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The purpose of this paper is to introduce a new iterative scheme for finding a common element of
the set of solutions of generalized mixed equilibrium problems, the set of solutions of variational
inequality problems, the zero point of maximal monotone operators, and the set of two countable
families of quasi-φ-nonexpansive mappings in Banach spaces. Moreover, the strong convergence
theorems of this method are established under the suitable conditions of the parameter imposed on
the algorithm. Finally, we apply our results to finding a zero point of inverse-strongly monotone
operators and complementarity problems. Our results presented in this paper improve and extend
the recently results by many others.

1. Introduction

Equilibrium problem theory is the most important area of mathematical sciences and widely
popular among mathematicians and researchers in other fields due to its applications in
a wide class of problems which arise in economics, finance, optimization, network and
transportation, image reconstruction, ecology, and many others. It has been improved and
extended in many directions. Furthermore, equilibrium problems are related to the problem
of finding fixed point of nonexpansive mappings. In this way, they have been extensively
studied by many authors; see [1–9]. They introduced new iterative schemes for finding a
common element of the set of the solutions of equilibrium problems and the set of fixed
points. In this paper, we are interested a new hybrid iterative method for finding a common
elements of the set of solutions of generalized mixed equilibrium problems, the set of
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solutions of variational inequality problems, the zero point of maximal monotone operators,
and the set of two countable families of quasi-φ-nonexpansive mappings in the framework
of Banach spaces.

Let E be a Banach space with norm ‖ · ‖ and C a nonempty closed convex subset of E
and let E∗ denote the dual of E.

A mapping S : C → C is said to be

(1) nonexpansive [1] if ‖Sx − Sy‖ ≤ ‖x − y‖ for all x, y ∈ C,

(2) relatively nonexpansive [10–12] if ̂F(S) = F(S) and φ(p, Sx) ≤ φ(p, x) for all x ∈ C
and p ∈ F(S), where the functional φ defined by (2.6). The asymptotic behavior of
a relatively nonexpansive mapping was studied in [13, 14],

(3) φ-nonexpansive, if φ(Sx, Sy) ≤ φ(x, y) for x, y ∈ C,

(4) quasi- φ-nonexpansive if F(S)/= ∅ and φ(p, Sx) ≤ φ(p, x) for x ∈ C and p ∈ F(S).

In the sequel, we denote F(T) as the set of fixed points of S. If C is a bounded closed
convex set and S is a nonexpansive mapping of C into itself, then F(S) is nonempty (see
[15]).

A point p in C is said to be an asymptotic fixed point of S [16] if C contains a sequence
{xn} which converges weakly to p such that limn→∞‖xn − Sxn‖ = 0. The set of asymptotic
fixed points of Swill be denoted by ̂F(S).

Let B be an operator from C into E∗, and B is said to be α-inverse-strongly monotone if
there exists a positive real number α such that

〈
x − y, Bx − By

〉 ≥ α
∥∥Bx − By

∥∥2
, ∀x, y ∈ C. (1.1)

If an operator B is an α-inverse-strongly monotone, then we can said that B is Lipschitz
continuous; that is, ‖Bx − By‖ ≤ (1/α) ‖x − y‖ for all x, y ∈ C.

Let f : C × C → R be a bifunction, ϕ : C → R a real-valued function, and B : C → E∗

be a nonlinear mapping. The generalized mixed equilibrium problem is to find x ∈ C such that

f
(
x, y

)
+
〈
Bx, y − x

〉
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.2)

We denote Ω as the set of solutions to (1.2) that is,

Ω =
{
x ∈ C : f

(
x, y

)
+
〈
Bx, y − x

〉
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C

}
. (1.3)

If B ≡ 0, the problem (1.2) reduced into the mixed equilibrium problem for f , denoted by
MEP(f, ϕ), is to find x ∈ C such that

f
(
x, y

)
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.4)

If f ≡ 0, the problem (1.2) reduced into themixed variational inequality of Browder type,
denoted by VI(C,B, ϕ), is to find x ∈ C such that

〈
Bx, y − x

〉
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.5)
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If B ≡ 0 and ϕ ≡ 0 the problem (1.2), reduced into the equilibrium problem for F, denoted
by EP(f), is to find x ∈ C such that

f
(
x, y

) ≥ 0, ∀y ∈ C. (1.6)

In addition, fixed point problem, optimization problem, and many problems can be
written in the form of EP(f). There are the development of researches in this area as seen in
many papers which appeared in the literature on the existence of the solutions of EP(f); see,
for example [17–21] and reference therein. Furthermore, there are many solution methods
proposed continuously to solve the EP(f) as shown in [2, 3, 18, 20, 22–26] and many others.

Next, we let B be a monotone operator of C into E∗. The so-called variational inequality
problem is to find a point x ∈ C such that

〈
Bx, y − x

〉 ≥ 0 ∀y ∈ C. (1.7)

The set of solutions of the variational inequality problem is denoted by VI(C,B).
As we know that the classical variational inequality was first introduced and studied

by Stampacchia [27] in 1964. Its solution can be computed by using iterative projection
method. There are many results with corresponding to variational inequality; for example,
Yao et al. [28] proposed the strong convergence theorem for a system of nonlinear variational
inequalities in Banach spaces, and then, they studied the two-step projection methods, and
they established the convergence theorem for a system of variational inequality problems
in the framework of Banach spaces. Moreover, the important generalized variational
inequalities called variational inclusion also have been extensively studied and extended in
many different directions. Yao et al. [29] considered the algorithm and proved the strong
convergence of common solutions for variational inclusions, mixed equilibrium problems,
and fixed point problems.

The one classical way to approximate a fixed point of a nonlinear self mapping T on C
was firstly introduced by Halpern [30], and then, Aoyama et al. [31] extended the mapping
in the Halpern-type iterative sequence to be a countable family of nonexpansive mappings.
They introduced the following iterative sequence: let x1 = x ∈ C and

xn+1 = αnx + (1 − αn)Tnxn, (1.8)

for all n ∈ N, where C is a nonempty closed convex subset of a Banach space, {αn} is a
sequence in [0, 1], and {Tn} is a sequence of nonexpansive mappings with some conditions.
They proved that {xn} converges strongly to a common fixed point of {Tn}.

Recently, Nakajo et al. [32] introduced the more general condition so-called the NST∗-
condition, and {Tn} is said to satisfy the NST∗-condition if for every bounded sequence {zn}
in C,

lim
n→∞

‖zn − Tnzn‖ = lim
n→∞

‖zn − zn+1‖ = 0 implies ωw(zn) ⊂ F. (1.9)

They also prove strong convergence theorems by the hybrid method for families of mappings
in a uniformly convex Banach space E whose norm is Gâteaux differentiable.
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In Hilbert space H, Iiduka et al. [33] introduced an iterative scheme and proved that
the sequence {xn} generated by the following algorithm: x1 = x ∈ C, and

xn+1 = PC(xn − λnBxn), (1.10)

where PC is the metric projection ofH ontoC and {λn} is a sequence of positive real numbers,
converges weakly to some element of VI(C,B).

