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This paper studies least-squares parameter estimation algorithms for input nonlinear systems,
including the input nonlinear controlled autoregressive (IN-CAR) model and the input nonlinear
controlled autoregressive autoregressive moving average (IN-CARARMA) model. The basic idea
is to obtain linear-in-parameters models by overparameterizing such nonlinear systems and to
use the least-squares algorithm to estimate the unknown parameter vectors. It is proved that
the parameter estimates consistently converge to their true values under the persistent excitation
condition. A simulation example is provided.

1. Introduction

Parameter estimation has receivedmuch attention in many areas such as linear and nonlinear
system identification and signal processing [1–9]. Nonlinear systems can be simply divided
into the input nonlinear systems, the output nonlinear systems, the feedback nonlinear
systems, and the input and output nonlinear systems, and so forth. The Hammerstein models
can describe a class of input nonlinear systems which consist of static nonlinear blocks
followed by linear dynamical subsystems [10, 11].

Nonlinear systems are common in industrial processes, for example, the dead-zone
nonlinearities and the valve saturation nonlinearities. Many estimation methods have been
developed to identify the parameters of nonlinear systems, especially for Hammerstein
nonlinear systems [12, 13]. For example, Ding et al. presented a least-squares-based
iterative algorithm and a recursive extended least squares algorithm for Hammerstein
ARMAX systems [14] and an auxiliary model-based recursive least squares algorithm for
Hammerstein output error systems [15]. Wang and Ding proposed an extended stochastic
gradient identification algorithm for Hammerstein-Wiener ARMAX Systems [16].
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Recently, Wang et al. derived an auxiliary model-based recursive generalized least-
squares parameter estimation algorithm for Hammerstein output error autoregressive
systems and auxiliary model-based RELS and MI-ELS algorithms for Hammerstein output
error moving average systems using the key term separation principle [17, 18]. Ding et
al. presented a projection estimation algorithm and a stochastic gradient (SG) estimation
algorithm for Hammerstein nonlinear systems by using the gradient search and further
derived a Newton recursive estimation algorithm and a Newton iterative estimation
algorithm by using the Newton method (Newton-Raphson method) [19]. Wang and Ding
studied least-squares-based and gradient-based iterative identification methods for Wiener
nonlinear systems [20].

Fan et al. discussed the parameter estimation problem for Hammerstein nonlinear
ARX models [21]. On the basis of the work in [14, 15, 21], this paper studies the
identification problems and their convergence for input nonlinear controlled autoregressive
(IN-CAR) models using the martingale convergence theorem and gives the recursive
generalized extended least-squares algorithm for input nonlinear controlled autoregressive
autoregressive moving average (IN-CARARMA) models.

Briefly, the paper is organized as follows. Section 2 derives a linear-in-parameters
identification model and gives a recursive least squares identification algorithm for input
nonlinear CAR systems and analyzes the properties of the proposed algorithm. Section 4
gives the recursive generalized extended least squares algorithm for input nonlinear
CARARMA systems. Section 5 provides an illustrative example to show the effectiveness of
the proposed algorithms. Finally, we offer some concluding remarks in Section 6.

2. The Input Nonlinear CAR Model and Estimation Algorithm

Let us introduce some notations first. The symbol I (In) stands for an identity matrix of
appropriate sizes (n × n); the superscript T denotes the matrix transpose; 1n represents an
n-dimensional column vector whose elements are 1; |X| = det[X] represents the determinant
of the matrix X; the norm of a matrix X is defined by ‖X‖2 = tr[XXT ]; λmax[X] and λmin[X]
represent the maximum and minimum eigenvalues of the square matrix X, respectively;
f(t) = o(g(t)) represents f(t)/g(t) → 0 as t → ∞; for g(t) � 0, we write f(t) = O(g(t))
if there exists a positive constant δ1 such that |f(t)| � δ1g(t).

