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We generalize the concept of C-hyperoperation and introduce the concept of F-C-hyperoperation.
We list some basic properties of F-C-hyperoperation and the relationship between the concept of
C-hyperoperation and the concept of F-C-hyperoperation. We also research F-C-hyperoperations
associated with special fuzzy relations.

1. Introduction and Preliminaries

Hyperstructures and binary relations have been studied by many researchers, for instance,
Chvalina [1, 2], Corsini and Leoreanu [3], Feng [4], Hort [5], Rosenberg [6], Spartalis [7], and
so on.

A partial hypergroupoid 〈H, ∗〉 is a nonempty setH with a function fromH×H to the
set of subsets of H.

A hypergroupoid is a nonempty set H, endowed with a hyperoperation, that is, a
function fromH ×H to P(H), the set of nonempty subsets ofH.

IfA,B ∈ P(H)− {∅}, then we defineA ∗B = ∪{a ∗ b | a ∈ A, b ∈ B}, x ∗B = {x} ∗B and
A ∗ y = A ∗ {y}.

A Corsini’s hyperoperation was first introduced by Corsini [8] and studied by many
researchers; for example, see [3, 8–15].

Definition 1.1 (see [8]). Let 〈H,R〉 be a a pair of sets where H is a nonempty set and R is a
binary relation on H. Corsini’s hyperoperation (briefly, C-hyperoperation) ∗R associated with
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R is defined in the following way:

∗R : H ×H −→ P(H) : x ∗R y =
{
z ∈ H | xRz, zRy}, (1.1)

where P(H) denotes the family of all the subsets ofH.

A fuzzy subset A of a nonempty set H is a function A : H → [0, 1]. The family of all
the fuzzy subsets ofH is denoted by F(H).

We use ∅ to denote a special fuzzy subset of H which is defined by ∅(x) = 0, for all
x ∈ H.

For a fuzzy subset A of a nonempty set H, the p-cut of A is denoted Ap, for any p ∈
(0, 1], and defined by Ap

.= {x ∈ H | A(x) ≥ p}.
A fuzzy binary relation R on a nonempty set H is a function R : H × H → [0, 1]. In

the following, sometimes we use fuzzy relation to refer to fuzzy binary relation.
For any a, b ∈ [0, 1], we use a ∧ b to stand for the minimum of a and b and a ∨ b to

denote the maximum of a and b.
Given A,B ∈ F(H), we will use the following definitions:

A ⊆ B
.= A(x) ≤ B(x), ∀x ∈ H,

A = B
.= A(x) = B(x), ∀x ∈ H,

(A ∪ B)(x) .= A(x) ∨ B(x), ∀x ∈ H,

(A ∩ B)(x) .= A(x) ∧ B(x), ∀x ∈ H.

(1.2)

A partial fuzzy hypergroupoid 〈H, ∗〉 is a nonempty set endowed with a fuzzy hyper-
operation ∗ : H × H → F(H). Moreover, 〈H, ∗〉 is called a fuzzy hypergroupoid if for all
x, y ∈ H, there exists at least one z ∈ H, such that (x ∗ y)(z)/= 0 holds.

Given a fuzzy hyperoperation ∗ : H ×H → F(H), for all a ∈ H, B ∈ F(H), the fuzzy
subset a ∗ B of H is defined by

(a ∗ B)(x) .= ∨B(b)>0(a ∗ b)(x). (1.3)

B ∗ a, A ∗ B can be defined similarly. When B is a crisp subset of H, we treat B as a
fuzzy subset by treating it as B(x) = 1, for all x ∈ B and B(x) = 0, for all x ∈ H − B.

2. Fuzzy Corsini’s Hyperoperation

In this section, we will generalize the concept of Corsini’s hyperoperation and introduce the
fuzzy version of Corsini’s hyperoperation.

