Hindawi Publishing Corporation
Journal of Applied Mathematics

Volume 2012, Article ID 678174, 11 pages
doi:10.1155/2012/678174

Research Article

Numerical Solution for Complex Systems of
Fractional Order

Rabha W. Ibrahim

Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence should be addressed to Rabha W. Ibrahim, rabhaibrahim@yahoo.com
Received 18 October 2012; Accepted 4 December 2012

Academic Editor: Turgut Ozis

Copyright © 2012 Rabha W. Ibrahim. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

By using a complex transform, we impose a system of fractional order in the sense of Riemann-
Liouville fractional operators. The analytic solution for this system is discussed. Here, we
introduce a method of homotopy perturbation to obtain the approximate solutions. Moreover,
applications are illustrated.

1. Introduction

Fractional models have been studied by many researchers to sufficiently describe the opera-
tion of variety of computational, physical, and biological processes and systems. Accordingly,
considerable attention has been paid to the solution of fractional differential equations,
integral equations, and fractional partial differential equations of physical phenomena.
Most of these fractional differential equations have analytic solutions, approximation,
and numerical techniques [1-3]. Numerical and analytical methods have included finite
difference methods such as Adomian decomposition method, variational iteration method,
homotopy perturbation method, and homotopy analysis method [4-7].

The idea of the fractional calculus (i.e., calculus of integrals and derivatives of any
arbitrary real or complex order) was planted over 300 years ago. Abel in 1823 investigated the
generalized tautochrone problem and for the first time applied fractional calculus techniques
in a physical problem. Later Liouville applied fractional calculus to problems in potential
theory. Since that time the fractional calculus has drawn the attention of many researchers in
all areas of sciences (see [8-10]).

One of the most frequently used tools in the theory of fractional calculus is furnished
by the Riemann-Liouville operators. It possesses advantages of fast convergence, higher
stability, and higher accuracy to derive different types of numerical algorithms. In this
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paper, we will deal with scalar linear time-space fractional differential equations. The time
is taken in sense of the Riemann-Liouville fractional operators. Also, This type of differential
equation arises in many interesting applications. For example, the Fokker-Planck partial
differential equation, bond pricing equations, and the Black-Scholes equations are in this class
of differential equations (partial and fractional).

In [11], the author used complex transform to obtain a system of fractional order
(nonhomogeneous) keeping the equivalency properties. By employing the homotopy
perturbation method, the analytic solution is presented for coupled system of fractional order.
Furthermore, applications are imposed such as wave equations of fractional order.

2. Fractional Calculus

This section concerns with some preliminaries and notations regarding the fractional cal-
culus.

Definition 2.1. The fractional (arbitrary) order integral of the function f of order a > 0 is de-
fined by

(=)

o= | S

———f(7)dr. (2.1)

When a = 0, we write I f(t) = f(t) * ¢«(t), where (x) denoted the convolution product (see
[12]), ¢a(t) = t*71/T(a),t > 0 and Pu(t) = 0,t <0 and ¢, — 6(t) as a — 0 where 5(t) is the
delta function.

Definition 2.2. The fractional (arbitrary) order derivative of the function f of order 0 < a < 1
is defined by

fi-n)"

T f()dT— Il”‘f(t). (2.2)

Daf(t) =

Remark 2.3. From Definitions 2.1 and 2.2, a = 0, we have

T(p+1)
DW= LT e s 1 0<a<l,
F(p-a+1)
(2.3)
r 1
It = —(#+ ) e u>-1; a>0.
F(p+a+1)
The Leibniz rule is
Dilrws] = X (D robiso - X (F)prsopirm, e
k=0 k=0
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where

ay\ _ Ia+1)
()- Fk+ Di@+1-F) (25)

Definition 2.4. The Caputo fractional derivative of order y > 0 is defined, for a smooth
function f(t) by

A9
T(n=p) Jo (t- )

SDHF(t) = d, (2.6)

where n = [p] + 1, (the notation [p] stands for the largest integer not greater than ).
Note that there is a relationship between Riemann-Liouville differential operator and
the Caputo operator

DLf() = s S

[(1-p) (t-a)

+ Dhf(D), (2.7)

and they are equivalent in a physical problem (i.e., a problem which specifies the initial
conditions).