2.1. The Input Nonlinear CAR Model

Consider the following input nonlinear controlled autoregressive (IN-CAR) systems [14, 21]:

A(z)y(t) = B(z)u(t) + v(t), (2.1)

where y(t) is the system output, v(t) is a disturbance noise, the output of the nonlinear block
u(t) is a nonlinear function of a known basis (f1, f2, . . . , fm) of the system input u(t) [19],

u(t) = f(u(t)) = c1f1(u(t)) + c2f2(u(t)) + · · · + cmfm(u(t)), (2.2)
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A(z) and B(z) are polynomials in the unit backward shift operator z−1 [z−1y(t) = y(t − 1)],
defined as

A(z) := 1 + a1z
−1 + a2z

−2 + · · · + anz
−n,

B(z) := b1z
−1 + b2z

−2 + b3z
−3 + · · · + bnz

−n.
(2.3)

In order to obtain the identifiability of parameters bi and ci, without loss of generality, we
suppose that c1 = 1 or b1 = 1 [14, 21].

Define the parameter vector ϑ and information vector ψ(t) as

ϑ := [aT , c1bT , c2bT , . . . , cmbT ]
T∈ R

n0 , n0 := n +mn,

a := [a1, a2, . . . , an]
T∈ R

n,

b := [b1, b2, . . . , bn]
T∈ R

n,

ψ(t) := [ψT
0 (t),ψ

T
1 (t),ψ

T
2 (t), . . . ,ψ

T
m(t)]

T∈ R
n0 ,

ψ0(t) := [−y(t − 1),−y(t − 2), . . . ,−y(t − n)]T∈ R
n,

ψ j(t) :=
[
fj(u(t − 1)), fj(u(t − 2)), . . . , fj(u(t − n))

]T∈ R
n, j = 1, 2, . . . , m.

(2.4)

From (2.1), we have

y(t) = [1 −A(z)]y(t) + B(z)u(t) + v(t)

= −
n∑

i=1

aiy(t − i) +
n∑

i=1

bi
m∑

j=1

cjfj(u(t − i)) + v(t)

= −
n∑

i=1

aiy(t − i) +
m∑

j=1

n∑

i=1

cjbifj(u(t − i)) + v(t)

(2.5)

= −
n∑

i=1

aiy(t − i) + c1b1f1(u(t − 1)) + c1b2f1(u(t − 2)) + · · · + c1bnf1(u(t − n))

+ c2b1f2(u(t − 1)) + c2b2f2(u(t − 2)) + · · · + c2bnf2(u(t − n)) + · · ·
+ cmb1fm(u(t − 1)) + cmb2fm(u(t − 2)) + · · · + cmbnfm(u(t − n)) + v(t)

= ψT (t)ϑ + v(t).

(2.6)
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An alternative way is to define the parameter vector θ and information vector ϕ(t) as

θ := [aT , b1cT , b2cT , . . .T , bncT ]
T∈ R

n0 ,

a := [a1, a2, . . . , an]
T∈ R

n,

c := [c1, c2, . . . , cm]
T∈ R

m,

ϕ(t) := [ϕT
0 (t),ϕ

T
1 (t),ϕ

T
2 (t), . . . ,ϕ

T
n(t)]

T∈ R
n0 ,

ϕ0(t) := [−y(t − 1),−y(t − 2), . . . ,−y(t − n)]T∈ R
n,

ϕj(t) :=
[
f1
(
u
(
t − j
))
, f2
(
u
(
t − j
))
, . . . , fm

(
u
(
t − j
))]T∈ R

m, j = 1, 2, . . . , n.

(2.7)

Then (2.5) can be written as

y(t) = −
n∑

i=1

aiy(t − i) +
n∑

i=1

m∑

j=1

bicjfj(u(t − i))

= −
n∑

i=1

aiy(t − i) + b1c1f1u(t − 1) + b1c2f2u(t − 1) + · · · + b1cmfmu(t − 1)

+ b2c1f1u(t − 2) + b2c2f2u(t − 2) + · · · + b2cmfmu(t − 2) + · · ·
+ bnc1f1u(t − n) + bnc2f2u(t − n) + · · · + bncmfmu(t − n) + v(t)

= ϕT (t)θ + v(t).