Later, Iiduka and Takahashi [34] are interested in the similar problem in the framework
of Banach spaces, they introduced the following iterative scheme for finding a solution of the
variational inequality problem for an inverse-strongly monotone operator B : x1 = x ∈ C,
and

xn+1 = ΠCJ
−1(Jxn − λnBxn), (1.11)

for every n = 1, 2, 3, . . ., where ΠC is the generalized metric projection from E onto C, J is the
dualitymapping from E into E∗, and {λn} is a sequence of positive real numbers. They proved
that the sequence {xn} generated by (1.11) converges weakly to some element of VI(C,B).

In 1974, Rockafellar interested in the following problem of finding:

v ∈ E such that 0 ∈ A(v), (1.12)

where A is an operator from E into E∗. Such v ∈ E is called a zero point of A. He introduced a
well-knownmethod, proximal point algorithm, for solving (1.12) in a Hilbert spaceH as shown
in the following: x1 = x ∈ H and

xn+1 = Jrnxn, n = 1, 2, 3, . . . , (1.13)

where {rn} ⊂ (0,∞), A is a maximal monotone and Jrn = (I + rnA)−1. He proved that the
sequence {xn} converges weakly to an element of A−1(0).

In 2004, Kamimura et al. [35] considered the algorithm (1.14) in a uniformly smooth
and uniformly convex Banach space E; namely,

xn+1 = J−1(αnJxn + (1 − αn)J(Jrnxn)), n = 1, 2, 3, . . . . (1.14)

They proved that the algorithm {xn} generated by (1.14) converges weakly to some element
of A−10.

In 2008, Li and Song [36] established a strong convergence theorem in a Banach space.
They introduced the following algorithm: x1 = x ∈ E and

yn = J−1
(
βnJ(xn) +

(
1 − βn

)
J(Jrnxn)

)
,

xn+1 = J−1
(
αnJx + (1 − αn)J

(
yn

))
.

(1.15)

Under the suitable conditions of the coefficient sequences {αn}, {βn}, and {rn}, they proved
that the sequence {xn} generated by the above scheme converges strongly toΠCx, whereΠC

is the generalized projection from E onto C.



Journal of Applied Mathematics 5

In 2010, Petrot et al. [37] introduced a hybrid projection iterative scheme for
approximating a common element of the set of solutions of a generalized mixed equilibrium
problem and the set of fixed points of two quasi-φ-nonexpansive mappings in a real
uniformly convex and uniformly smooth Banach space by the following manner:

x0 = x ∈ C,

yn = J−1(δnJxn + (1 − δn)Jzn),

zn = J−1
(
αnJxn + βnJTxn + γnJSxn

)
,

un = Krnyn,

Cn =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx.

(1.16)

They proved that {xn} converges strongly to p ∈ F(T) ∩ F(S) ∩Ω, where p ∈ ΠF(T)∩F(S)∩Ωx.
Recently, Klin-eam et al. [38], obtained the strong convergence theorem for finding

a common element of the zero point set of a maximal monotone operator and the fixed
point set of two relatively nonexpansive mappings in a Banach space by using a new hybrid
method. Saewan and Kumam [39] introduced a new hybrid projection method for finding a
common solution of the set of common fixed points of two countable families of relatively
quasi-nonexpansive mappings, the set of the variational inequality for an α-inverse-strongly
monotone operator, the set of solutions of the generalized mixed equilibrium problem, and
zeros of a maximal monotone operator in a real uniformly smooth and 2-uniformly convex
Banach space. Wattanawitoon and Kumam [40] proved the strong convergence theorem by
usingmodified hybrid projectionmethod for finding a common element of the set of solutions
of generalized mixed equilibrium problems, the set of solution of variational inequality
operators of an inverse strongly monotone, the zero point of a maximal monotone operator,
and the set of fixed point of two relatively quasi-nonexpansive mappings in Banach space.

Motivated and inspired by the ongoing research and the above-mentioned results,
we are also interested in generalized mixed equilibrium problem, variational inequality
problems, and the zero point of maximal monotone operators. In this paper, we extend the
fixed point problems of two relatively quasi-nonexpansive mappings in [40] to the countable
families of two quasi-φ-nonexpansive mappings and improve the iterative scheme to be more
general as shown in the following: x1 = x ∈ C,

wn = ΠCJ
−1(Jxn − λnBxn),

zn = J−1(δnJ(xn) + (1 − δn)J(Jrnwn)),

yn = J−1
(
αnJxn + βnJTnxn + γnJSnzn

)
,

un ∈ C such that F
(
un, y

)
+
〈
Yun, y − un

〉
+ ϕ

(
y
) − ϕ(un)

+
1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀ y ∈ C,



6 Journal of Applied Mathematics

Cn+1 =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x.

(1.17)

By the new iterative scheme, we will prove the strong convergence theorems of the
sequence {xn} which could be converged to the point Π(∩∞

n=1F(Tn))∩(∩∞
n=1F(Sn))∩Ω∩VI(C,B)∩A−1(0)x.

Furthermore, we propose the new better appropriate conditions of the coefficient sequences
{αn}, {βn}, {γn}, and {rn}. Finally, we will apply our result to find a zero point of inverse-
strongly monotone operators and complementarity problem in the last section. The results
presented in this paper extend and improve the corresponding ones announced by
Kamimura et al. [35], Petrot et al. [37], Wattanawitoon and Kumam [40], and some authors
in the literature.

2. Preliminaries

In this section, we propose the following preliminaries and lemmas which will be used in our
proof.

Throughout this paper, we let E be a Banach space with norm ‖ · ‖, and C a nonempty
closed convex subset of E, and let E∗ denote the dual of E. Wewrite xn ⇀ x to indicate that the
sequence {xn} converges weakly to x and xn → x implies that the sequence {xn} converges
strongly to x.

LetU = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. A Banach space E is said to be strictly
convex if for any x, y ∈ U,

x /=y implies
∥∥∥∥
x + y

2

∥∥∥∥ < 1. (2.1)

It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that for
any x, y ∈ U

∥∥x − y
∥∥ ≥ ε implies

∥∥∥∥
x + y

2

∥∥∥∥ < 1 − δ. (2.2)

We know that a uniformly convex Banach space is reflexive and strictly convex; see [41, 42]
for more details.

The modulus of convexity of E is the function δ : [0, 2] → [0, 1] defined by

δ(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : x, y ∈ E, ‖x‖ =
∥∥y

∥∥ = 1,
∥∥x − y

∥∥ ≥ ε

}
. (2.3)

Furthermore, it is said to be smooth, provided that

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.4)

exists for all x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly for
x, y ∈ E.
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Let p be a fixed real number with p ≥ 2. Observe that every p-uniformly convex is
uniformly convex. One should note that no a Banach space is p-uniformly convex for 1 < p <
2. It is well known that a Hilbert space is 2-uniformly convex and uniformly smooth. For each
p > 1, the generalized duality mapping Jp : E → 2E

∗
is defined by

Jp(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1

}
, (2.5)

for all x ∈ E.
In particular, J = J2 is called the normalized duality mapping. If E is a Hilbert space, then

J = I, where I is the identity mapping. It is also known that if E is uniformly smooth, then J
is uniformly norm-to-norm continuous on each bounded subset of E.

