformations to change continuous
pulse functions into scalar timing codes. The first transformation, ξM, is needed to reduce
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continuous pulse functions intoM-dimensional vector points, while the third transformation
τ is the linear transformation. The function of the second transformation, ζ, will be fully
discussed in this subsection, in which we consider a well-known transformation called the
convex conjugate or Legendre transformation.

2.2.1. Convex Conjugate

The convex conjugate is a transformation that maps a convex function onto another convex
function [23, 24]. A convex function always has its conjugate function: the conjugate function
is also a convex function. First, we outline why we need convex functions. A Gaussian
function, which was exemplified as a pulse in the previous subsection, is the starting point
for developing our idea. Gaussian functions have a single peak and are nonnegative over
the entire region. Such a Gaussian function can be derived from a convex function by
differentiating the convex function twice. We can therefore consider convex functions instead
of Gaussian functions. A general type of pulse function that has mixed-signed values, unlike
Gaussian functions, will be discussed later.

Let us consider two arbitrary convex functions. When their first derivatives become
inverses of each other, two functions are referred to as “convex conjugate”. If two functions
f(t) and ˜f(˜t) have such a relation, then

df

dt
◦ d ˜f

d˜t
= I =

d ˜f

d˜t
◦ df

dt
, (2.4)

where I is an identity function, that is, I ◦ t = t and I ◦ ˜t = ˜t. To find an explicit expression for
˜f , we assume

˜t =
df

dt
◦ t. (2.5)

From (2.4) and (2.5), we obtain

I ◦ t = d ˜f

d˜t
◦ df

dt
◦ t =⇒ t =

d ˜f

d˜t
◦ ˜t. (2.6)

Conversely, when we assume t = (d ˜f/d˜t) ◦ ˜t, we also obtain ˜t = (df/dt) ◦ t. Thus, (2.4) gives
the reciprocal expressions (2.5) and (2.6), which are referred to as variable change.

When we assume a finite domain Ω on which a convex function is defined, the
independent variable t on the domain can be changed into its conjugate variable ˜t through
convex conjugate. Then, the function form f can be changed into the form ˜f by replacing t
with ˜t. To be precise, the explicit form of the convex conjugate from above relations is

˜f
(

˜t
)

= sup
{

t˜t − f(t) | t ∈ Ω
}

, (2.7)

where the conjugate variable ˜t is expressed as the gradient of f at t. By differentiating t˜t −
f(t) with regard to t and equating this result to zero, we can confirm that ˜t is expressed as
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the gradient of f . Conversely, the new convex function can be converted back to the original
function in the same manner:

f(t) = sup
{

˜tt − f(t) | ˜t ∈ ˜Ω
}

. (2.8)

In this case, the original variable t is expressed as the gradient of ˜f at ˜t. Variables t and ˜t are
basically conservative fields with regard to each other. Convex conjugation was originally
derived from duality relationship between points and lines. The functional relationship
specified by f(t) can be represented equally as well as a set of points t, or as a set of tangent
lines specified by their gradients and intercept values.

2.2.2. Nonnegative Conjugate

Now, we introduce a new conjugate transformation termed nonnegative conjugate. This
transformation is closely related to the former convex conjugate. If f is twice continuously
differentiable and the domain is Ω, then we can characterize a convex function as follows:

f is convex iff f ′′(t) ≥ 0 for Ω. (2.9)

This is a link between convex conjugate and nonnegative conjugate based on the following
definition.

Definition 2.1. Suppose that two convex functions f(t) and ˜f(˜t) are in convex conjugate for
t ∈ Ω and ˜t ∈ ˜Ω and their second derivatives f ′′(t) and ˜f ′′(˜t) are denoted as I(t) and ˜I(˜t),
respectively. Then I(t) and ˜I(˜t) are said to be nonnegative conjugate of each other on domains
Ω and ˜Ω.

The two-dimensional conjugate transform that is analogous to this nonnegative
conjugate has been applied to image morphing [25].

Let us calculate the second derivatives directly. As mentioned in (2.5) and (2.6), the
first derivatives represent variable change between t and ˜t. The second derivative of f(t) is
given as

f ′′(t) =
d2f(t)
dt2

=
d˜t

dt
. (2.10)

Similarly, the second derivative of ˜f ′′(˜t) is given as

˜f ′′
(

˜t
)

=
d2

˜f
(

˜t
)

d˜t2
=

dt

d˜t
. (2.11)

From (2.10) and (2.11), we obtain the following reciprocal relation between two second
derivatives:

f ′′(t) ˜f ′′
(

˜t
)

= 1. (2.12)
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If we denote f ′′(t) and ˜f ′′(˜t) as I(t) and ˜I(˜t), the expression can be rewritten as I(t)˜I(˜t) = 1.
Then, the nonnegative conjugate of I(t) can be expressed as

˜I
(

˜t
)

=
1

I(t)
=

1

I
(

d ˜f
(

˜t
)

/d˜t
) =

1

I
((

d/d˜t
)

sup
{

t˜t − f(t) | t ∈ Ω
})

=
1

I
((

d/d˜t
)

sup
{

t˜t − ∫ ∫

I(t)dt | t ∈ Ω
}) .