(2.8)

Equations (2.6) and (2.8) are both linear-in-parameters identification model for Hammerstein
CAR systems by using parametrization.

2.2. The Recursive Least Squares Algorithm

Minimizing the cost function

J(θ) :=
t∑

j=1

[
y
(
j
) − ϕT(j

)
θ
]2

(2.9)

gives the following recursive least squares algorithm for computing the estimate θ̂(t) of θ in
(2.8):

θ̂(t) = θ̂(t − 1) + P(t)ϕ(t)
[
y(t) − ϕ(t)θ̂(t − 1)

]
, (2.10)

P−1(t) = P−1(t − 1) + ϕ(t)ϕT (t), P(0) = p0I. (2.11)
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Applying the matrix inversion formula [22]

(A + BC)−1 = A−1 −A−1B
(
I + CA−1B

)−1
CA−1 (2.12)

to (2.11) and defining the gain vector L(t) = P(t)ϕ(t)∈ R
n0 , the algorithm in (2.10)-(2.11) can

be equivalently expressed as

θ̂(t) = θ̂(t − 1) + L(t)
[
y(t) − ϕ(t)θ̂(t − 1)

]
,

L(t) = P(t)ϕ(t) =
P(t − 1)ϕ(t)

1 + ϕT(t)P(t − 1)ϕ(t)
,

P(t) = P(t − 1) − P(t)ϕ(t)ϕT (t)P(t)
1 + ϕT (t)P(t − 1)ϕ(t)

=
[
I − L(t)ϕT (t)

]
P(t − 1), P(0) = p0I.

(2.13)

To initialize the algorithm, we take p0 to be a large positive real number, for example, p0 = 106,
and θ̂(0) to be some small real vector, for example, θ̂(0) = 10−61n0 .

3. The Main Convergence Theorem

The following lemmas are required to establish the main convergence results.

Lemma 3.1 (Martingale convergence theorem: Lemma D.5.3 in [23, 24]). If Tt, αt, βt are
nonnegative random variables, measurable with respect to a nondecreasing sequence of σ algebra Ft−1,
and satisfy

E[Tt | Ft−1] � Tt−1 + αt − βt, a.s., (3.1)

then when
∑∞

t=1 αt < ∞, one has
∑∞

t=1 βt < ∞, a.s. and Tt → T, a.s. (a.s.: almost surely) a finite
nonnegative random variable.

Lemma 3.2 (see [14, 21, 25]). For the algorithm in (2.10)-(2.11), for any γ > 1, the covariance
matrix P(t) in (2.11) satisfies the following inequality:

∞∑

t=1

ϕT (t)P(t)ϕ(t)
[
ln|P−1(t)|]γ < ∞, a.s. (3.2)

Theorem 3.3. For the system in (2.8) and the algorithm in (2.10)-(2.11), assume that {v(t),Ft} is
a martingale difference sequence defined on a probability space {Ω,F, P}, where {Ft} is the σ algebra
sequence generated by the observations {y(t), y(t − 1), . . . , u(t), u(t − 1), . . .} and the noise sequence
{v(t)} satisfies E[v(t) | Ft−1] = 0, and E[v2(t) | Ft−1] � σ2 < ∞, a.s [23], and [ln |P−1(t)|]γ =
o(λmin[P−1(t)]), γ > 1. Then the parameter estimation error θ̃(t) converges to zero.
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Proof. Define the parameter estimation error vector θ̃(t) := θ̂(t) − θ and the stochastic

Lyapunov function T(t) := θ̃
T
(t)P−1(t)θ̃(t). Let ỹ(t) := ϕT (t)θ̂(t − 1) − ϕT (t)θ = ϕT (t)θ̃(t − 1).