We know the following (see [43]):

(1) if E is smooth, then J is single-valued,

(2) if E is strictly convex, then J is one-to-one and 〈x − y, x∗ − y∗〉 > 0 holds for all
(x, x∗), (y, y∗) ∈ J with x /=y,

(3) if E is reflexive, then J is surjective,

(4) if E is uniformly convex, then it is reflexive,

(5) if E∗ is uniformly convex, then J is uniformly norm-to-norm continuous on each
bounded subset of E.

The duality J from a smooth Banach space E into E∗ is said to be weakly sequentially
continuous [44] if xn ⇀ x implies Jxn⇀

∗Jx, where ⇀∗ implies the weak∗ convergence.
Let E be a smooth, strictly convex and reflexive Banach space, and letC be a nonempty

closed convex subset of E. Throughout this paper, we denote by φ the function defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y

∥∥2
, for x, y ∈ E. (2.6)

Remark 2.1. We know the following: for each x, y, z ∈ E,

(i) (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2,
(ii) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉,
(iii) φ(x, y) = ‖x − y‖2 in a real Hilbert space.

The generalized projection, introduced by Alber [45], ΠC : E → C is a map that assigns
to an arbitrary point x ∈ E the minimum point of the function φ(x, y); that is,ΠCx = x, where
x is the solution to the minimization problem

φ(x, x) = inf
y∈C

φ
(
y, x

)
, (2.7)

existence and uniqueness of the operator ΠC follows from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J .

If E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E, φ(x, y) =
0, if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From Remark 2.1
(i), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J , one
has Jx = Jy. Therefore, we have x = y; see [43, 46] for more details.
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Lemma 2.2 (see [47, 48]). If E be a 2-uniformly convex Banach space, then for all x, y ∈ E, one has

∥
∥x − y

∥
∥ ≤ 2

c2
∥
∥Jx − Jy

∥
∥, (2.8)

where J is the normalized duality mapping of E and 0 < c ≤ 1.

The best constant 1/c in the Lemma is called the 2-uniformly convex constant of E; see
[41].

Lemma 2.3 (see [47, 49]). If E is a p-uniformly convex Banach space and p a given real number with
p ≥ 2, then for all x, y ∈ E,Jx ∈ Jp(x) and Jy ∈ Jp(y)

〈
x − y, Jx − Jy

〉 ≥ cp

2p−2p

∥
∥x − y

∥
∥p

, (2.9)

where Jp is the generalized duality mapping of E and 1/c is the p-uniformly convexity constant of E.

Lemma 2.4 (Xu [48]). Let E be a uniformly convex Banach space, then for each r > 0, there exists a
strictly increasing, continuous and convex function g : [0,∞) → [0,∞) such that g(0) = 0 and

∥∥λx +
(
1 − λy

)∥∥2 ≤ λ‖x‖2 + (1 − λ)
∥∥y

∥∥2 − λ(1 − λ)g
(∥∥x − y

∥∥), (2.10)

for all x, y ∈ {z ∈ E : ‖z‖ ≤ r} and λ ∈ [0, 1].

Lemma 2.5 (Kamimura and Takahashi [50]). Let E be a uniformly convex and smooth real Banach
space and {xn}, {yn} two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then
‖xn − yn‖ → 0.

Lemma 2.6 (Alber [45]). Let C be a nonempty closed convex subset of a smooth Banach space E and
x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0 〉 ≥ 0, ∀y ∈ C. (2.11)

Lemma 2.7 (Alber [45]). Let E be a reflexive, strictly convex and smooth Banach space and C a
nonempty closed convex subset of E and let x ∈ E. Then,

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

)
, ∀y ∈ C. (2.12)

Let E be a strictly convex, smooth, and reflexive Banach space and J the duality
mapping from E into E∗. Then, J−1 is also single-valued, one-to-one, and surjective, and it
is the duality mapping from E∗ into E. Define a function V : E×E∗ → R as follows (see [51]):

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, (2.13)

for all x ∈ E and x∗ ∈ E∗. Then, it is obvious that V (x, x∗) = φ(x, J−1(x∗)) and V (x, J(y)) =
φ(x, y).
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Lemma 2.8 (Kohsaka and Takahashi [51, Lemma 3.2]). Let E be a strictly convex, smooth, and
reflexive Banach space and V as in (2.13). Then,

V (x, x∗) + 2
〈
J−1(x∗) − x, y∗

〉
≤ V

(
x, x∗ + y∗), (2.14)

for all x ∈ E and x∗, y∗ ∈ E∗.

For solving the generalized mixed equilibrium problem, let us assume that the
bifunction F : C ×C → R and ϕ : C → R is convex and lower semicontinuous, satisfying the
following conditions:

(A1) F(x, x) = 0 for all x ∈ C,

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C,

(A3) for each x, y, z ∈ C,

lim sup
t↓0

F
(
tz + (1 − t)x, y

) ≤ F
(
x, y

)
, (2.15)

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Lemma 2.9 (Blum and Oettli [17]). Let C be a closed convex subset of a uniformly smooth, strictly
convex, and reflexive Banach space E and F a bifunction of C × C into R satisfying (A1)–(A4). Let
r > 0 and x ∈ E. Then, there exists z ∈ C such that

F
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0 ∀y ∈ C. (2.16)

Lemma 2.10 (Takahashi and Zembayashi [52]). Let C be a closed convex subset of a uniformly
smooth, strictly convex, and reflexive Banach space E and F a bifunction from C × C to R satisfying
(A1)–(A4). For all r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Trx =
{
z ∈ C : F

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, (2.17)

for all x ∈ E. Then, the following hold:

(1) Tr is single-valued,

(2) Tr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
, (2.18)

(3) F(Tr) = EP(F),

(4) EP(F) is closed and convex.
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Lemma 2.11 (Takahashi and Zembayashi [52]). Let C be a closed convex subset of a smooth,
strictly convex, and reflexive Banach space E, and F a bifunction fromC×C to R satisfying (A1)–(A4)
and let r > 0. Then, for x ∈ E and q ∈ F(Tr),

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (2.19)

Lemma 2.12 (Zhang [53]). LetC be a closed convex subset of a smooth, strictly convex, and reflexive
Banach space E. Let B : C → E∗ be a continuous and monotone mapping, ϕ : C → R convex and
lower semi-continuous, and F a bifunction fromC×C to R satisfying (A1)–(A4). For r > 0 and x ∈ E,
then there exists u ∈ C such that

F
(
u, y

)
+
〈
Bu, y − u

〉
+ ϕ

(
y
) − ϕ(u) +

1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C. (2.20)

Define a mapping Kr : C → C as follows:

Kr(x) =
{
u ∈ C : F

(
u, y

)
+
〈
Bu, y − u

〉
+ ϕ

(
y
) − ϕ(u) +

1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C

}
,

(2.21)

for all x ∈ E. Then, the following hold:

(i) Kr is single-valued,

(ii) Kr is firmly nonexpansive, that is, for all x, y ∈ E, 〈Krx −Kry, JKrx − JKry〉 ≤ 〈Krx −
Kry, Jx − Jy〉,

(iii) F(Kr) = Ω,

(iv) Ω is closed and convex,

(v) φ(p,Krz) + φ(Krz, z) ≤ φ(p, z) for all p ∈ F(Kr), z ∈ E.

