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The main purpose of this paper is to investigate the convergence of the Euler method to stochastic
differential equations with piecewise continuous arguments (SEPCAs). The classical Khasminskii-
type theorem gives a powerful tool to examine the global existence of solutions for stochastic
differential equations (SDEs) without the linear growth condition by the use of the Lyapunov
functions. However, there is no such result for SEPCAs. Firstly, this paper shows SEPCAs which
have nonexplosion global solutions under local Lipschitz condition without the linear growth
condition. Then the convergence in probability of numerical solutions to SEPCAs under the same
conditions is established. Finally, an example is provided to illustrate our theory.

1. Introduction

Stochastic modeling has come to play an important role in many branches of science
and industry. Such models have been used with great success in a variety of application
areas, including biology, epidemiology, mechanics, economics, and finance. Most stochastic
differential equations are nonlinear and cannot be solved explicitly, but it is very important
to research the existence and uniqueness of solution of stochastic differential equations.
Many authors have studied the problem of SDEs. The classical existence-and-uniqueness
theorem requires the coefficients f(x(t)) and g(x(t)) to satisfy the local Lipschitz condition
and the linear growth condition (see [1]). However, there are many SDEs that do not
satisfy the linear growth condition, so more general conditions have been introduced to
replace theirs. Khasminskii [2] has studied Khasminskii’s test for SDEs which are the most
powerful conditions. Similarly, the classical existence-and-uniqueness theorem for stochastic
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differential delay equations (SDDEs) requires the coefficients f(x(t), x(t−τ)) and g(x(t), x(t−
τ)) to satisfy the local Lipschitz condition and the linear growth condition (see [3–6]). Mao
[7] has proved Khasminskii-type theorem, and this is a natural generalization of the classical
Khasminskii test.

In recent years, differential equations with piecewise continuous arguments (EPCAs)
had attracted much attention, and many useful conclusions were obtained. These systems
have applications in certain biomedical models, control systems with feedback delay in the
work of L. Cooke and J. Wiener [8]. The general theory and basic results for EPCAs have
by now been thoroughly investigated in the book of Wiener [9]. A typical EPCA contains
arguments that are constant on certain intervals. The solutions are determined by a finite
set of initial data, rather than by an initial function, as in the case of general functional
differential equation. A solution is defined as a continuous, sectionally smooth function that
satisfies the equation within these intervals. Continuity of a solution at a point joining any
two consecutive intervals leads to recursion relations for the solution at such points. Hence,
EPCAs represent a hybrid of continuous and discrete dynamical systems and combine the
properties of both differential and difference equations.

However, up to now, there are few people who have considered the influence of
noise to EPCAs. Actually, the environment, and accidental events may greatly influence the
systems. Thus, analyzing SEPCAs is an interesting topic both in theory and applications. In
this paper, we give the Khasminskii-type theorems for SEPCAs, which shows that SEPCAs
have nonexplosion global solutions under local Lipschitz condition without the linear growth
condition.

On the other hand, there is in general no explicit solution to an SEPCA, whence numer-
ical solutions are required in practice. Numerical solutions to SDEs have been discussed
under the local Lipschitz condition and the linear growth condition by many authors
(see [5]). Mao [10] gives the convergence in probability of numerical solutions to SDDEs
under Khasminskii-Type conditions. Dai and Liu [11] give the mean-square stability of the
numerical solutions of linear stochastic differential equations with piecewise continuous
arguments. However, SEPCAs do not have the convergence results. The other main aim of
this paper is to establish convergence of numerical solution for SEPCAs under the differential
conditions.

The paper is organized as follows. In Section 2, we introduce necessary notations
and Euler method. In Section 3, we obtain the existence and uniqueness of solution to
stochastic differential equations with piecewise continuous arguments under Khasminskii-
type conditions. Then the convergence in probability of numerical solutions to stochastic
differential equations with piecewise continuous arguments under the same conditions is
established. Finally, an example is provided to illustrate our theory.

2. Preliminary Notation and Euler Method

In this paper, unless otherwise specified, let |x| be the Euclidean norm in x ∈ Rn. If A is a
vector or matrix, its transpose is defined by AT . If A is a matrix, its trace norm is defined
by |A| =

√
trace(ATA). For simplicity, we also have to denote by a ∧ b = min{a, b}, a ∨ b =

max{a, b}.
Let (Ω,F, P) be a complete probability space with a filtration {Ft}t≥0, satisfying the

usual conditions. L1([0,∞), Rn) and L2([0,∞), Rn) denote the family of all real-valued Ft-
adapted process f(t)t≥0, such that for every T > 0,