According to the definitions of θ̃(t) and T(t) and using (2.10) and (2.11), we have

θ̃(t) = θ̃(t − 1) + P(t)ϕ(t)
[−ỹ(t) + v(t)

]
,

T(t) = T(t − 1) −
[
1 − ϕT (t)P(t)ϕ(t)

]
ỹ2(t) + ϕT (t)P(t)ϕ(t)v2(t)

+ 2
[
1 − ϕT (t)P(t)ϕ(t)

]
ỹ(t)v(t)

� T(t − 1) + ϕT (t)P(t)ϕ(t)v2(t) + 2
[
1 − ϕT (t)P(t)ϕ(t)

]
ỹ(t)v(t).

(3.3)

Here, we have used the inequality 1−ϕT (t)P(t)ϕ(t) = [1+ϕT (t)P(t−1)ϕ(t)]−1 � 0. Because ỹ(t)
and ϕT (t)P(t)ϕ(t) are uncorrelated with v(t) and are Ft−1 measurable, taking the conditional
expectation with respect to Ft−1, we have

E[T(t) | Ft−1] � T(t − 1) + 2ϕT (t)P(t)ϕ(t)σ2. (3.4)

Since ln |P−1(t)| is nondecreasing, letting

V (t) :=
T(t)

[
ln|P−1(t)|]γ , γ > 1, (3.5)

we have

E[V (t) | Ft−1] � T(t − 1)
[
ln|P−1(t)|]γ +

2ϕT (t)P(t)ϕ(t)
[
ln|P−1(t)|]γ σ2

� V (t − 1) +
2ϕT (t)P(t)ϕ(t)
[
ln|P−1(t)|]γ σ2, a.s.

(3.6)

Using Lemma 3.2, the sum of the last term in the right-hand side for t from 1 to ∞ is finite.
Applying Lemma 3.1 to the previous inequality, we conclude that V (t) converges a.s. to a
finite random variable, say V0, that is:

V (t) =
T(t)

[
ln|P−1(t)|]γ −→ V0 < ∞, a.s., or T(t) = O

([
ln
∣∣∣P−1(t)

∣∣∣
]γ)

, a.s. (3.7)

Thus, according to the definition of T(t), we have

∥∥∥θ̃(t)
∥∥∥
2

�
tr
[
θ̃
T
(t)P−1(t)θ̃(t)

]

λmin
[
P−1(t)

] = O

([
ln
∣∣P−1(t)

∣∣]γ

λmin
[
P−1(t)

]

)

= O

(
o
(
λmin

[
P−1(t)

])

λmin
[
P−1(t)

]

)

−→ 0, a.s.

(3.8)

This completes the proof of Theorem 3.3.
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According to the definition of θ and the assumption b1 = 1, the estimates â(t) =
[â1(t), â2(t), . . . , ân(t)]

T and ĉ(t) = [ĉ1(t), ĉ2(t), . . ., ĉm(t)]
T of a and c can be read from the

first n and second m entries of θ̂, respectively. Let θ̂i be the ith element of θ̂. Referring to the
definition of θ, the estimates b̂j(t) of bj , j = 2, 3, . . . , n, may be computed by

b̂j(t) =
θ̂n+(j−1)m+i(t)

ĉi(t)
, j = 2, 3, . . . , n; i = 1, 2, . . . , m. (3.9)

Notice that there is a large amount of redundancy about b̂j(t) for each i = 1, 2, . . . , m. Since
we do not need such m estimates b̂j(t), one way is to take their average as the estimate of bj
[14], that is:

b̂j(t) =
1
m

m∑

i=1

θ̂n+(j−1)m+i(t)
ĉi(t)

, j = 2, 3, . . . , n. (3.10)

4. The Input Nonlinear CARARMA System and Estimation Algorithm

Consider the following input nonlinear controlled autoregressive autoregressive moving
average (IN-CARARMA) systems:

A(z)y(t) = B(z)u(t) +
D(z)
γ(z)

v(t), (4.1)

u(t) = f(u(t)) = c1f1(u(t)) + c2f2(u(t)) + · · · + cmfm(u(t)),

γ(z) := 1 + γ1z
−1 + γ2z

−2 + · · · + γnγ z
−nγ ,

D(z) := 1 + d1z
−1 + d2z

−2 + · · · + dndz
−nd .