It follows from Lemma 2.10 that the mapping Kr : C → C defined by (2.21) is a
relatively nonexpansive mapping. Thus, it is quasi-φ-nonexpansive.

Let E be a reflexive, strictly convex and smooth Banach space. Let C be a closed
convex subset of E. Because φ(x, y) is strictly convex and coercive in the first variable,
we know that the minimization problem infy∈Cφ(x, y) has a unique solution. The operator
ΠCx := argminy∈Cφ(x, y) is said to be the generalized projection of x on C.

Let A be a set-valued mapping from E to E∗ with graph G(A) = {(x, x∗) : x∗ ∈ Ax},
domain D(A) = {x ∈ E : A(x)/= ∅}, and range R(A) = {x∗ ∈ E∗ : x∗ ∈ A(x), x ∈ D(A)}.
We denote a set-valued operator A from E to E∗ by A ⊂ E × E∗. A is said to be monotone if
〈x − y, x∗ − y∗〉 ≥ 0 for all (x, x∗), (y, y∗) ∈ A. A monotone operator A ⊂ E × E∗ is said to be
maximal monotone if it graph is not properly contained in the graph of any other monotone
operator. We know that if A is maximal monotone, then the solution set A−10 = {z ∈ D(A) :
0 ∈ Az} is closed and convex.

Let E be a reflexive, strictly convex and smooth Banach space, it is known that A is
maximal monotone if and only if R(J + rA) = E∗ for all r > 0.

Define the resolvent of A by Jrx = xr . In other words, Jr = (J + rA)−1J for all r > 0. Jr is
a single-valued mapping from E toD(A). Also,A−1(0) = F(Jr) for all r > 0, where F(Jr) is the
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set of all fixed points of Jr . Define, for r > 0, the Yosida approximation ofA byAr = (J − JJr)/r.
We know that Arx ∈ A(Jrx) for all r > 0 and x ∈ E.

Lemma 2.13 (Kohsaka and Takahashi [51, Lemma 3.1]). Let E be a smooth, strictly convex, and
reflexive Banach space, let A ⊂ E × E∗ be a maximal monotone operator with A−10/= ∅, r > 0, and
Jr = (J + rT)−1J . Then,

φ
(
x, Jry

)
+ φ

(
Jry, y

) ≤ φ
(
x, y

)
(2.22)

for all x ∈ A−10 and y ∈ E.

Let B be an inverse-strongly monotone mapping of C into E∗ which is said to be
hemicontinuous if for all x, y ∈ C, the mapping F of [0, 1] into E∗, defined by F(t) =
B(tx + (1 − t)y), is continuous with respect to the weak∗ topology of E∗. We define by NC(v)
the normal cone for C at a point v ∈ C; that is,

NC(v) =
{
x∗ ∈ E∗ :

〈
v − y, x∗〉 ≥ 0, ∀y ∈ C

}
. (2.23)

Theorem 2.14. (Rockafellar [54]). Let C be a nonempty, closed convex subset of a Banach space E and
B a monotone, hemicontinuous operator of C into E∗. Let T ⊂ E×E∗ be an operator defined as follows:

Tv =

⎧
⎨

⎩

Bv +NC(v), v ∈ C,

∅, otherwise.
(2.24)

Then T , is maximal monotone and T−10 = VI(C,B).

Lemma 2.15 (Tan and Xu [55]). Let {an} and {bn} be two sequences of nonnegative real numbers
satisfying

an+1 ≤ an + bn, ∀n ≥ 0. (2.25)

If
∑∞

n=1bn < ∞, then limn→∞an exists.

3. The Main Result

In this section, we prove a strong convergence theorem for finding a common element of
the set of solutions of mixed equilibrium problems, the set of solutions of the variational
inequality problem, the zero point of a maximal monotone operator, and the set of two
families of quasi-φ-nonexpansive mappings in a Banach space by using the shrinking hybrid
projection method.

Theorem 3.1. Let E be a 2-uniformly convex and uniformly smooth Banach space and C a nonempty
closed convex subset of E. Let F be a bifunction from C ×C to R satisfying (A1)–(A4), let ϕ : C → R

be a proper lower semicontinuous and convex function, and let A : E → E∗ be a maximal monotone
operator satisfyingD(A) ⊂ E. Let Jr = (J+rA)−1J for r > 0, let B be an α-inverse-strongly monotone
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operator of E into E∗, and let Y : E → E∗ be a continuous and monotone mapping. Let {Tn} and
{Sn} be two families of quasi-φ-nonexpansive mappings of E into itself satisfies the NST ∗-condition,
with Θ := (∩∞

n=1F(Tn)) ∩ (∩∞
n=1F(Sn)) ∩Ω ∩ V I(C,B) ∩A−1(0)/= ∅ and ‖By‖ ≤ ‖By − Bu‖ for all

y ∈ C and u ∈ Θ. Let {xn} be a sequence generated by x1 = x ∈ E, and

wn = ΠCJ
−1(Jxn − λnBxn),

zn = J−1(δnJ(xn) + (1 − δn)J(Jrnwn)),

yn = J−1
(
αnJxn + βnJTnxn + γnJSnzn

)
,

un ∈ C such that F
(
un, y

)
+ 〈Yun, y − un〉 + ϕ

(
y
) − ϕ(un)

+
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x,

(3.1)

for all n ∈ N. If the coefficient sequence {αn}, {βn}, {γn}, and {δn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfy αn+
βn+γn = 1, lim infn→∞αnβn > 0, lim infn→∞αnγn > 0, lim infn→∞γn(1−δn) > 0, lim infn→∞rn > 0
and {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, 1/c is the 2-uniformly convexity constant
of E. Then the sequence {xn} converges strongly toΠΘx.

Proof. We first show that {xn} is bounded. Let p ∈ Θ := (∩∞
n=1F(Tn)) ∩ (∩∞

n=1F(Sn)) ∩ Ω ∩
VI(C,B) ∩A−1(0), and let

H
(
un, y

)
= F

(
un, y

)
+
〈
Yun, y − un

〉
+ ϕ

(
y
) − ϕ(un), y ∈ C ,

Krn =
{
u ∈ C : H

(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C

}
.