Definition 2.1. Let 〈H,R〉 be a pair of sets whereH is a non-empty set andR is a fuzzy relation
onH. We define a fuzzy hyperoperation ∗R : H ×H → F(H), for any x, y, z ∈ H, as follows:

(
x ∗R y

)
(z) .= R(x, z) ∧ R

(
z, y

)
. (2.1)
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Table 1

R a b

a 0.1 0.2
b 0.3 0.4

Table 2

∗R a b

a 0.1/a + 0.2/b 0.1/a + 0.2/b
b 0.1/a + 0.3/b 0.2/a + 0.4/b

∗R is called a fuzzy Corsini’s hyperoperation (briefly, F-C-hyperoperation) associated with R. The
fuzzy hyperstructure 〈H, ∗R〉 is called a partial F-C-hypergroupoid.

Remark 2.2. It is obvious that the concept of F-C-hyperoperation is a generalization of the
concept of C-hyperoperation.

Example 2.3. Letting H = {a, b} be a non-empty set, R is a fuzzy relation on H as described
in Table 1.

From the previous definition, by calculating, for example, (a ∗R a)(a) = R(a, a) ∧
R(a, a) = 0.1 ∧ 0.1 = 0.1, R(a ∗ b)(a) = R(a, a) ∧ R(a, b) = 0.1 ∧ 0.2 = 0.1, we can obtain
Table 2 which is a partial F-C-hypergroupoid.

Definition 2.4. Supposing R, S are two fuzzy relations on a non-empty setH, the composition
of R and S is a fuzzy relation on H and is defined by (R ◦ S)(x, y) .=

∨
z∈H(R(x, z) ∧ S(z, y)),

for all x, y ∈ H.

Proposition 2.5. A partial F-C-hypergroupoid 〈H, ∗R〉 is a F-C-hypergroupoid if and only if
supp(R ◦ R) = H ×H, where supp(R ◦ R) = {(x, y) | (R ◦ R)(x, y)/= 0}.

Proof. Suppose that 〈H, ∗R〉 is a hypergroupoid. For any x, y ∈ H, there exists at least one
z ∈ H, such that (x ∗R y)(z)/= 0 holds.

So (R ◦R)(x, y) = ∨
z∈H(R(x, z) ∧R(z, y))/= 0. Thus (x, y) ∈ supp(R ◦R). And we con-

clude that H ×H ⊆ supp(R ◦ R).
supp(R ◦ R) ⊆ H ×H is obvious. And so supp(R ◦ R) = H ×H.
Conversely, if supp(R◦R) = H×H, then for any x, y ∈ H, (x, y) ∈ H×H = supp(R◦R).

So (R ◦R)(x, y) = ∨
z∈H(R(x, z)∧R(z, y))/= 0. That is, there exists at least one z ∈ H such that

(x ∗R y)(z)/= 0 holds. And so 〈H, ∗R〉 is a hypergroupoid.
Thus we complete the proof.

Definition 2.6. Letting H be a non-empty set, ∗ is a fuzzy hyperoperation of H, the hyper-
operation ∗p is defined by x ∗p y = (x ∗ y)p, for all x, y ∈ H, p ∈ [0, 1]. ∗p is called the p-cut
of ∗.
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Definition 2.7. Letting R be a fuzzy relation on a non-empty setH, we define a binary relation
Rp on H, for all p ∈ (0, 1], as follows:

xRpy
.= R

(
x, y

) ≥ p. (2.2)

Rp is called the p-cut of the fuzzy relation R.

Proposition 2.8. Let 〈H, ∗R〉 be a partial F-C-hypergroupoid. Then (∗R)p is a C-hyperoperation asso-
ciated with Rp, for all 0 < p ≤ 1.

Proof. For any 0 < p ≤ 1 and for any x, y ∈ H, we have

x(∗R)py =
(
x ∗R y

)
p =

{
z ∈ H | (x ∗R y

)
(z) ≥ p

}
=
{
z ∈ H | R(x, z) ∧ R

(
z, y

) ≥ p
}

=
{
z ∈ H | R(x, z) ≥ p, R

(
z, y

) ≥ p
}
=
{
z ∈ H | xRpz, zRpy

}
.

(2.3)

From the definition of C-hyperoperation, we conclude that (∗R)p is a C-hyperoperation
associated with Rp.