(4.2)

Let

w(t) :=
D(z)
γ(z)

v(t), (4.3)

or

w(t) =
[
1 − γ(z)

]
w(t) +D(z)v(t)

= −
nγ∑

i=1

γiw(t − i) +
nd∑

i=1

div(t − i) + v(t).
(4.4)
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Define the parameter vector θ and information vector ϕ(t) as

θ := [θT
1 , γ1, γ2, . . . , γnγ , d1, d2, . . . , dnd]

T∈ R
n+mn+nγ+nd ,

ϕ(t) := [ϕT
1 (t),−w(t − 1),−w(t − 2) . . . ,−w(t − nγ

)
, v(t − 1), v(t − 2), . . . , v(t − nd)]

T

∈ R
n+mn+nγ+nd ,

θ1 :=

⎡

⎢⎢⎢⎢⎢⎢
⎣

a
b1c
b2c
...

bnc

⎤

⎥⎥⎥⎥⎥⎥
⎦

∈ R
n+nm, ϕ1(t) :=

⎡

⎢⎢⎢⎢⎢⎢
⎣

ϕ0(t)
ϕ1(t)
ϕ2(t)
...

ϕn(t)

⎤

⎥⎥⎥⎥⎥⎥
⎦

∈ R
n+nm,

a :=

⎡

⎢⎢⎢
⎣

a1

a2
...
an

⎤

⎥⎥⎥
⎦
∈ R

n, c :=

⎡

⎢⎢⎢
⎣

c1
c2
...
cm

⎤

⎥⎥⎥
⎦
∈ R

m,

ϕ0(t) :=

⎡

⎢⎢⎢
⎣

−y(t − 1)
−y(t − 2)

...
−y(t − n)

⎤

⎥⎥⎥
⎦
∈ R

n, ϕj(t) :=

⎡

⎢⎢⎢
⎣

f1
(
u
(
t − j
))

f2
(
u
(
t − j
))

...
fm
(
u
(
t − j
))

⎤

⎥⎥⎥
⎦
∈ R

m, j = 1, 2, . . . , n.

(4.5)

Then (4.1) can be written as

y(t) = [1 −A(z)]y(t) + B(z)u(t) +w(t)

= −
n∑

i=1

aiy(t − i) +
n∑

i=1

bi
m∑

j=1

cjfj(u(t − i)) +w(t)

= −
n∑

i=1

aiy(t − i) +
n∑

i=1

m∑

j=1

bicjfj(u(t − i)) +w(t)

= ϕT
1 (t)θ1 +w(t)

= ϕT
1 (t)θ1 −

nγ∑

i=1

γiw(t − i) +
nd∑

i=1

div(t − i) + v(t)

= ϕT (t)θ + v(t).

(4.6)

This is a linear-in-parameter identification model for IN-CARARMA systems.
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The unknownw(t− i) and v(t− i) in the information vector ϕ(t) are replaced with their
estimates ŵ(t − i) and v̂(t − i), and then we can obtain the following recursive generalized
extended least squares algorithm for estimating θ in (4.6):

θ̂(t) = θ̂(t − 1) + L(t)
[
y(t) − ϕ̂T (t)θ̂(t − 1)

]
,

L(t) = P(t − 1)ϕ̂(t)
[
1 + ϕ̂T (t)P(t − 1)ϕ̂(t)

]−1
,

P(t) =
[
I − L(t)ϕ̂T (t)

]
P(t − 1), P(0) = p0I,

ϕ̂(t) = [ϕT
1 (t),−ŵ(t − 1),−ŵ(t − 2), . . . ,−ŵ(t − nγ

)
, v̂(t − 1), v̂(t − 2), . . . , v̂(t − nd)]

T
,

ϕ1(t) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

ϕ0(t)
ϕ1(t)
ϕ2(t)
...