(3.2)

Put vn = J−1(Jxn − λnBxn) and un = Krnyn.
With its relatively nonexpansiveness of Jrn and by Lemma 2.8, the convexity of the

function V in the second variable, we have

φ
(
p,wn

)
= φ

(
p,ΠCvn

)

≤ φ
(
p, vn

)
= φ

(
p, J−1(Jxn − λnBxn)

)

≤ V
(
p, Jxn − λnBxn + λnBxn

) − 2
〈
J−1(Jxn − λnBxn) − p, λnBxn

〉

= V
(
p, Jxn

) − 2λn
〈
vn − p, Bxn

〉

= φ
(
p, xn

) − 2λn
〈
xn − p, Bxn

〉
+ 2〈vn − xn,−λnBxn〉.

(3.3)
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Since p ∈ VI(C,B) and B is α-inverse-strongly monotone, we consider

−2λn
〈
xn − p, Bxn

〉
= −2λn

〈
xn − p, Bxn − Bp

〉 − 2λn
〈
xn − p, Bp

〉

≤ −2αλn
∥
∥Bxn − Bp

∥
∥2
.

(3.4)

Therefore, by Lemma 2.2, we obtain

2〈vn − xn,−λnBxn〉 = 2
〈
J−1(Jxn − λnBxn) − J−1(Jxn),−λnBxn

〉

≤ 2
∥
∥
∥J−1(Jxn − λnBxn) − J−1(Jxn)

∥
∥
∥‖λnBxn‖

≤ 4
c2
‖Jxn − λnBxn − Jxn‖‖λnBxn‖

=
4
c2
λ2n‖Bxn‖2

≤ 4
c2
λ2n

∥∥Bxn − Bp
∥∥2
.

(3.5)

We can rewrite (3.3), which yield that

φ
(
p,wn

) ≤ φ
(
p, xn

) − 2αλn
∥∥Bxn − Bp

∥∥2 +
4
c2
λ2n

∥∥Bxn − Bp
∥∥2

≤ φ
(
p, xn

)
+ 2λn

(
2
c2
λn − α

)∥∥Bxn − Bp
∥∥2

≤ φ
(
p, xn

)
.

(3.6)

Apply the Lemma 2.8, Lemma 2.13 and (3.6), we consider

φ
(
p, zn

)
= φ

(
p, J−1(δnJ(xn) + (1 − δn)J(Jrnwn))

)

= V
(
p, δnJ(xn) + (1 − δn)J(Jrnwn)

)

≤ δnV
(
p, J(xn)

)
+ (1 − δn)V

(
p, J(Jrnwn)

)

= δnφ
(
p, xn

)
+ (1 − δn)φ

(
p, Jrnwn

)

≤ δnφ
(
p, xn

)
+ (1 − δn)

(
φ
(
p,wn

) − φ(Jrnwn,wn)
)

≤ δnφ
(
p, xn

)
+ (1 − δn)φ

(
p,wn

)

≤ δnφ
(
p, xn

)
+ (1 − δn)φ

(
p, xn

)

= φ
(
p, xn

)
,

(3.7)
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hence, we obtain

φ
(
p, yn

)
= φ

(
p, J−1

(
αnJxn + βnJTnxn + γnJSnzn

))

=
∥
∥p

∥
∥2 − 2αn

〈
p, Jxn

〉 − 2βn
〈
p, JTnxn

〉 − 2γn
〈
p, JSnzn

〉

+
∥
∥αnJxn + βnJTnxn + γnJSnzn

∥
∥2

≤ ∥
∥p

∥
∥2 − 2αn

〈
p, Jxn

〉 − 2βn
〈
p, JTnxn

〉 − 2γn
〈
p, JSnzn

〉

+ αn‖Jxn‖2 + βn‖JTnxn‖2 + γn‖JSnzn‖2

= αnφ
(
p, xn

)
+ βnφ

(
p, Tnxn

)
+ γnφ

(
p, Snzn

)

≤ αnφ
(
p, xn

)
+ βnφ

(
p, xn

)
+ γnφ

(
p, zn

)

≤ αnφ
(
p, xn

)
+ βnφ

(
p, xn

)
+ γnφ

(
p, xn

)

= φ
(
p, xn

)
.

(3.8)

By (3.1), again,

φ
(
p, un

)
= φ

(
p,Krnyn

) ≤ φ
(
p, yn

) ≤ φ
(
p, xn

)
. (3.9)

This shows that p ∈ Cn+1. Consequently, Θ ⊂ Cn, for all n ∈ N.
Next, we show that limn→∞φ(xn, x0) exists. Since xn = ΠCnx, it follows from

Lemma 2.7 that

φ(xn, x) ≤ φ
(
p, x

) − φ
(
p, xn

) ≤ φ
(
p, x

)
, (3.10)

for each p ∈ Θ ⊂ Cn. Then, φ(xn, x) is bounded. It implies that {xn} is bounded and {yn},
{zn}, {wn}, and {Jrnwn} are also bounded.

From xn = ΠCnx and xn+1 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x) ≤ φ(xn+1, x), ∀n ∈ N. (3.11)

Therefore, {φ(xn, x)} is nondecreasing. It follows that the limit of {φ(xn, x)} exists, and from
Lemma 2.7, we have

φ(xn+1, xn) = φ(xn+1,ΠCnx) ≤ φ(xn+1, x) − φ(ΠCnx, x) = φ(xn+1, x) − φ(xn, x), (3.12)

for all n ∈ N. Thus, we have

lim
n→∞

φ(xn+1, xn) = 0. (3.13)
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Since xn+1 = ΠCn+1x ∈ Cn+1, it follows from the definition of Cn+1 that

φ(xn+1, un) ≤ φ(xn+1, xn) −→ 0. (3.14)

By Lemma 2.5, (3.13), and (3.14), we note that

lim
n→∞

‖xn+1 − un‖ = lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn − un‖ = 0. (3.15)

Since J is uniformly norm-to-norm continuous on the bounded set, we obtain

lim
n→∞

‖Jxn+1 − Jun‖ = lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

‖Jxn − Jun‖ = 0. (3.16)

Since xm = ΠCm ⊂ Cn for any positive integer m ≥ n, it follows from Lemma 2.7 that

φ(xm, xn) = φ(xm,ΠCnxn) ≤ φ(xm, x) − φ(ΠCnxn, x)

= φ(xm, x) − φ(xn, x).
(3.17)

Taking m,n → ∞, we have φ(xm, xn) → 0 as n → ∞. It follows from Lemma 2.5, that
‖xm − xn‖ → 0 as m,n → ∞. Hence, {xn} is a Cauchy sequence. Since E is a Banach space
and C is closed and convex, we can assume that xn → u ∈ C as n → ∞.