In this paper, we consider the following fractional differential equation:

Du(t, z) = a(t, z)u., + b(t, z)u, + c(t, z)u + f (¢, z), (2.8)

where a#0,b,c,u, f are complex valued functions, analytic in the domain @ := | x U; | =
[0,T], T € (0,c0) and U := {z € C,|z| < 1}.
The above equation involves well-known time fractional diffusion equations.

3. Complex Transforms

In this section, we will transform the fractional differential equation (2.8) into a coupled
nonlinear system of fractional order has similar form. It was shown in [11] that the complex
transform

u(t,z) = o(z)u(t, z), (3.1)

where 0 #0 is a complex valued function of complex variable z € U, reduces (2.8) into the
system

Do = 51522 - azﬁzz + blﬁz — bzwz +C10 — Cow
(3.2)

D%w = Elﬁzz + Eﬁzz + blwz + bﬁz + Elw + 525,
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where
ay = a, ax = ap
= 201,(a101 + a202) + 202.(a102 — a»01)
bl = b1 + > 5
o7 + 0,
= 2012(a102 — a201) + 2022(a02 — a101)
by =b, - —
o7 + 05
Gmert 012z(a101 + 4202) + 0222(a102 — a201) + 012(b101 + b2072) + 02z (b102 — br0n)
o} +0;
&= 01zz(a102 — a201) + 0222(a101 — A202) + 012(b102 — by01) — 022 (b107 + br02)
R 2., 2 )
o7 + 05
0(z) = 01(z) +i02(2), u(t,z) =v(t, z) +iw(t, z)

a(t/ Z) = (tr Z) + iaZ(tl Z)r b(t/ Z) = bl (t/ Z) + le(t/ Z)

c(t,z) = c1(t, z) +ica(t, z), u(t,z) =o(t, z) +iw(t, z).
(3.3)
Also, it was shown that the complex transform
u(t,z) = p(t, 2)u(t, 2), (34)
reduces the nonhomogenous equation
D%u(t,z) = a(t, z)uz, + b(t, z)uz + c(t, z)u + f(t,z), (3.5)
into the system
D0 = @10, — )05, + b10, — by, + €10~ W0 + f, 66

DW = a1W;; + @20 + biw; + byv, + 1w + C2U + f,

where
a; = ay, ap = ap
— 2p1z(ai1pr + azp2) +2pr-(aips — azpy)
b1 = b1 + > >
PitP;
- 2p1z(ai1p2 — azpr) +2p2-(azpsr — aipr)
by =bs - 2. 2
Pi TP
ot pizz(ai1p1 + azp2) + pazz(ai1ps — azpr) + piz(bipr + bopa) + paz(bipa — bapr)
1=0c1

pi+p;
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~ pizz(ai1p2 — axpr) + pazz(a1p1 — azpz) + p1z(bips — bopr) — paz(bip1 + bapr)

@ Pl + P}
1
7 - pr(fi—h) +pa(fa— o)
' P+ P
7, - p2(fi — ) + pr(f2—ha)
’ P+ '

< _f AP

=L _TPpeag o F o4

f 5 o fi+if,
hy = p1t11*“5 - pztIl""w

I’lz = pZtIl“"E + pltIl‘“E,

p(t/ Z) = pl(t/ Z) + lpZ(t/ Z) 760

(3.7)
4. Numerical Solution
Let us put
Fi(t, z,0,w) = ¢1(t, z) - L1(v,w) — N1(v,w)
(4.1)
F(t, z,0,w) = ga(t, z) — Lo(v, w) — N2(v,w),
where ¢4 (t, z) and ¢, (¢, z) are arbitrary functions;
L1(0,) = ~1(7) + &4(@) = ~ (@172 + b1, +619) + (DW= + b + D),
(4.2)

Ly(0,@) = ~(>(D) + (@) = (@D + bsDz + &0 + Wbz + by + 1D

are the linear parts of F; and F», respectively. While N; and N, are the nonlinear parts of F;
and F,, respectively. Moreover, let us set the homotopy system