Thus we complete the proof.

From the previous proposition and the construction of the F-C-hyperoperation, we can
easily conclude that a fuzzy hyperoperation is a F-C-hyperoperation if and only if every p-cut
of the F-C-hyperoperation is a C-hyperoperation. That is, consider the following.

Proposition 2.9. Let H be a non-empty set and let ∗ be a fuzzy hyperoperation of H, then the fuzzy
hyperoperation ∗ is an F-C-hyperoperation associated with a fuzzy relation R onH if and only if ∗p is
a C-hyperoperation associated with Rp, for any 0 < p ≤ 1.

3. Basic Properties of F-C-Hyperoperations

In this section, we list some basic properties of F-C-hyperoperations.

Proposition 3.1. Let 〈H, ∗R〉 be a partial or nonpartial F-C-hypergroupoid defined on H /= ∅. Then,
for all x, y, a, b ∈ H, we have

x ∗R y ∩ a ∗R b = x ∗R b ∩ a ∗R y. (3.1)

Proof. For any x, y, a, b, z ∈ H, we have that (x ∗R y ∩ a ∗R b)(z) = (x ∗R y)(z) ∧ (a ∗R b)(z) =
R(x, z) ∧R(z, y)∧R(a, z) ∧R(z, b) = R(x, z) ∧R(z, b) ∧R(a, z) ∧R(z, y) = (x ∗R b ∩ a ∗R y)(z).

So

x ∗R y ∩ a ∗R b = x ∗R b ∩ a ∗R y, (3.2)

for all x, y, a, b ∈ H.
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Proposition 3.2. Let 〈H, ∗R〉 be a partial F-C-hypergroupoid and x, y ∈ H, x ∗R y = ∅. Then,
(1) x ∗R H ∩H ∗R y = ∅;
(2) IfH = x ∗R H thenH ∗R y = ∅;
(3) IfH = H ∗R x then y ∗R H = ∅.

Proof. (1) Supposing x ∗R H ∩H ∗R y /= ∅, then there exist a, b ∈ H, such that x ∗R a∩b ∗R y /= ∅.
So from the previous proposition, we have x∗Ry ∩ b∗Ra/= ∅. This is a contradiction.

(2) From H = x ∗R H and x ∗R H ∩ H ∗R y = ∅, we have that H ∩ H ∗R y = ∅, and so,
H ∗R y = ∅.

(3) is proved similar to (2).

Proposition 3.3. Letting ∗R be the F-C-hyperoperation defined on the non-empty set H, p ∈ (0, 1],
then the following are equivalent:

(1) for some a ∈ H, (a ∗R a)p = H;

(2) for all x, y ∈ H, a ∈ (x ∗R y)p.

Proof. Let (a ∗R a)p = H. Then, for all x, y ∈ H, we have that (a ∗R a)(x) ≥ p, (a ∗R a)(y) ≥ p,
that is R(a, x) ≥ p, R(x, a) ≥ p, R(a, y) ≥ p, R(y, a) ≥ p and so R(x, a) ∧ R(a, y) ≥ p. Thus
a ∈ (x ∗R y)p, for all x, y ∈ H.

Conversely, let a ∈ (x ∗R y)p, for all x, y ∈ H. Specially, we have a ∈ (a ∗R x)p and
a ∈ (x ∗R a)p. Thus, R(a, x) ≥ p and R(x, a) ≥ p. And so x ∈ (a∗Ra)p.

Proposition 3.4. Let 〈H, ∗R〉 be a partial or nonpartial F-C-hypergroupoid defined on H /= ∅. Then,
for all a, b ∈ H, p ∈ (0, 1], we have

a ∈ (b ∗R b)p ⇐⇒ b ∈ (a ∗R a)p. (3.3)

Proof. For any a, b ∈ H, we have that

a ∈ (b ∗R b)p =⇒ (b ∗R b)(a) ≥ p =⇒ R(b, a) ∧ R(a, b) ≥ p

=⇒ R(a, b) ∧ R(b, a) ≥ p =⇒ (a ∗R a)(b) ≥ p =⇒ b ∈ (a ∗R a)p.
(3.4)

The remaining part can be proved similarly.