∫T
0 |f(t)|dt < ∞ almost surely and
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∫T
0 |f(t)|2dt < ∞ almost surely, respectively. For any a, b ∈ R with a < b, denote C([a, b];Rn)
as the family of continuous functions φ from [a, b] to Rn with the norm ‖φ‖ = supa≤θ≤b|φ(θ)|.
Denote Cb

Ft
([a, b];Rn) as the family of all bounded Ft-measurable C([a, b];Rn)-valued

random variables. Let B(t) = (B1(t), . . . , Bd(t))
T be a d-dimensional Brownian motion defined

on the probability space. Let C2(Rn;R+) denote the family of all continuous nonnegative
functions V (x) defined on Rn such that they are continuously twice differentiable in x. Given
V ∈ C2(Rn;R+), we define the operator LV : Rn × Rn → R by

LV
(
x, y
)
= Vx(x)f

(
x, y
)
+
1
2
trace

[
gT(x, y

)
Vxx(x)g

(
x, y
)]
, (2.1)

where

Vx(x) =
(
∂V (x)
∂x1

, . . . ,
∂V (x)
∂xn

)
, Vxx(x) =

(
∂2V (x)
∂xi∂xj

)

n×n
. (2.2)

Let us emphasize that LV is defined on Rn × Rn, while V is only defined on Rn.
Throughout this paper, we consider stochastic differential equations with piecewise

continuous arguments

dx(t) = f(x(t), x([t]))dt + g(x(t), x([t]))dB(t) ∀t ≥ 0, (2.3)

with initial data x(0) = c0, where f : Rn × Rn → Rn, g : Rn × Rn → Rn×d, c0 is a vector,
and [·] denotes the greatest-integer function. By the definition of stochastic differential, this
equation is equivalent to the following stochastic integral equation:

x(t) = x(0) +
∫ t

0
f(x(s), x([s]))ds +

∫ t

0
g(x(s), x([s]))dB(s) ∀t ≥ 0. (2.4)

Moreover, we also require the coefficients f(x(t), x([t])) and g(x(t), x([t])) to be sufficiently
smooth.

To be precise, let us state the following conditions.

(H1) (The local Lipschitz condition) For every integer i ≥ 1, there exists a positive con-
stant Li such that

∣∣f
(
x, y
) − f

(
x, y
)∣∣2 ∨ ∣∣g(x, y) − g

(
x, y
)∣∣2 ≤ Li

(
|x − x|2 + ∣∣y − y

∣∣2
)
, (2.5)

for those x, x, y, y ∈ Rn with |x| ∨ |x| ∨ |y| ∨ |y| ≤ i.

(H2) (Linear growth condition) There exists a positive constant K such that

∣∣f
(
x, y
)∣∣2 ∨ ∣∣g(x, y)∣∣2 ≤ K

(
1 + |x|2 + ∣∣y∣∣2

)
, (2.6)

for all (x, y) ∈ Rn × Rn.
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(H3) There are a function V ∈ C2(Rn;R+) and a positive constant α such that

lim inf
|x|→∞

V (x) = ∞, (2.7)

LV
(
x, y
) ≤ α

(
1 + V (x) + V

(
y
))
, (2.8)

for all (x, y) ∈ Rn × Rn.

Let us first give the definition of the solution.

Definition 2.1 (see [11]). An Rn-valued stochastic process {x(t)} is called a solution of (2.3)
on [0,∞) if it has the following properties:

(1) {x(t)} is continuous on [0,∞) and Ft-adapted,

(2) {f(x(t), x([t]))} ∈ L1([0,∞), Rn) and {g(x(t), x([t]))} ∈ L2([0,∞), Rn×d),

(3) equation (2.4) is satisfied on each interval [n, n+1) ⊂ [0,∞)with integral end-points
almost surely. A solution {x(t)} is said to be unique if any other solution {x(t)} is
indistinguishable from {x(t)}, that is,

P{x(t) = x(t) ∀t ∈ [0,∞)} = 1. (2.9)

Let h = 1/m be a given stepsize with integer m ≥ 1, and let the gridpoints tn be defined
by tn = nh(n = 0, 1, 2, . . .). For simplicity, we assume that T = Nh. We consider the Euler-
Maruyama method to (2.3),

yn+1 = yn + f
(
yn, y

h([nh])
)
h + g

(
yn, y

h([nh])
)
ΔBn, (2.10)

for n = 0, 1, 2, . . ., whereΔBn = B(tn)−B(tn−1), yh([nh]) is approximation to the exact solution
x([nh]). Let n = km+l (k = 0, 1, 2, . . . , l = 0, 1, 2, . . . , m−1). The adaptation of the Eulermethod
to (2.3) leads to a numerical process of the following type:

ykm+l+1 = ykm+l + f
(
ykm+l, ykm

)
h + g

(
ykm+l, ykm

)
ΔBkm+l, (2.11)