(1-p)D*0(t,z) + pD*0(t, z) - ¢1(t, z) + L1(v,w) + N1(v,w) =0, pe[0,1]

4.3
(1-p)D*w(t, z) + pD*w(t, z) — ¢o(t, z) + Lo (v, w) + No(v,w) =0, (9
where
o(t, z) = ivn(t, z)p", w(t z) = iwn(t, z)p",
n=0 n=0 (4.4)

Ni(@,w) = > Nep*,  No(@,) = > Nip.
k=0 k=0
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Hence we obtain the following system:

Bo(t, 2) 0 0
51(t/ Z) Eo(tl Z) wo(t/ Z)
D“ 5Z(t/ Z) = Zl 51(t/ Z) - el wl (t/ Z)

Bult, 2) Bui (1, 2) Do (t,2)

0 0
N()(E()(t, Z)) ¢1 (t, Z)
N1(vo(t, z),01(t, 2)) + 0
n—l(EO(tIZ)/z_]l(t'/ Z)r'”/?]n—l(t/ Z)) 0
(4.5)
wy(t, z) 0 0
wi(t, z) vo(t, z) wo(t, z)
p*| w2t z) vl(t, z) + 0 w1 (t, z)
wn(‘tl Z) Un 1(t Z) wnfl.(t/ Z)
0 0
No(@o(t, z)) $a(t, z)
Nl(wo (t, z) w1(t, z)) i 0 ,
n 1(w0(t Z) wl (t Z) rrrrr wn—l(t/ Z)) 0
where
k-1 X tj 0
vo(t, z) = Zv(z)vé])ﬁ, ac(k-1,k), v(z) = Zan",
j=0 ' n=0
v1(t,z) = = I"(Livo(t, z)) — I"No(vo(t, z)) + I"$1(t, z),
5n(t/ Z) = _I’X(Llan—l (t/ Z)) - IaNn—l (EO(t/ Z) ----- 5n—l(t/ Z)),
(4.6)

o(t,z) = Zw(z)w(]) —, a€(k-1,k), w(z) = iwnz”,

n=0

w1 (t,z) = — I*(Lawo (t, 2)) — I"No(wo (1, 2)) + I“a(t, z),

wy(t,z) = - " (Lywn-1(t, 2)) - Iuﬁn—l (wo(t, z),..., wWp-1(t, 2)).
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Consequently, we have the approximate solution

o(t,z) = Zv(z)v(]) : <§:L15,»(t, z)+ iN,- - ¢1(t,z)>
! j=0 j=0

(4.7)
w(tz) = Zw(z)w‘” 7 <iL2wj(t, z)+ iﬁj - ¢2(t,z)>
: i=0 =0

Thus, we impose a nonlinear integral equation in the following formula:

a(t Z Zv(z ,U(()])_]! + ) (t ;(T))“ 1F1(T,§/u) 4

w(t, z) = Zw z)w -
P 0o T@

(4.8)
———F) (1, ¢, u)dr.

Now we can sake the main result of this section.

Theorem 4.1. Consider the fractional differential system (3.6) subject to the initial conditions
(5“") 0,2) =" (2), @™ (0,2) =" (z), m=0,1,2,... k- 1). (4.9)

The homotopy perturbation technique implies that the initial value problem ((3.6)—(4.9)) can
be expressed as a nonlinear integral equation of the form (4.8).

We proceed to prove the analytical convergence of our solution.

Theorem 4.2. Suppose the sequence u,(t,z) = <g’;((ttzz))> of the homotopy series v(t,z) =
S o Unlt, z)p™ and w(t,z) = Yo owWu(t,z)p" is defined for p € [0,1]. Assume the initial
approximation ug(t, z) = <;‘g((ttzz))> inside the domain of the solution u(t, z) = <;((ttzz)) ) If lupa || <
pllun|l for all n, where 0 < p < 1, then the solution is absolutely convergent when p = 1.