Next, we show that u ∈ (∩∞
n=1F(Tn)) ∩ (∩∞

n=1F(Sn)).
Since E is a uniformly smooth Banach space, we know that E∗ is a uniformly convex

Banach space. Let r = supn∈N
{‖xn‖, ‖Tnxn‖, ‖Snzn‖}. From Lemma 2.4, we have

φ
(
p, un

) ≤ φ
(
p, yn

)

= φ
(
p, J−1

(
αnJxn + βnJTnxn + γnJSnzn

))

=
∥∥p

∥∥2 − 2αn

〈
p, Jxn

〉 − 2βn
〈
p, JTnxn

〉 − 2γn
〈
p, JSnzn

〉

+
∥∥αnJxn + βnJTnxn + γnJSnzn

∥∥2

≤ ∥∥p
∥∥2 − 2αn

〈
p, Jxn

〉 − 2βn
〈
p, JTnxn

〉 − 2γn
〈
p, JSnzn

〉

+ αn‖Jxn‖2 + βn‖JTnxn‖2 + γn‖JSnzn‖2 − αnβng(‖JTnxn − Jxn‖)
= αnφ

(
p, xn

)
+ βnφ

(
p, Tnxn

)
+ γnφ

(
p, Snzn

) − αnβng(‖JTnxn − Jxn‖)
≤ αnφ

(
p, xn

)
+ βnφ

(
p, xn

)
+ γnφ

(
p, zn

) − αnβng(‖JTnxn − Jxn‖)
≤ αnφ

(
p, xn

)
+ βnφ

(
p, xn

)
+ γnφ

(
p, xn

) − αnβng(‖JTnxn − Jxn‖)
= φ

(
p, xn

) − αnβng(‖JTnxn − Jxn‖).

(3.18)

This implies that

αnβng(‖JTnxn − Jxn‖) ≤ φ
(
p, xn

) − φ
(
p, un

)
. (3.19)
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On the other hand, we have

φ
(
p, xn

) − φ
(
p, un

)
= ‖xn‖2 − ‖un‖2 − 2

〈
p, Jxn − Jun

〉

= ‖xn − un‖(‖xn‖ + ‖un‖) + 2
∥
∥p

∥
∥‖Jxn − Jun‖.

(3.20)

Noticing (3.15) and (3.16), we obtain

φ
(
p, xn

) − φ
(
p, un

) −→ 0, as n −→ ∞. (3.21)

Since lim infn→∞αnβn > 0 and (3.21), it follows from (3.19) that

g(‖JTnxn − Jxn‖) −→ 0, as n −→ ∞. (3.22)

It follows from the property of g that

‖JTnxn − Jxn‖ −→ 0, as n −→ ∞. (3.23)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we see that

lim
n→∞

‖Tnxn − xn‖ = 0. (3.24)

Similarly, using the condition lim supn→∞αnγn > 0, one can obtain

lim
n→∞

‖Snzn − xn‖ = 0. (3.25)

By (3.6), (3.8), and (3.18), we have

φ
(
p, un

) ≤ αnφ
(
p, xn

)
+ βnφ

(
p, xn

)
+ γnφ

(
p, zn

) − αnβng(‖JTnxn − Jxn‖)
≤ αnφ

(
p, xn

)
+ βnφ

(
p, xn

)

+ γn
[
δnφ

(
p, xn

)
+ (1 − δn)φ

(
p,wn

)] − αnβng(‖JTnxn − Jxn‖)
≤ αnφ

(
p, xn

)
+ βnφ

(
p, xn

)
+ γnδnφ

(
p, xn

)

+ γn(1 − δn)φ
(
p,wn

) − αnβng(‖JTnxn − Jxn‖)
≤ αnφ

(
p, xn

)
+ βnφ

(
p, xn

)

+ γnδnφ
(
p, xn

)
+ γn(1 − δn)

[
φ
(
p, xn

)
+ 2λn

(
2
c2
λn − α

)∥∥Bxn − Bp
∥∥2
]

− αnβng(‖JTnxn − Jxn‖)
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≤ αnφ
(
p, xn

)
+ βnφ

(
p, xn

)
+ γnδnφ

(
p, xn

)
+ γn(1 − δn)φ

(
p, xn

)

+ γn(1 − δn)2λn
(

2
c2
λn − α

)∥∥Bxn − Bp
∥∥2 − αnβng(‖JTnxn − Jxn‖)

≤ φ
(
p, xn

)
+ γn(1 − δn)2λn

(
2
c2
λn − α

)∥
∥Bxn − Bp

∥
∥2
.

(3.26)

This implies that

2λn
(
α − 2

c2
λn

)∥
∥Bxn − Bp

∥
∥2 ≤ 1

γn(1 − δn)
[
φ
(
p, xn

) − φ
(
p, un

)]
. (3.27)

By assumption, lim infn→∞γn(1 − δn) > 0 and (3.21), we get that

lim
n→∞

∥∥Bxn − Bp
∥∥ = 0. (3.28)

From Lemma 2.7, Lemma 2.8, and (3.5), we have

φ(xn,wn) = φ(xn,ΠCvn)

≤ φ(xn, vn)

= φ
(
xn, J

−1(Jxn − λnBxn)
)

= V (xn, Jxn − λnBxn)

≤ V (xn, (Jxn − λnBxn) + λnBxn) − 2
〈
J−1(Jxn − λnBxn) − xn, λnBxn

〉

= V (xn, Jxn) − 2λn〈vn − xn, Bxn〉
= φ(xn, xn) + 2〈vn − xn, λnBxn〉

≤ 4
c2
λ2n

∥∥Bxn − Bp
∥∥2
.

(3.29)

By Lemma 2.8 and Lemma 2.13, we have

φ(xn, zn) = φ
(
xn, J

−1(δnJxn + (1 − δn)J(Jrnwn))
)

= V (xn, δnJxn + (1 − δn)J(Jrnwn))

≤ δnV (xn, Jxn) + (1 − δn)V (xn, J(Jrnwn))

= δnφ(xn, xn) + (1 − δn)φ(xn, Jrnwn)

= δnφ(xn, xn) + (1 − δn)
(
φ(xn,wn) − φ(Jrnwn,wn)

)

= (1 − δn)φ(xn,wn)

≤ (1 − δn)
4
c2
λ2n

∥∥Bxn − Bp
∥∥2
.

(3.30)
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From Lemma 2.5 and (3.28), we obtain

lim
n→∞

‖xn −wn‖ = lim
n→∞

‖xn − zn‖ = 0. (3.31)

Since J is uniformly norm-to-norm continuous on bounded sets, we note that

lim
n→∞

‖Jxn − Jwn‖ = lim
n→∞

‖Jxn − Jzn‖ = 0. (3.32)

Since xn → u as n → ∞, zn → u as n → ∞. Combining (3.15), (3.25), and (3.28), we also
obtain

‖Snzn − zn‖ ≤ ‖Snzn − xn‖ + ‖xn − zn‖ −→ 0 as n −→ ∞. (3.33)

By (3.15) and (3.31), we obtain that

‖zn+1 − zn‖ ≤ ‖zn+1 − xn+1‖ + ‖xn+1 − xn‖ + ‖xn − zn‖ −→ 0 as n −→ ∞. (3.34)

By (3.15), (3.24), (3.33), and (3.34), and {Tn}, {Sn} satisfies the NST∗-condition and xn → p,
then we have p ∈ (∩∞

n=1F(Tn)) ∩ (∩∞
n=1F(Sn)).

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ u ∈ C.
It follows from (3.31) that we have wni ⇀ u as i → ∞. Next, we show that u ∈ A−10.