ϕn(t)

⎤

⎥⎥⎥⎥⎥⎥
⎦

, ϕ0(t) =

⎡

⎢⎢⎢
⎣

−y(t − 1)
−y(t − 2)

...
−y(t − n)

⎤

⎥⎥⎥
⎦
, ϕj(t) =

⎡

⎢⎢⎢
⎣

f1
(
u
(
t − j
))

f2
(
u
(
t − j
))

...
fm
(
u
(
t − j
))

⎤

⎥⎥⎥
⎦
,

ŵ(t) = y(t) − ϕ̂T
1 (t)θ̂1(t),

v̂(t) = y(t) − ϕ̂T (t)θ̂(t),

θ̂(t) = [θ̂
T

1 (t), γ̂1(t), γ̂2(t), . . . , γ̂nγ (t), d̂1(t), d̂2(t), d̂nd(t)]
T

.

(4.7)

This paper presents a recursive least squares algorithm for IN-CAR systems and a
recursive generalized extended least squares algorithm for IN-CARARMA systems with
ARMA noise disturbances, which differ not only from the input nonlinear controlled
autoregressive moving average (IN-CARMA) systems in [14] but also from the input
nonlinear output error systems in [15].

5. Example

Consider the following IN-CAR system:

A(z)y(t) = B(z)u(t) + v(t),

A(z) = 1 + a1z
−1 + a2z

−2 = 1 − 1.35z−1 + 0.75z−2,

B(z) = b1z
−1 + b2z

−2 = z−1 + 1.68z−2,

u(t) = f(u(t)) = c1u(t) + c2u
2(t) + c3u

3(t)

= u(t) + 0.50u2(t) + 0.20u3(t),

θ = [θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8]
T

= [a1, a2, c1, c2, c3, b2c1, b2c2, b2c3]
T

= [−1.350, 0.75, 1.00, 0.50, 0.20, 1.68, 0.84, 0.336]T ,
θs = [a1, a2, b2, c1, c2, c3]

T = [−1.35, 0.75, 1.68, 1.00, 0.50, 0.20]T .

(5.1)
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Table 1: The parameter estimates (θ) (σ2 = 0.502, δns = 10.96%).

t a1 a2 c1 c2 c3 b2c1 b2c2 b2c3 δ (%)
100 −1.35989 0.76938 0.94139 0.49861 0.18862 1.69875 0.86164 0.32773 2.59527
200 −1.35622 0.76001 0.96720 0.50101 0.19076 1.67233 0.84941 0.34369 1.43552
500 −1.35239 0.75452 1.00256 0.50137 0.19363 1.66468 0.84394 0.34485 0.74281
1000 −1.35034 0.75193 1.00570 0.50128 0.19460 1.65482 0.85095 0.33765 1.06112
2000 −1.34844 0.74940 0.99224 0.50089 0.20143 1.69169 0.85148 0.33583 0.67584
3000 −1.34776 0.74847 0.99012 0.49943 0.20333 1.68675 0.85321 0.33416 0.68173
True values −1.35000 0.75000 1.00000 0.50000 0.20000 1.68000 0.84000 0.33600

Table 2: The parameter estimates (θs) (σ2 = 0.502, δns = 10.96%).