4. F-C-Hyperoperations Associated with p-Fuzzy Reflexive Relations

In this section, we will assume that R is a p-fuzzy reflexive relation on a non-empty set.

Definition 4.1. A fuzzy relation R on a non-empty set H is called p-fuzzy reflexive if for any
x ∈ H,

R(x, x) ≥ p. (4.1)

Example 4.2. The fuzzy relation R introduced in Example 2.3 is 0.1-fuzzy reflexive. Of course,
it is p-fuzzy reflexive, where 0 ≤ p ≤ 0.1.
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Proposition 4.3. Letting 〈H, ∗R〉 be a partial F-C-hypergroupoid defined onH /= ∅, R is p-fuzzy ref-
lexive. Then, for all a, b ∈ H, p ∈ (0, 1], the following are equivalent:

(1) R(a, b) ≥ p;

(2) a ∈ (a ∗R b)p;
(3) b ∈ (a ∗R b)p.

Proof. “(1)⇒(2)”
From R(a, a) ≥ p and R(a, b) ≥ p we have that R(a, a) ∧ R(a, b) ≥ p which shows that

a ∈ (a ∗R b)p.
“(2)⇒(3)”
From a ∈ (a ∗R b)p we have that R(a, b) ≥ p. Since R(b, b) ≥ p, so R(a, b) ∧ R(b, b) ≥ p

which implies that b ∈ (a ∗R b)p.
“(3)⇒(1)”
It is obvious.

Proposition 4.4. Letting 〈H, ∗R〉 be a partial F-C-hypergroupoid defined onH /= ∅, R is p-fuzzy ref-
lexive. Then, for any a ∈ H, we have that

a ∈ (a ∗R a)p. (4.2)

Proof. From R(a, a) ≥ p we have R(a, a) ∧ R(a, a) ≥ p. That is a ∈ (a ∗R a)p.

Proposition 4.5. Letting 〈H, ∗R〉 be a partial F-C-hypergroupoid defined onH /= ∅, R is p-fuzzy ref-
lexive. Then, for any a, b ∈ H, p ∈ (0, 1], we have that

b ∈ (a ∗R a)p ⇐⇒ a ∈ (a ∗R b ∩ b ∗R a)p. (4.3)

Proof. From b ∈ (a∗Ra)p we have that R(a, b) ∧ R(b, a) ≥ p. So R(a, b) ≥ p and R(b, a) ≥ p.
Thus R(a, a)∧R(a, b) ≥ p and R(b, a)∧R(a, a) ≥ p. That is (a ∗R b)(a) ≥ p and (b ∗R a)(a) ≥ p.
So (a ∗R b ∩ b ∗Ra )(a) ≥ p. Thus a ∈ (a ∗R b ∩ b ∗R a)p.

Conversely, suppose that a ∈ (a ∗R b ∩ b ∗R a)p. Then (a ∗R b)(a)∧ (b ∗R a)(a) ≥ p. Thus
R(a, a) ∧ R(a, b) ∧ R(b, a) ∧ R(a, a) ≥ p. So R(a, b) ∧ R(b, a) ≥ p. That is b ∈ (a ∗R a)p.

Corollary 4.6. Letting 〈H, ∗R〉 be a partial F-C-hypergroupoid defined on H /= ∅, R is p-fuzzy ref-
lexive. Then, for any a, b ∈ H, p ∈ (0, 1], we have that

b ∈ (a ∗R a)p ⇐⇒ a ∈ (b ∗R b)p ⇐⇒ a ∈ (a ∗R b ∩ b ∗R a)p ⇐⇒ b ∈ (a ∗R b ∩ b ∗R a)p. (4.4)

Proposition 4.7. Letting 〈H, ∗R〉 be a partial F-C-hypergroupoid defined onH /= ∅, R is p-fuzzy ref-
lexive. Then, for any a, b ∈ H, we have that

c ∈ (a ∗R b)p ⇐⇒ c ∈ (a ∗R c ∩ c ∗R b)p. (4.5)