Proof. Let C,(t, z) be the sequence of partial sum of the homotopy series. Our aim is to show
that C,(t, z) is a Cauchy sequence. Consider

ICusa (t,2) = Cu(t, 2| = [l (¢, 2)
< pllun(t, 2)| < p*llna(t, )| (4.10)

<o < pMMfug(t, 2)])
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Forn >m,n € N, we have
IC(t, z) = Cpi(t, 2)|| = |Cu(t, z) = Coo1(t,2) + Cooa (8, 2) — Cua(t,2) ++ - -+ Crpp1 (t, 2) = C(t, 2) ||

< ICa(t,2) = Caoa (8, 2)]| +ICa1(£,2) = Cacalt, 2
4+ .- 4 “Cerl(t,Z) - Cm(tlz)”

1= pm
< %Pmﬂﬂuo(t, 2|l
(4.11)
Hence
lim_[[Ca(t, 2) = Co(t, 2) | = 0; (4.12)

therefore, C,,(t, z) is a Cauchy sequence in the complex Banach space and consequently yields
that the series solution is convergent. This completes the proof. O

Recently the homotopy methods are used to obtain approximate analytic solutions
of the time-fractional nonlinear equation and time-space-fractional nonlinear equation (see
[12-17]).

5. Applications

In this section, we will consider the pump wave equations along the fiber (Schrodinger
equations). These types of equations are the fundamental equations for describing non-
relativistic quantum mechanical behavior taking the form

iD*u(t,z) = —%uzz(t, z) — [ulfu(t, z). (5.1)

Under the transform u = u =  + iw such that either |u|? = |7 or |u|> = [w|?, we have
the uncoupled system

iD*0(t, z) = —%azz(t, z) - |6/ 5(t, 2)
(5.2)

1
iD*W(t,2) = -5 W=x(t, 2) - [w|*w(t, z),

where 0 < a < 1. Subject to the initial conditions

70(0,z) = €%, w,(0,z) = 1. (5.3)
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Operating (5.2) by I*, we have

iv(t,z) =0(0,z) + I*

~39se(t,2) - 50t )

iw(t, z) = wo(0,z) + I* szz(t, z) - [wl*w(t, z)] .

By the same computation as in Section 5, we receive

o = €', wo =1
N it
YT (a+1) T T+
. 2 . 2
5 = (it") oz — (it%)

2T2a+1)° " T TQa+1)

— @i)" iz

n =

e w, = —(ita)n
2'T(na+1) ' " Tna+1)

Thus the solution u is given by
(it%)" © iyt O\
ult,2) <Z 2T(na+1)° Zr(mx n 1)>
Moreover, under the same transform, (5.1) reduces to coupled system

1
iDB(t, 2) = ~50-x(t,2) - (|5|2 + |w|2)5(t, z)

1
D®(t,2) = 5=t ) - <|5|2 + |w|2>w(t, 2),

Operating (5.7) by I*, we have

iv(t,z) =19(0,z) + I*

5t 2) - (i + @), z)]

iw(t,z) =wy(0,z) + I

Therefore,

T
P A N Lo S I /)
u(t, Z) - <Z 2”F(na + 1) Zr(na + 1)>

~5lt,2) - (o + @)@, 2) .

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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Figure 1: ((a)-(d)) The solution v when a = 0.5, = 0.75,a = 0.9, and a = 1, respectively. ((e),(f)) the
solution (#,7) when a = 0.5 and a = 1.

6. Conclusion

We suggested two types of complex transforms for systems of fractional differential equa-
tions. We concluded that the complex fractional differential equations can be transformed into
coupled and uncoupled system of homogeneous and nonhomogeneous types. Moreover, we
employed the homotopy perturbation scheme for solving the nonlinear complex fractional
differential systems. The convergence of the method is discussed in a domain that contains
the initial solution. The Schrédinger equation is illustrated as an application. This type of
equation is used in the quantum mechanics, which describes how the quantum state of a
physical system changes with time. In the standard quantum mechanics, the wave function
is the most complete explanation that can be specified to a physical system. Solutions of the
Schrdinger’s equation describe not only molecular, atomic, and subatomic systems, but also
macroscopic systems (see Figure 1).
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