where ΔBkm+l = B(tkm+l) −B(tkm+l−1), ykm+l and ykm are approximations to the exact solution
x(tkm+l) and x([tkm+l]), respectively. The continuous Euler-Maruyama approximate solution
is defined by

y(t) = y(0) +
∫ t

0
f(z(s), z([s]))ds +

∫ t

0
g(z(s), z([s]))dB(s), (2.12)

where z(t) = ykm+l and z([t]) = ykm for t ∈ [tkm+l, tkm+l+1). It is not difficult to see that
y(tkm+l) = z(tkm+l) = ykm+l for k = 0, 1, 2, . . . , l = 0, 1, 2, . . . , m − 1. For sufficiently large integer
i, define the stopping times ηi = inf{t ≥ 0 : |x(t)| ≥ i}, θi = inf{t ≥ 0 : |y(t)| ≥ i}.
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3. Convergence in Probability of the Euler-Maruyama Method

In this section, we concentrate on (2.3) under the local Lipschitz condition (H1) without the
linear growth condition (H2) to establish the generalized existence and uniqueness theorem
for stochastic differential equations with piecewise continuous arguments. We then give the
convergence in probability of the EMmethod to (2.3) under the local Lipschitz condition (H1)
and some additional conditions (H3).

Theorem 3.1. Under the conditions (H1) and (H3), there is a unique global solution x(t) to (2.3)
with initial data x(0) = c0 on t ∈ [0,∞). Moreover, the solution has the property that

EV (x(t)) < ∞, for any t ≥ 0. (3.1)

Proof. Applying the standard truncation technique to (2.3), we obtain the unique maximal
local solution x(t) exists on [0, ηe) under the local Lipschitz condition in a similar way as the
proof of [10, Theorem 3.15, page 91], where ηe is the explosion time. For each integer i ≥ |c0|,
define the stopping time

ηi = inf
{
t ∈ [0, ηe

)
: |x(t)| ≥ i

}
. (3.2)

Clearly, ηi is increasing as i → ∞. We denote that η∞ = limi→∞ηi and inf ∅ = ∞. Hence,
η∞ ≤ ηe almost surely. If we can obtain η∞ = ∞ almost surely, then ηe = ∞ almost surely.

In what follows, we will prove η∞ = ∞ almost surely and assertion (3.1). By the Itô
formula and condition (2.8), we derive that

dV (x(t)) = LV (x(t), x([t]))dt + Vx(x(t))g(x(t), x([t]))dB(t)

≤ α[1 + V (x(t)) + V (x([t]))]dt + Vx(x(t))g(x(t), x([t]))dB(t),
(3.3)

for 0 ≤ t < η∞. Now, for t1 ∈ [0, 1), we can integrate both sides of (3.3) from 0 to ηi ∧ t1,

V
(
x
(
ηi ∧ t1

)) ≤ V (x(0)) + α[1 + V (x(0))]

+ α

∫ηi∧t1

0
V (x(t))dt +

∫ηi∧t1

0
Vx(x(t))g(x(t), x([t]))dB(t).

(3.4)

We take the expectations in both sides of (3.4),

EV
(
x
(
ηi ∧ t1

)) ≤ V (x(0)) + α[1 + V (x(0))] + αE

∫ηi∧t1

0
V (x(t))dt

≤ β1 + αE

∫ηi∧t1

0
V (x(t))dt,

(3.5)

where

β1 = V (x(0)) + α[1 + V (x(0))] = (1 + α)V (c0) + α < ∞. (3.6)
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It is easy to compute

EV
(
x
(
ηi ∧ t1

)) ≤ β1 + αE

∫ηi∧t1

0
V (x(t))dt

= β1 + α

∫ t1

0
EV
(
x
(
ηi ∧ t

))
dt.

(3.7)

Now the Gronwall inequality yields that

EV
(
x
(
ηi ∧ t1

)) ≤ β1e
αt1 ≤ β1e

α, 0 ≤ t1 < 1. (3.8)

So we have

EV
(
x
(
ηi ∧ 1

))
= lim

t1 → 1
EV
(
x
(
ηi ∧ t1

)) ≤ β1e
α. (3.9)

Defining

γi = inf
|x|≥i

V (x), ∀i ≥ |c0|, (3.10)

denoting IA as the indicator function of a set A, we compute

β1e
α ≥ EV

(
x
(
ηi ∧ 1

)) ≥ E
(
V
(
x
(
ηi
))
I{ηi≤1}

) ≥ γiP
(
ηi ≤ 1

)
. (3.11)

Letting i → ∞, we have that P (η∞ ≤ 1) = 0, namely,

P
(
η∞ > 1

)
= 1. (3.12)