By (3.6), (3.8), and (3.9), we obtain

φ
(
p, un

) ≤ φ
(
p, yn

)

≤ αnφ
(
p, xn

)
+ βnφ

(
p, xn

)
+ γnφ

(
p, zn

)

≤ αnφ
(
p, xn

)
+ βnφ

(
p, xn

)
+ γn

[
δnφ

(
p, xn

)
+ (1 − δn)

(
φ
(
p,wn

) − φ(Jrnwn,wn)
)]

≤ αnφ
(
p, xn

)
+ βnφ

(
p, xn

)
+ γn

[
δnφ

(
p, xn

)
+ (1 − δn)

(
φ
(
p, xn

) − φ(Jrnwn,wn)
)]

≤ φ
(
p, xn

) − γn(1 − δn)φ(Jrnwn,wn).
(3.35)

This implies that

γn(1 − δn)φ(Jrnwn,wn) ≤ φ
(
p, xn

) − φ
(
p, un

)
. (3.36)

By (3.21), we have

lim
n→∞

‖Jrnwn −wn‖ = 0. (3.37)

Since J is uniformly norm-to-norm continuous on bounded sets, we note that

lim
n→∞

‖JJrnwn − Jwn‖ = 0. (3.38)
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Indeed, since lim infn→∞rn > 0, it follows from (3.38) that

lim
n→∞

‖Arnwn‖ = lim
n→∞

1
rn
‖Jwn − J(Jrnwn)‖ = 0. (3.39)

If (w,w∗) ∈ A, then it holds from the monotonicity of A that

〈
w −wni ,w

∗ −Arni
wni

〉
≥ 0, (3.40)

for all i ∈ N. Letting i → ∞, we get 〈w − u,w∗〉 ≥ 0. Then, the maximality of A implies
u ∈ A−10.

Next, we show that u ∈ VI(C,B). Let K ⊂ E × E∗ be an operator as follows:

Kv =

⎧
⎨

⎩

Bv +NC(v), v ∈ C,

∅, otherwise.
(3.41)

By Theorem 2.14, K is maximal monotone and K−10 = VI(C,B).
Let (v,w) ∈ G(K). Sincew ∈ Kv = Bv +NC(v), we getw −Bv ∈ NC(v). Fromwn ∈ C,

we have

〈v −wn,w −Kv〉 ≥ 0. (3.42)

On the other hand, since wn = ΠCJ
−1(Jxn − λnBxn), then by Lemma 2.6, we have

〈v −wn, Jwn − (Jxn − λnBxn)〉 ≥ 0, (3.43)

thus

〈
v −wn,

Jxn − Jwn

λn
− Bxn

〉
≤ 0. (3.44)

It follows from (3.42) and (3.44) that

〈v −wn,w〉 ≥ 〈v −wn, Bv〉

≥ 〈v −wn, Bv〉 +
〈
v −wn,

Jxn − Jwn

λn
− Bxn

〉

= 〈v −wn, Bv − Bxn〉 +
〈
v −wn,

Jxn − Jwn

λn

〉

= 〈v −wn, Bv − Bwn〉 + 〈v −wn, Bwn − Bxn〉 +
〈
v −wn,

Jxn − Jwn

λn

〉

≥ −‖v −wn‖‖wn − xn‖
α

− ‖v −wn‖‖Jxn − Jwn‖
a

≥ −M
(‖wn − xn‖

α
+
‖Jxn − Jwn‖

a

)
,

(3.45)
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where M = supn≥1{‖v − wn‖}. From (3.31) and (3.32), we obtain 〈v − u,w〉 ≥ 0. By the
maximality of K, we have u ∈ K−10 and hence u ∈ VI(C,B).

Next, we show that u ∈ Ω. From un = Krnyn and Lemma 2.12, we obtain

φ
(
un, yn

)
= φ

(
Krnyn, yn

)

≤ φ
(
u, yn

) − φ
(
u,Krnyn

)

≤ φ(u, xn) − φ
(
u,Krnyn

)

≤ φ(u, xn) − φ(u, un).

(3.46)

On the other hand, we have

φ(u, xn) − φ(u, un) = ‖xn‖2 − ‖un‖2 − 2〈u, Jxn − Jun〉
= ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖u‖‖Jxn − Jun‖.

(3.47)

Noticing (3.15) and (3.16), we obtain

φ(u, xn) − φ(u, un) −→ 0, as n −→ ∞. (3.48)

It follows that

φ
(
un, yn

) −→ 0, as n −→ ∞. (3.49)

By Lemma 2.5, we have

lim
n→∞

∥∥un − yn

∥∥ = 0. (3.50)

Since J is uniformly norm-to-norm continuous on bounded sets, we get

lim
n→∞

∥∥Jun − Jyn

∥∥ = 0. (3.51)

From the assumption lim infn→∞rn > a, we get

lim
n→∞

∥∥Jun − Jyn

∥∥

rn
= 0. (3.52)

Noticing that un = Krnyn, we have

H
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C. (3.53)
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Hence,

H
(
uni , y

)
+

1
rni

〈
y − uni , Juni − Jyni

〉 ≥ 0, ∀y ∈ C. (3.54)

From the (A2), we note that

∥
∥y − uni

∥
∥
∥
∥Juni − Jyni

∥
∥

rni

≥ 1
rni

〈
y − uni , Juni − Jyni

〉 ≥ −H(
uni , y

) ≥ H
(
y, uni

)
, ∀y ∈ C.

(3.55)

Taking the limit as n → ∞ in the above inequality, and from (A4) and uni ⇀ u, we have
H(y, u) ≤ 0, for all y ∈ C. For 0 < t < 1 and y ∈ C, define yt = ty + (1 − t)u. Noticing that
y, u ∈ C, we obtain yt ∈ C, which yields that H(yt, u) ≤ 0. It follows from (A1) that

0 = H
(
yt, yt

) ≤ tH
(
yt, y

)
+ (1 − t)H

(
yt, u

) ≤ tH
(
yt, y

)
. (3.56)

That is, H(yt, y) ≥ 0.
Let t ↓ 0, from (A3), we obtain H(u, y) ≥ 0, for all y ∈ C. This implies that u ∈ Ω.

Hence, u ∈ Θ := (∩∞
n=1F(Tn)) ∩ (∩∞

n=1F(Sn)) ∩Ω ∩ V I(C,B) ∩A−1(0).
Finally, we show that u = ΠΘx. Indeed, from xn = ΠCnx and Lemma 2.6, we have

〈Jx − Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn. (3.57)

Since Θ ⊂ Cn, we also have

〈
Jx − Jxn, xn − p

〉 ≥ 0, ∀p ∈ Θ. (3.58)

Taking limit n → ∞, we obtain

〈Jx − Ju, u − p〉 ≥ 0, ∀p ∈ Θ. (3.59)

By again Lemma 2.6, we can conclude that u = ΠΘx0. This completes the proof.