(2.13)

Like variable change in the convex conjugate transformation, the variable t of the nonnegative
function I(t) on the domain Ω can be formally changed by using the nonnegative conjugate.
This yields another nonnegative function ˜I(˜t) on the domain ˜Ωwhen the variable t is replaced
with its conjugate variable ˜t. Equation (2.13) has a very complex form, but the variable change
between t and ˜t has the following concise forms:

˜t =
∫

I(t)dt, t =
∫

˜I
(

˜t
)

d˜t. (2.14)

Alternatively, the nonnegative conjugate can also be derived from the equidistribution
principle. First, the conjugate variable ˜t is introduced such that a nonnegative distribution I(t)
becomes constant with 1 in the conjugate coordinate ˜t: I(t)dt = d˜t. The conjugate function ˜I(˜t)
also becomes constant with 1 in the original coordinate t by the same form: ˜I(˜t)d˜t = dt. As
a result, we can obtain the reciprocal relation between I(t) and ˜I(˜t) and biconjugacy from

the equidistribution principle, that is, I(t)˜I(˜t) = 1 and ˜

˜I = I. This approach is equivalent to
solving the Jacobian equation:

I(t) =
d˜t

dt
, ˜I

(

˜t
)

=
dt

d˜t
. (2.15)

Note that equations in (2.15) are the same as (2.10) and (2.11), respectively.

2.2.3. Nonnegative Conjugate of a Nonnegative Vector

In the previous section, we described a method of transformation based on the convex
conjugate. However, although the nonnegative conjugate transforms a continuous function
into another continuous function, the transformation ζ should map anM-dimensional vector
onto another M-dimensional vector. Thus, we require a discrete version of the nonnegative
conjugate.

Let us denote an M-dimensional column vector with nonnegative components as I,
that is, I = (I1 · · · IM)T and Ii ≥ 0. Then its nonnegative conjugate is denoted as ˜I. To
transform I into ˜I, we have to link I with a continuous function I(t) by

I(t) ≡ I[t], (2.16)
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where the function [t] is a ceiling function that gives the smallest integer not less than t. Then
I(t) is a continuous and nonnegative function defined from t = 0 to t = M. If we denote a
cumulative distribution

∫ t

0 I(t)dt as s(t), we obtain ˜t = s(t) from (2.14), and t is given by its
inverse:

t = s−1
(

˜t
)

. (2.17)

Then, from (2.13), we obtain

˜I
(

˜t
)

=
1

I(t)
=

1
I[t]

=
1

I[s−1(˜t)]
. (2.18)

Finally, we can change it into theM-dimensional vector ˜I by

˜Ii =
∫ i

i−1
˜I
(

˜t
)

d˜t. (2.19)

Applying the same procedure to ˜I, we can transform it back to the original vector I. However,
this vector is not exactly same as the original vector. As the dimensionality of M increases,

the error, I − ˜

˜I, converges to a zero vector.

2.3. Application to PPG Signals

All experiments and analyses were performed using ECG and PPG signals extracted from
the publically available MIMIC database that contains data from intensive care unit patients
admitted to Boston Beth Israel Hospital. ECG and PPG signals were measured to 500 and
125 samples per second, respectively. First, R peaks were detected from ECG based on the
assumption that the R peak represents the onset time of left ventricular ejection. Therefore,
the position of R peaks was used to segment single PPG pulses from the full PPG signals.
Raw PPG signals were low-pass filtered at 15Hz, then single PPG pulses were separated
by synchronized R peaks. The extracted single PPG pulses were resampled to 500Hz to
improve accuracy, and then FOOT and MAX points of single PPG pulses were detected by
the traditional method that detects characteristic points [26].

Each single PPG pulse was divided into two parts by the FOOT point: the front part
from the R peak to the FOOT point, and the rear part from the FOOT point to the next R peak.
The time difference at each part was calculated in different ways than that used to estimate
PAT. The time difference ta at the front part was derived by a simple translation to change
the number of samples into time (seconds), and the time difference tb at the rear part was
calculated by the nonnegative conjugate transformation and linear projection, as shown in
Figure 2.

Various single PPG pulses with different amplitudes, shapes, or pulse widths were
represented as single points in an M-dimensional vector space after the nonnegative
conjugate transformation. The points that corresponded to nonnegative conjugate vectors, ˜I,
were located on a same line in an M-dimensional vector space. This characteristic is referred
to as collinearity.
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Figure 2: Single PPG pulse processing to estimate PAT.