By (3.8) and (3.12),

EV (x(t1)) ≤ β1e
α, 0 ≤ t1 ≤ 1. (3.13)

Now let us prove η∞ > 2, for t2 ∈ [1, 2), and we can integrate both sides of (3.3) from 1 to
ηi ∧ t2 and take the expectations

EV
(
x
(
ηi ∧ t2

)) ≤ EV (x(1)) + α[1 + EV (x(1))] + αE

∫ηi∧t2

1
V (x(t))dt

≤ β2 + α

∫ t2

1
EV
(
x
(
ηi ∧ t

))
dt,

(3.14)

where

β2 ≤ β1e
α + α

(
1 + β1e

α) < ∞. (3.15)
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Now the Gronwall inequality yields that

EV
(
x
(
ηi ∧ t2

)) ≤ β2e
α(t2−1) ≤ β2e

α, 1 ≤ t2 < 2. (3.16)

Hence, we have

EV
(
x
(
ηi ∧ 2

))
= lim

t1 → 2
EV
(
x
(
ηi ∧ t2

)) ≤ β2e
α. (3.17)

By (3.10) and (3.17), we compute

β2e
α ≥ EV

(
x
(
ηi ∧ 2

)) ≥ E
(
V
(
x
(
ηi
))
I{ηi≤2}

) ≥ γiP
(
ηi ≤ 2

)
. (3.18)

Letting i → ∞, we have that P (η∞ ≤ 2) = 0, namely,

P
(
η∞ > 2

)
= 1. (3.19)

From (3.16) and (3.19), we yield

EV (x(t2)) ≤ β2e
α, 1 ≤ t2 ≤ 2. (3.20)

Repeating this procedure, we can show that, for any integer j ≥ 1, η∞ > j almost surely,

EV
(
x
(
tj
)) ≤ βje

α, j − 1 ≤ tj ≤ j, (3.21)

where

βj ≤ βj−1eα + α
(
1 + βj−1eα

)
< ∞. (3.22)

By (3.13), (3.20), and (3.21), we obtain

EV (x(t)) ≤ βje
α < ∞, 0 ≤ t ≤ j. (3.23)

Therefore, we must have η∞ = ∞ almost surely as well as the required assertion (3.1). The
proof is completed.

Theorem 3.2. Under the conditions (H1) and (H3), if ε ∈ (0, 1) and T > 0, then there exists
a sufficiently large integer î, dependent on ε and T such that

P
(
ηi ≤ T

) ≤ ε, ∀i ≥ î. (3.24)

Proof. By Theorem 3.1, we have

EV
(
x
(
ηi ∧ t

)) ≤ βje
α < ∞, 0 ≤ t ≤ j. (3.25)
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Choose j large enough for j > T . From (3.25), we get

EV
(
x
(
ηi ∧ ([T] + 1)

)) ≤ β[T]+1e
α < ∞. (3.26)

It follows from (3.10) and (3.26) that

β[T]+1e
α ≥ EV

(
x
(
ηi ∧ ([T] + 1)

))

≥ E
(
V
(
x
(
ηi
))
I{ηi≤[T]+1}

)

≥ γiP
(
ηi ≤ [T] + 1

)
,

(3.27)

while by (H3), γi → ∞ as i → ∞. Thus, there is a sufficiently large integer î such that

γi ≥
β[T]+1e

α

ε
, ∀i ≥ î. (3.28)

Therefore, we get that

P
(
ηi ≤ T

) ≤ P
(
ηi ≤ [T] + 1

) ≤ β[T]+1e
α

γi
< ε. (3.29)

The proof is completed.

The following lemma shows that both y(t) and z(t) are close to each other.

Lemma 3.3. Under the condition (H1), let T > 0 be arbitrary. Then

E

(

sup
0≤t≤T∧θi

∣∣y(t) − z(t)
∣∣2
)

≤ C1(i)h1/2, (3.30)

where C1(i) = 4(2i2Li + |f(0, 0)|2 ∨ |g(0, 0)|2)(1 + (16
√
3/3)d(T + 1)1/2).

Proof. For t ∈ [0, T ∧ θi), there are two integers k and l such that t ∈ [tkm+l, tkm+l+1). So we
compute

∣∣y(t) − z(t)
∣∣2 =

∣∣∣∣∣

∫ t

tkm+l

f(z(s), z([s]))ds +
∫ t

tkm+l

g(z(s), z([s]))dB(s)

∣∣∣∣∣

2

=

∣∣∣∣∣

∫ t

tkm+l

f
(
ykm+l, ykm

)
ds +

∫ t

tkm+l

g
(
ykm+l, ykm

)
dB(s)

∣∣∣∣∣

2

=
∣∣f
(
ykm+l, ykm

)
(t − tkm+l) + g

(
ykm+l, ykm

)
(B(t) − B(tkm+l))