Proof. If c ∈ (a ∗R b)p, then R(a, c) ≥ p and R(c, b) ≥ p. Thus c ∈ (a ∗R c)p and c ∈ (c ∗R b)p. So
c ∈ (a ∗R c ∩ c ∗R b)p.
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Conversely, if c ∈ (a ∗R c ∩ c ∗R b)p, then (a ∗R c)(c) ∧ (c ∗R b)(c) ≥ p. Thus R(a, c) ∧
R(c, c) ∧ R(c, c) ∧ R(c, b) ≥ p. And so R(a, c) ∧ R(c, b) ≥ p. Thus c ∈ (a ∗R b)p.

Proposition 4.8. Letting 〈H, ∗R〉 be a partial F-C-hypergroupoid defined onH /= ∅, R is p-fuzzy ref-
lexive. Then, for any a, b, c ∈ H, p ∈ (0, 1], the following are equivalent:

(1) c ∈ (a ∗R b)p;
(2) a ∈ (a ∗R c)p and b ∈ (c ∗R b)p;
(3) a ∈ (a ∗R c)p and c ∈ (c ∗R b)p.

Proof. “(1)⇒(2)”
Suppose that c ∈ (a ∗R b)p. Then R(a, c) ≥ p and R(c, b) ≥ p. So R(a, a)∧R(a, c) ≥ p and

R(c, b) ∧ R(b, b) ≥ p. Thus a ∈ (a ∗R c)p and b ∈ (c ∗R b)p.
“(2)⇒(3)”
Suppose that b ∈ (c ∗R b)p. Then R(c, b) ≥ p. Thus R(c, c) ∧ R(c, b) ≥ p. And so c ∈

(c ∗R b)p.
“(3)⇒(1)”
From a ∈ (a ∗R c)p and c ∈ (c ∗R b)p, we have that R(a, c) ≥ p and R(c, b) ≥ p. Thus

R(a, c) ∧ R(c, b) ≥ p. So c ∈ (a ∗R b)p.

5. F-C-Hyperoperations Associated with p-Fuzzy Symmetric Relations

In this section, we will assume that R is a p-fuzzy symmetric relation on a non-empty set.

Definition 5.1. A fuzzy binary relation R on a non-empty set H is called p-fuzzy symmetric if
for any x, y ∈ H,

R
(
x, y

) ≥ p =⇒ R
(
y, x

) ≥ p. (5.1)

Example 5.2. The fuzzy relation R introduced in Example 2.3 is 0.2-fuzzy symmetric. Of
course, it is p-fuzzy reflexive, where 0 ≤ p ≤ 0.2.

Proposition 5.3. Letting 〈H, ∗R〉 be a partial F-C-hypergroupoid defined on H /= ∅, R is p-fuzzy
symmetric relation. Then, for all a, b ∈ H, we have that

(a ∗R b)p = (b ∗R a)p. (5.2)

Proof. For all a, b ∈ H, two cases are possible.

(1) If (a ∗R b)p = ∅, then (a ∗R b)p ⊆ (b ∗R a)p.
(2) If (a ∗R b)p /= ∅, let x ∈ (a ∗R b)p. Then R(a, x) ≥ p and R(x, b) ≥ p.

Since R is p-fuzzy symmetric, so R(x, a) ≥ p and R(b, x) ≥ p. Thus (b ∗R a)(x) = R(b, x) ∧
R(x, a) ≥ p. So x ∈ (b ∗R a)p. And in this case, we also have that (a∗Rb)p ⊆ (b∗Ra)p.

The remaining part can be proved by exchanging a and b.
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Proposition 5.4. Let 〈H, ∗R〉 be a partial F-C-hypergroupoid defined on H /= ∅, p ∈ (0, 1], if

(1) for all a, b ∈ H, (a ∗R b)p = (b ∗R a)p,
(2) for any x ∈ H, there exists a y ∈ H, such that R(x, y) ≥ p.

Then R is a p-fuzzy symmetric binary relation on H.