t a1 a2 b2 c1 c2 c3 δ (%)
100 −1.35989 0.76938 1.75670 0.94139 0.49861 0.18862 3.90775
200 −1.35622 0.76001 1.74205 0.96720 0.50101 0.19076 2.81582
500 −1.35239 0.75452 1.70821 1.00256 0.50137 0.19363 1.15783
1000 −1.35034 0.75193 1.69268 1.00570 0.50128 0.19460 0.59233
2000 −1.34844 0.74940 1.69068 0.99224 0.50089 0.20143 0.52605
3000 −1.34776 0.74847 1.68512 0.99012 0.49943 0.20333 0.46851
True values −1.35000 0.75000 1.68000 1.00000 0.50000 0.20000

In simulation, the input {u(t)} is taken as a persistent excitation signal sequence with zero
mean and unit variance and {v(t)} as a white noise sequence with zero mean and constant
variance σ2. Applying the proposed algorithm in (2.10)-(2.11) to estimate the parameters of
this system, the parameter estimates θ and θs and their errors with different noise variances
are shown in Tables 1, 2, 3, and 4, and the parameter estimation errors δ := ‖θ̂(t)−θ‖/‖θ‖ and
δs := ‖θ̂s(t) − θ‖/‖θs‖ versus t are shown in Figures 1 and 2. When σ2 = 0.502 and σ2 = 1.502,
the corresponding noise-to-signal ratios are δns = 10.96% and δns = 32.87%, respectively.

From Tables 1–4 and Figures 1 and 2, we can draw the following conclusions.

(i) The larger the data length is, the smaller the parameter estimation errors become.

(ii) A lower noise level leads to smaller parameter estimation errors for the same data
length.

(iii) The estimation errors δ and δs become smaller (in general) as t increases. This
confirms the proposed theorem.

6. Conclusions

The recursive least-squares identification is used to estimate the unknown parameters
for input nonlinear CAR and CARARMA systems. The analysis using the martingale
convergence theorem indicates that the proposed recursive least squares algorithm can give
consistent parameter estimation. It is worth pointing out that the multi-innovation identifica-
tion theory [26–33], the gradient-based or least-squares-based identificationmethods [34–41],
and other identification methods [42–49] can be used to study identification problem of this
class of nonlinear systems with colored noises.
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Table 3: The parameter estimates (θ) (σ2 = 1.502, δns = 32.87%).

t a1 a2 c1 c2 c3 b2c1 b2c2 b2c3 δ (%)
100 −1.37143 0.79561 0.81731 0.49688 0.16665 1.75280 0.90056 0.30999 7.98804
200 −1.36256 0.77335 0.89403 0.50353 0.17365 1.65999 0.87041 0.36082 4.46419
500 −1.35374 0.76009 1.00710 0.50417 0.18108 1.63863 0.85315 0.36321 2.08028
1000 −1.35074 0.75537 1.01710 0.50372 0.18381 1.60488 0.87297 0.34101 3.17034
2000 −1.34587 0.74895 0.97678 0.50296 0.20424 1.71432 0.87455 0.33540 2.01031
3000 −1.34448 0.74649 0.97053 0.49834 0.20990 1.69896 0.87916 0.33025 2.00404
True values −1.35000 0.75000 1.00000 0.50000 0.20000 1.68000 0.84000 0.33600

Table 4: The parameter estimates (θs) (σ2 = 1.502, δns = 32.87%).

t a1 a2 b2 c1 c2 c3 δ (%)
100 −1.37143 0.79561 1.93906 0.81731 0.49688 0.16665 12.66088
200 −1.36256 0.77335 1.88773 0.89403 0.50353 0.17365 9.26624
500 −1.35374 0.76009 1.77500 1.00710 0.50417 0.18108 3.83703
1000 −1.35074 0.75537 1.72205 1.01710 0.50372 0.18381 1.90836
2000 −1.34587 0.74895 1.71204 0.97678 0.50296 0.20424 1.57452
3000 −1.34448 0.74649 1.69603 0.97053 0.49834 0.20990 1.39744
True values −1.35000 0.75000 1.68000 1.00000 0.50000 0.20000
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Figure 1: The parameter estimation errors δ versus t.
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Figure 2: The parameter estimation errors δs versus t.
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