∣∣2

≤ 2
∣∣f
(
ykm+l, ykm

)∣∣2h2 + 2
∣∣g
(
ykm+l, ykm

)∣∣2|B(t) − B(tkm+l)|2,

(3.31)
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since

∣
∣f
(
ykm+l, ykm

)∣∣2 ≤ 2
∣
∣f
(
ykm+l, ykm

) − f(0, 0)
∣
∣2 + 2

∣
∣f(0, 0)

∣
∣2

≤ 2Li

(∣
∣ykm+l

∣
∣2 +

∣
∣ykm

∣
∣2
)
+ 2
∣
∣f(0, 0)

∣
∣2

≤ 2
(
2i2Li +

∣
∣f(0, 0)

∣
∣2
)
.

(3.32)

Similarly, we obtain that

∣
∣g
(
ykm+l, ykm

)∣∣2 ≤ 2
(
2i2Li +

∣
∣g(0, 0)

∣
∣2
)
. (3.33)

Substituting (3.32) and (3.33) into (3.31) gives

∣∣y(t) − z(t)
∣∣2 ≤ C

(
h2 + |B(t) − B(tkm+l)|2

)
, (3.34)

where C = 4(2i2Li + |f(0, 0)|2 ∨ |g(0, 0)|2). Let nt = km + l for t ∈ [tkm+l, tkm+l+1), then we have
that

E

(

sup
0≤t≤T∧θi

|B(t) − B(tnt)|2
)

≤
d∑

i=1

E

(

sup
0≤t≤T∧θi

|Bi(t) − Bi(tnt)|2
)

≤
d∑

i=1

E

(

sup
u=0,1,2,...,N

sup
tu≤t≤tu+1∧T

|Bi(t) − Bi(tu)|2
)

≤
d∑

i=1

[

E

(

sup
u=0,1,2,...,N

sup
tu≤t≤tu+1∧T

|Bi(t) − Bi(tu)|4
)]1/2

,

(3.35)

while by the Doob martingale inequality, we have

E

(

sup
u=0,1,2,...,N

sup
tu≤t≤tu+1∧T

|Bi(t) − Bi(tu)|4
)

≤
N∑

u=0

E

(

sup
tu≤t≤tu+1∧T

|Bi(t) − Bi(tu)|4
)

≤
(
4
3

)4 N∑

u=0

E|Bi(tu+1 ∧ T) − Bi(tu)|4

≤ 256
27

N∑

u=0

h2

≤ 256
27

(T + 1)h.

(3.36)
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Substituting (3.36) into (3.35) yields

E

(

sup
0≤t≤T∧θi

|B(t) − B(tnt)|2
)

≤
d∑

i=1

(
256
27

(T + 1)h
)1/2

=
16
√
3

9
d(T + 1)1/2h1/2. (3.37)

Thus, we obtain

E

(

sup
0≤t≤T∧θi

∣
∣y(t) − z(t)

∣
∣2
)

≤ Ch2 + C
16
√
3

9
d(T + 1)1/2h1/2

≤ C

(

1 +
16
√
3

3
d(T + 1)1/2

)

h1/2

≤ C1(i)h1/2,

(3.38)

where C1(i) = 4(2i2Li + |f(0, 0)|2 ∨ |g(0, 0)|2)(1+(16
√
3/3)d(T +1)1/2). The proof is completed.

Lemma 3.4. Under the condition (H1), for any T > 0, there exists a positive constantC2(i) dependent
on i and independent of h such that

E

(

sup
0≤t≤T

∣∣x
(
t ∧ ηi ∧ θi

) − y
(
t ∧ ηi ∧ θi

)∣∣2
)

≤ C2(i)h1/2, (3.39)

where C2(i) = 8T(T + 4)LiC1(i)e8T(T+4)Li .

Proof. It follows from (2.4) and (2.12) that

∣∣x
(
t ∧ ηi ∧ θi

) − y
(
t ∧ ηi ∧ θi

)∣∣2

≤ 2

∣∣∣∣∣

∫ t∧ηi∧θi

0
f(x(s), x([s])) − f(z(s), z([s]))ds

∣∣∣∣∣

2

+ 2

∣∣∣∣∣

∫ t∧ηi∧θi

0
g(x(s), x([s])) − g(z(s), z([s]))dB(s)

∣∣∣∣∣

2

.