Proof. For all a, b ∈ H, suppose that R(a, b) ≥ p. We need to show that R(b, a) ≥ p.
Since for b ∈ H, there exists a x ∈ H, such that R(b, x) ≥ p. So R(a, b) ∧ R(b, x) ≥ p.

That is, b ∈ (a ∗R x)p = (x ∗R a)p. And so R(x, b) ∧ R(b, a) ≥ p. And finally we have that
R(b, a) ≥ p.

6. F-C-Hyperoperations Associated with p-Fuzzy Transitive Relations

In this section, we will assume that R is a p-fuzzy transitive relation on a non-empty set.

Definition 6.1. A fuzzy binary relation R on a non-empty set H is called p-fuzzy transitive if
for any x, y, z ∈ H,

R
(
x, y

) ≥ p, R
(
y, z

) ≥ p =⇒ R(x, z) ≥ p. (6.1)

Example 6.2. The fuzzy relationR introduced in Example 2.3 is 0.1-fuzzy transitive. Of course,
it is p-fuzzy transitive, where 0 ≤ p ≤ 0.1.

Proposition 6.3. Letting 〈H, ∗R〉 be a partial F-C-hypergroupoid defined on H /= ∅, R is a p-fuzzy
transitive relation on H, p ∈ (0, 1]. Then for all x, y ∈ H, we have that

R
(
x, y

) ≥ p =⇒ (
x ∗R x ∪ y ∗R y

)
p ⊆ (

x ∗R y
)
p. (6.2)

Proof. (1) If (x ∗R x)p = ∅, then obviously (x ∗R x)p ⊆ (x ∗R y)p.
Supposing that (x ∗R x)p /= ∅, then for any w ∈ (x ∗R x)p, we have that R(x,w) ∧

R(w,x) ≥ p, that is, R(x,w) ≥ p and R(w,x) ≥ p. From R(w,x) ≥ p and R(x, y) ≥ p we have
that R(w,y) ≥ p. From R(x,w) ≥ p and R(w,y) ≥ p we conclude that w ∈ (x∗Ry)p.

So (x ∗R x)p ⊆ (x ∗R y)p.
(2) If (y∗Ry)p = ∅, then obviously (y ∗R y)p ⊆ (x ∗R y)p.
Supposing that (y ∗R y)p /= ∅, then for any w ∈ (y ∗R y)p, we have that R(y,w) ∧

R(w,y) ≥ p, that is, R(y,w) ≥ p and R(w,y) ≥ p. From R(y,w) ≥ p and R(x, y) ≥ p we have
that R(x,w) ≥ p. From R(x,w) ≥ p and R(w,y) ≥ p we conclude that w ∈ (x∗Ry)p.

So (y∗Ry)p ⊆ (x ∗R y)p.

Proposition 6.4. Letting 〈H, ∗R〉 be a partial F-C-hypergroupoid defined on H /= ∅, R is a p-fuzzy
transitive binary relation. For any a, b, c ∈ H, we have that

(1) ((a ∗R b)p ∗R c)p ⊆ (a ∗R c)p;

(2) (a ∗R (b ∗R c)p)p ⊆ (a ∗R c)p.
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Proof. (1) If ((a ∗R b) p ∗R c)p = ∅, then it is obvious that ((a ∗R b)p ∗R c)p ⊆ (a ∗R c)p.
Suppose that ((a ∗R b)p ∗R c)p /= ∅. Then for anyw ∈ ((a ∗R b)p ∗R c)p, there exists aw1 ∈

(a ∗R b)p such that w ∈ (w1 ∗R c)p. That is R(a,w1) ≥ p, R(w1, b) ≥ p, R(w1, w) ≥ p and
R(w, c) ≥ p. From R(a,w1) ≥ p and R(w1, w) ≥ p, we have that R(a,w) ≥ p. Thus R(a,w) ∧
R(w, c) ≥ p ∧ p = p. That is, w ∈ (a ∗R c)p. So ((a ∗R b)p ∗R c)p ⊆ (a ∗R c)p.

(2) Can be proved similarly.
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