Corollary 3.2. Let E be a 2-uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let F be a bifunction from C × C to R satisfying (A1)–(A4),
let ϕ : C → R be a proper lower semicontinuous and convex function, and let A : E → E∗

be a maximal monotone operator satisfying D(A) ⊂ E. Let Jr = (J + rA)−1J for r > 0, let B
be an α-inverse-strongly monotone operator of E into E∗, and let Y : C → E∗ be a continuous
and monotone mapping. Let T and S be two quasi-φ-nonexpansive mappings of E into itself with
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F := F(T) ∩ F(S) ∩Ω ∩VI(C,B) ∩A−1(0)/= ∅ and ‖By‖ ≤ ‖By − Bu‖ for all y ∈ C and u ∈ Θ. Let
{xn} be a sequence generated by x1 = x ∈ E, and

wn = ΠCJ
−1(Jxn − λnBxn),

zn = J−1(δnJ(xn) + (1 − δn)J(Jrnwn)),

yn = J−1
(
αnJxn + βnJTxn + γnJSzn

)
,

un ∈ C such that F
(
un, y

)
+
〈
Yun, y − un

〉
+ ϕ

(
y
) − ϕ(un)

+
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x,

(3.60)

for all n ∈ N. If the coefficient sequence {αn}, {βn}, and {γn} and {δn} ⊂ [0, 1], {rn} ⊂ (0,∞)
satisfy αn + βn + γn = 1, lim infn→∞αnβn > 0, lim infn→∞αnγn > 0, lim infn→∞γn(1 − δn) > 0,
lim infn→∞rn > 0 and {λn} ⊂ [a, b] for some a, b with 0 < a < b < (c2α)/2, 1/c is the 2-uniformly
convexity constant of E. Then, the sequence {xn} converges strongly toΠΘx.

Remark 3.3. Theorem 3.1 and Corollary 3.2 extended and improved the results of [40] by
extending the mapping from two-relatively quasi-nonexpansive mappings to two countable
families of quasi-φ-nonexpansive mappings and improving the iterative scheme to be more
general, and finally, we proposed the better new conditions for the coefficient sequences
which was imposed in our algorithm.

4. Applications

4.1. A Zero Point of Inverse-Strongly Monotone Operators

Next, we consider the problem of finding a zero point of an inverse-strongly monotone
operator of E into E∗. Assume that B satisfies the following conditions:

(C1) B is α-inverse-strongly monotone,

(C2) B−10 = {u ∈ E : Bu = 0}/= ∅.

Hence, we also have the following result.

Corollary 4.1. Let E be a 2-uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let F be a bifunction from C × C to R satisfying (A1)–(A4), let
ϕ : C → R be a proper lower semicontinuous and convex function, and letA : E → E∗ be a maximal
monotone operator satisfyingD(A) ⊂ E. Let Jr = (J+rA)−1J for r > 0, let B be an α-inverse-strongly
monotone operator of E into E∗, and let Y : C → E∗ be a continuous and monotone mapping. Let T
and S be two quasi-φ-nonexpansive mappings of E into itself with

Θ := F(T) ∩ F(S) ∩Ω ∩ B−1(0) ∩A−1(0)/= ∅. (4.1)
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Let {xn} be a sequence generated by x1 = x ∈ E, and

wn = ΠCJ
−1(Jxn − λnBxn),

zn = J−1(δnJ(xn) + (1 − δn)J(Jrnwn)),

yn = J−1
(
αnJxn + βnJTxn + γnJSzn

)
,

un ∈ C such that F
(
un, y

)
+
〈
Yun, y − un

〉
+ ϕ

(
y
) − ϕ(un)

+
1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x,

(4.2)

for all n ∈ N, where ΠC is the generalized projection from E onto C, J is the duality mapping on E. If
the coefficient sequence {αn}, {βn}, {γn}, and {δn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfy αn + βn + γn = 1,
lim infn→∞αnβn > 0, lim infn→∞αnγn > 0, lim infn→∞γn(1 − δn) > 0, lim infn→∞rn > 0, and
{λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, 1/c is the 2-uniformly convexity constant of E,
then the sequence {xn} converges strongly toΠΘx.

Proof. Setting B̃x ≡ 0, for all x ∈ C, thenD(B̃) = E and hence C = E in Corollary 3.2, we also
get ΠE = I. We also have VI(B,C) = VI(B, E) = {x ∈ E : Bx = 0}/= ∅, and then, the condition
‖By‖ ≤ ‖By − Bu‖ holds for all y ∈ E and u ∈ B−10. So, we obtain the result.

4.2. Complementarity Problems

Let K be a nonempty, closed convex cone in E. We define the polar K∗ of K as follows:

K∗ =
{
y∗ ∈ E∗ :

〈
x, y∗〉 ≥ 0, ∀x ∈ K

}
. (4.3)

IfA : K → E∗ is an operator, then an element u ∈ K is called a solution of the complementarity
problem ([43]) if

Au ∈ K∗, 〈u,Au〉 = 0. (4.4)

The set of solutions of the complementarity problem is denoted by C(A,K).

Corollary 4.2. Let E be a 2-uniformly convex and uniformly smooth Banach space, and let K be a
nonempty closed convex subset of E. Let F be a bifunction from K ×K to R satisfying (A1)–(A4), let
ϕ : K → R be a proper lower semicontinuous and convex function, and letA : E → E∗ be a maximal
monotone operator satisfyingD(A) ⊂ E. Let Jr = (J+rA)−1J for r > 0, let B be an α-inverse-strongly
monotone operator of E into E∗, and let Y : K → E∗ be a continuous and monotone mapping. Let T
and S be two quasi-φ-nonexpansive mappings of E into itself with

Θ := F(T) ∩ F(S) ∩Ω ∩ C(B,K) ∩A−1(0)/= ∅, (4.5)
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and ‖By‖ ≤ ‖By − Bu‖ for all y ∈ K and u ∈ Θ. Let {xn} be a sequence generated by x1 = x ∈ E,
and

wn = ΠKJ
−1(Jxn − λnBxn),

zn = J−1(δnJ(xn) + (1 − δn)J(Jrnwn)),

yn = J−1
(
αnJxn + βnJTxn + γnJSzn

)
,

un ∈ K such that F
(
un, y

)
+
〈
Yun, y − un

〉
+ ϕ

(
y
) − ϕ(un)

+
1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ K,

Kn+1 =
{
z ∈ K : φ(z, un) ≤ φ(z, xn)

}

xn+1 = ΠKn+1x,

(4.6)

for all n ∈ N, whereΠK is the generalized projection from E ontoK, J is the duality mapping on E. If
the coefficient sequence {αn}, {βn}, {γn}, and {δn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfy αn + βn + γn = 1,
lim infn→∞αnβn > 0, lim infn→∞αnγn > 0, lim infn→∞γn(1 − δn) > 0, lim infn→∞rn > 0, and
{λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, 1/c is the 2-uniformly convexity constant of E,
then the sequence {xn} converges strongly toΠΘx.

Proof. As in the proof of Takahashi in [43, Lemma 7.11], we have VI(B,K) = C(B,K). So, we
obtain the above result.
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