(3.40)
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By the Hölder inequality, we obtain

∣
∣x
(
t ∧ ηi ∧ θi

) − y
(
t ∧ ηi ∧ θi

)∣∣2

≤ 2T
∫ t

0

∣
∣f
(
x
(
s ∧ ηi ∧ θi

)
, x
([
s ∧ ηi ∧ θi

])) − f
(
z
(
s ∧ ηi ∧ θi

)
, z
([
s ∧ ηi ∧ θi

]))∣∣2ds

+ 2

∣
∣
∣
∣
∣

∫ t

0
g
(
x
(
s ∧ ηi ∧ θi

)
, x
([
s ∧ ηi ∧ θi

])) − g
(
z
(
s ∧ ηi ∧ θi

)
, z
([
s ∧ ηi ∧ θi

]))
dB(s)

∣
∣
∣
∣
∣

2

.

(3.41)

This implies that for any 0 ≤ t1 ≤ T ,

E sup
0≤t≤t1

(∣∣x
(
t ∧ ηi ∧ θi

) − y
(
t ∧ ηi ∧ θi

)∣∣2
)

≤ 2TE sup
0≤t≤t1

∫ t

0

∣∣f
(
x
(
s ∧ ηi ∧ θi

)
, x
([
s ∧ ηi ∧ θi

]))

− f
(
z
(
s ∧ ηi ∧ θi

)
, z
([
s ∧ ηi ∧ θi

]))∣∣2ds

+ 2E

[

sup
0≤t≤t1

∣∣∣∣∣

∫ t

0
g
(
x
(
s ∧ ηi ∧ θi

)
, x
([
s ∧ ηi ∧ θi

]))

− g
(
z
(
s ∧ ηi ∧ θi

)
, z
([
s ∧ ηi ∧ θi

]))
dB(s)

∣∣∣∣∣

2
⎤

⎦.

(3.42)

By Doob martingale inequality, it is not difficult to show that

E sup
0≤t≤t1

(∣∣x
(
t ∧ ηi ∧ θi

) − y
(
t ∧ ηi ∧ θi

)∣∣2
)

≤ 2TE
∫ t1

0

∣∣f
(
x
(
s ∧ ηi ∧ θi

)
, x
([
s ∧ ηi ∧ θi

])) − f
(
z
(
s ∧ ηi ∧ θi

)
, z
([
s ∧ ηi ∧ θi

]))∣∣2ds

+ 8E
∫ t1

0

∣∣g
(
x
(
s ∧ ηi ∧ θi

)
, x
([
s ∧ ηi ∧ θi

])) − g
(
z
(
s ∧ ηi ∧ θi

)
, z
([
s ∧ ηi ∧ θi

]))∣∣2ds.

(3.43)
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Note from (H1) and Lemma 3.3 that

E

∫ t1

0

∣∣f
(
x
(
s ∧ ηi ∧ θi

)
, x
([
s ∧ ηi ∧ θi

])) − f
(
z
(
s ∧ ηi ∧ θi

)
, z
([
s ∧ ηi ∧ θi

]))∣∣2ds

≤ LiE

∫ t1

0

∣
∣x
(
s ∧ ηi ∧ θi

) − z
(
s ∧ ηi ∧ θi

)∣∣2 +
∣
∣x
([
s ∧ ηi ∧ θi

]) − z
([
s ∧ ηi ∧ θi

])∣∣2ds

≤ 2LiE

∫ t1

0

∣
∣x
(
s ∧ ηi ∧ θi

) − y
(
s ∧ ηi ∧ θi

)∣∣2ds

+ 2LiE

∫ t1

0

∣
∣y
(
s ∧ ηi ∧ θi

) − z
(
s ∧ ηi ∧ θi

)∣∣2ds

+ 2LiE

∫ t1

0

∣
∣x
([
s ∧ ηi ∧ θi

]) − y
([
s ∧ ηi ∧ θi

])∣∣2ds

+ 2LiE

∫ t1

0

∣∣y
([
s ∧ ηi ∧ θi

]) − z
([
s ∧ ηi ∧ θi

])∣∣2ds

≤ 4Li

∫ t1

0
E sup
0≤t≤s∧ηi∧θi

∣∣x(t) − y(t)
∣∣2ds + 4LiTC1(i)h1/2.

(3.44)

Similarly, we obtain that

E

∫ t1

0

∣∣g
(
x
(
s ∧ ηi ∧ θi

)
, x
([
s ∧ ηi ∧ θi

])) − g
(
z
(
s ∧ ηi ∧ θi

)
, z
([
s ∧ ηi ∧ θi

]))∣∣2ds

≤ 4Li

∫ t1

0
E sup
0≤t≤s∧ηi∧θi

∣∣x(t) − y(t)
∣∣2ds + 4LiTC1(i)h1/2.

(3.45)

Substituting (3.44) and (3.45) into (3.43) gives

E sup
0≤t≤t1

(∣∣x
(
t ∧ ηi ∧ θi

) − y
(
t ∧ ηi ∧ θi

)∣∣2
)

≤ 8(T + 4)Li

∫ t1

0
E sup
0≤t≤s∧ηi∧θi

∣∣x(t) − y(t)
∣∣2ds + 8(T + 4)LiTC1(i)h1/2.