2.3.1. Training a Projection Matrix W

To derive the matrix W that projects collinear points in an M-dimensional vector space into
a one-dimensional time space, 10,000 different PPG pulses were extracted as the training set,
and the linear projection matrix was trained according to the MAX point of the PPG pulse,
because this is the most obvious characteristic point. Only rear parts of PPG pulses were used
to train the linear projection matrix, which we derived by pseudoinverse operation between
nonnegative conjugate transformed pulses and the known time information of MAX points
as follows:

tb = W ˜I

or
(

t1
b

· · · tN
b

)

= W
(

˜I1 · · · ˜IN
)

.
(2.20)

The matrix W was calculated from the training samples by using the pseudo-inverse
relationship

W = tb˜I
T
(

˜I ˜IT
)−1

, (2.21)

where W = (w1 · · · wM) ∈ R
1×M, tb is the known time set from the R peaks to the MAX

points, ˜I is nonnegative conjugate transformed PPG pulse, and W is the derived linear
projecting matrix.
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2.3.2. PAT Estimation

Single PPG pulses extracted according to R peaks of ECG were divided into front and rear
sections using the FOOT point, and time values were calculated for each section separately.
First, the time of the front part, ta, was calculated using the number of samples between the R
peak and FOOT point divided by the sampling rate. Second, the time of the rear part, tb, was
acquired by linear operation between the linear projecting matrix (W) and the nonnegative
conjugate transformed pulse (˜I). Finally, the PAT was obtained by simple summation of ta
and tb:

ta =
Number of samples

Sampling rate
(seconds),

tb = W ˜I,

tb =
(

w1 · · · wM

)

⎛

⎜

⎜

⎝

˜I1
...
˜IM

⎞

⎟

⎟

⎠

(seconds),

PAT = ta + tb.

(2.22)

3. Results and Discussion

To assess the agreement between the traditional method and our novel PAT estimation
method, we evaluated a subset of data from the MIMIC database. This database is part of
the Physionet platform and contains data from over 72 intensive care unit patients at the
Boston Beth Israel Hospital, but we selected only those records for which nonsaturated and
nonmissing ECG and PPG signals were simultaneously measured and available [27, 28].

We adopted the agreement analysis proposed by Bland and Altman: given two
different estimating methods, their agreement can be assessed by computing the standard
deviation of two sets of estimates. The proposed strategy computes the differences between
measurements provided by two methods and then computes their dispersion. Two methods
have good agreement if dispersion is minimal [29].

To acquire PAT estimates using our method, a linear projecting matrix was derived
using a training process, and the derived linear projection matrix was applied to two test
sets consisting of 2947 and 2890 PPG pulses, respectively. The mean difference and standard
deviations of two sets of PAT estimates were calculated. Results of the agreement analysis are
shown in Figure 3. The 95% limits of agreement were calculated as mean difference ± 1.96 ∗
standard deviation at each set.

For the first test set, 98.9% of pulses were located between −34.3ms and 28.3ms as the
limits of agreement, while in the second test set, 96.2% of the pulses were located between
−33.4ms and 25.3ms.

The typical PAT estimation method, which detects characteristic points, is not accurate
when applied to PPG pulse types with different morphologies. We therefore proposed a
novel PAT estimation method that provides robust results by considering the morphological
characteristics of PPG pulses according to the properties of blood vessels. We initially
attempted to find a relation between a projecting factor and original PPG pulses, f , but
were unsuccessful because of the broad dispersion of pulses in an M-dimensional vector
space. We therefore decided to transform original PPG pulses into another form. We used
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Figure 3: Agreement analysis between the two different PAT estimations.

the nonnegative conjugate transformation, because the nonnegative conjugate transformed
signal, ˜I, had the property of collinearity in an M-dimensional vector space and could be
used to estimate the PAT by projection onto a one-dimensional time space. We derived a
linear projection matrix through the training process for linear projection and applied this
matrix to two different morphological PPG pulse sets. PAT values estimated from annotated
MAX points and the proposed linear projecting method were in good agreement; over 95%
of the data were included within the 95% limits of agreement.

Although our method provides results that appear to be highly accurate, it can
show different results according to the linear projection matrix that is derived by different
numbers of pulses and dimensionality. Therefore, an optimal combination that is applicable
to a variety of morphological PPG pulse types should be determined. For instance, the
size of the projecting matrix needs to be adjusted and the time delay caused by the
nonnegative conjugate transformation needs to be addressed. Our novel approach still has
some limitations in terms of its clinical application for real-time continuous monitoring of
PAT as well as stiffness and blood pressure assessment using PPG; the linear projecting
matrix needs to be optimized and the time delay caused by the nonnegative conjugate
transformation needs to be addressed. Once these issues are addressed, however, our method
has great potential in clinical practice to precisely assess cardiovascular risk associated with
blood vessels.

4. Conclusions

Various PAT estimationmethods exist, most of which are based on unsupervised extraction of
characteristic points in PPG signals. Despite the good performance of these PAT estimation
techniques when applied to clean PPG signals, they are less reliable when used to analyze
morphologically variable PPG signals. Thus, we designed a novel, simple linear model
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based on the nonnegative conjugate transformation. This easy, stable PAT estimation method
relies on training of the linear model using various samples. Because our method extracts
information from various pressure pulse, it can be applied to different morphological
signals without special conditions. In conclusion, we developed a novel method that can
be used to estimate PAT robustly for a variety of PPG signals with different morphological
characteristics.
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