(3.46)

By the Gronwall inequality, we must get

E sup
0≤t≤T

(∣∣x
(
t ∧ ηi ∧ θi

) − y
(
t ∧ ηi ∧ θi

)∣∣2
)
≤ C2(i)h1/2, (3.47)

where C2(i) = 8T(T + 4)LiC(1 + 4d)e8T(T+4)Li .
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Lemma 3.5. Under the conditions (H1) and (H3) if ε ∈ (0, 1) and T > 0, then there exists a
sufficiently large integer î (dependent on ε and T ) and sufficiently small ĥ such that

P
(
θî ≤ T

) ≤ ε ∀h ≤ ĥ. (3.48)

Proof. By Itô formula, we have

dV
(
y(t)
)
=
(
Vy

(
y(t)
)
f(z(t), z([t])) +

1
2
trace

[
gT (z(t), z([t]))Vyy

(
y(t)
)
g(z(t), z([t]))

])
dt

+ Vy

(
y(t)
)
g(z(t), z([t]))dB(t)

=
(
LV
(
y(t), y([t])

)
+ Vy

(
y(t)
)[
f(z(t), z([t])) − f

(
y(t), y([t])

)]

+
1
2
trace

[
gT (z(t), z([t]))Vyy

(
y(t)
)
g(z(t), z([t]))

− gT(y(t), y([t])
)
Vyy

(
y(t)
)
g
(
y(t), y([t])

)])
dt

+ Vy

(
y(t)
)
g(z(t), z([t]))dB(t).

(3.49)

By condition (H1),

Vy

(
y(t)
)[
f(z(t), z([t])) − f

(
y(t), y([t])

)]

+
1
2
trace

[
gT (z(t), z([t]))Vyy

(
y(t)
)
g(z(t), z([t]))−gT(y(t), y([t])

)
Vyy

(
y(t)
)
g
(
y(t), y([t])

)]

=
(
Vy

(
y(s)

)[
f(z(s), z([s])) − f

(
y(s), y([s])

)]

+
1
2
trace

([
gT (z(s), z([s])) − gT(y(s), y([s])

)]
Vyy

(
y(s)

)
g(z(s), z([s]))

+
1
2
trace

(
gT(y(s), y([s])

)
Vyy

(
y(s)

)[
g(z(s), z([s])) − g

(
y(s), y([s])

)]

≤ ci
(∣∣y(t) − z(t)

∣∣ +
∣∣y([t]) − z([t])

∣∣),
(3.50)

where ci denotes a positive constant independent of h. Substituting (3.50) into (3.49), we
obtain that, for 0 ≤ t ≤ θi,

dV
(
y(t)
) ≤ (LV (y(t), y([t])) + ci

(∣∣y(t) − z(t)
∣∣ +
∣∣y([t]) − z([t])

∣∣))dt

+ Vy

(
y(t)
)
g(z(t), z([t]))dB(t).

(3.51)
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Hence, for t ∈ [n, n + 1), we can integrate both sides of (3.51) from n to t ∧ θi and take the
expectations

EV
(
y(t ∧ θi)

) ≤ EV
(
y(n)

)
+ E

∫ t∧θi

n

LV
(
y(s), y([s])

)
ds

+ E

∫ t∧θi

n

ci
(∣∣y(t) − z(t)

∣
∣ +
∣
∣y([t]) − z([t])

∣
∣)ds,

(3.52)

while

ciE

∫ t

n

(∣∣y(s ∧ θi) − z(s ∧ θi)
∣
∣ +
∣
∣y([s ∧ θi]) − z([s ∧ θi])

∣
∣)ds

= ci

∫ t

n

E
∣∣y(s ∧ θi) − z(s ∧ θi)

∣∣ds + ci

∫ t

n

E
∣∣y([s ∧ θi]) − z([s ∧ θi])

∣∣ds

≤ ci

∫ t

n

(
E
∣∣y(s ∧ θi) − z(s ∧ θi)

∣∣2
)1/2

ds + ci

∫ t

n

(
E
∣∣y([s ∧ θi]) − z([s ∧ θi])

∣∣2
)1/2

ds

≤ 2ci

∫ t

n

(

E sup
0≤u≤s∧θi

∣∣y(u) − z(u)
∣∣2
)1/2

ds

≤ 2ci

∫ t

n

[
C1(i)h1/2

]1/2
ds

≤ 2ciT
[
C1(i)h1/2

]1/2

≤ C3(i)h1/4,

(3.53)

where C3(i) = 2ciT(C1(i))
1/2. Substituting this into (3.52) yields that

EV
(
y(t ∧ θi)

) ≤ EV
(
y(n)

)
+ β̃ + E

∫ t∧θi

n

(
LV
(
y(s), y([s])

))
ds, (3.54)

where β̃ = C3(i)h1/4. For t ∈ [0, 1), by condition (H3), we obtain that

EV
(
y(t ∧ θi)

) ≤ V
(
y(0)

)
+ αE

∫ t∧θi

0

[
1 + V

(
y(s)

)
+ V
(
y([s])

)]
ds + β̃

≤ V
(
y(0)

)
+ α
[
1 + V

(
y(0)

)]
+ β̃ + αE

∫ t∧θi

0
V
(
y(s)

)
ds

≤ β̃ + β̂1 + α

∫ t

0
EV
(
y(s ∧ θi)

)
ds,

(3.55)
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where

β̂1 = V
(
y(0)

)
+ α
[
1 + V

(
y(0)

)]
= (1 + α)V (c0) + α < ∞. (3.56)

Hence, by the Gronwall inequality,

EV
(
y(t ∧ θi)

) ≤ β̃ + β̂1 + α

∫ t

0
EV
(
y(s ∧ θi)

)
ds

≤
(
β̃ + β̂1

)
eαt

≤
(
β̃ + β̂1

)
eα

< ∞,

(3.57)

for 0 ≤ t < 1. Consequently,

EV
(
y(1 ∧ θi)

)
= lim

t→ 1
EV
(
y(t ∧ θi)

) ≤
(
β̃ + β̂1

)
eα < ∞. (3.58)

Define

γi = inf
|y|≥i

V
(
y
)
, ∀i ≥ |c0|, (3.59)

and denote IA as the indicator function of a set A, then we have

(
β̃ + β̂1

)
eα ≥ EV

(
y(θi ∧ 1)

) ≥ E
(
V
(
y(θi)

)
I{θi≤1}

) ≥ γiP(θi ≤ 1). (3.60)

Letting i → ∞, we have that P(θ∞ ≤ 1) = 0, namely,

P(θ∞ > 1) = 1. (3.61)

By (3.57) and (3.61),

EV
(
y(t)
) ≤
(
β̃ + β̂1

)
eα < ∞, 0 ≤ t ≤ 1. (3.62)

For t ∈ [1, 2), by (3.54), we have

EV
(
y(t ∧ θi)

) ≤ EV
(
y(1)

)
+ α
[
1 + EV

(
y(1)

)]
+ β̃ + α

∫ t

1
EV
(
y(s ∧ θi)

)
ds

≤ β̃ + β̂2 + α

∫ t

1
EV
(
y(s ∧ θi)

)
ds,

(3.63)
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where

β̂2 ≤ (1 + α)
(
β̃ + β̂1

)
eα + α < ∞. (3.64)

Hence, by the Gronwall inequality,

EV
(
y(t ∧ θi)

) ≤ β̃ + β̂2 + α

∫ t

1
EV
(
y(s ∧ θi)

)
ds

≤
(
β̃ + β̂2

)
eα(t−1)

≤
(
β̃ + β̂2

)
eα

< ∞,

(3.65)

for 1 ≤ t < 2. Consequently, we can obtain that

EV
(
y(2 ∧ θi)

)
= lim

t→ 2
EV
(
y(t ∧ θi)

) ≤
(
β̃ + β̂2

)
eα < ∞. (3.66)

In the same way, we have

EV
(
y(t)
) ≤
(
β̃ + β̂2

)
eα < ∞, 1 ≤ t ≤ 2. (3.67)

Repeating this procedure, for t ∈ [N − 1, T), we can show that

EV
(
y(t ∧ θi)

) ≤
(
β̃ + β̂T

)
eα < ∞, (3.68)

where

β̂T ≤ (1 + α)
(
β̃ + β̂N−1

)
eα + α < ∞. (3.69)

Consequently, we can obtain that

EV
(
y(T ∧ θi)

)
= lim

t→ T
EV
(
y(t ∧ θi)

) ≤
(
β̃ + β̂T

)
eα. (3.70)

We compute

(
β̃ + β̂T

)
eα ≥ EV

(
y(T ∧ θi)

) ≥ E
(
V
(
y(θi)

)
I{θi≤T}

) ≥ γiP(θi ≤ T). (3.71)
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Then we have

P(θi ≤ T) ≤

(
β̃ + β̂T

)
eα

γi
=

(
C3(i)h1/4 + β̂T

)
eα

γi
. (3.72)

Now, for any ε ∈ (0, 1), choose i = î sufficiently large for

β̂Te
α

γî
≤ ε

2
, (3.73)

and then choose ĥ sufficiently small for

C3

(
î
)
ĥ1/4eα

γî
≤ ε

2
. (3.74)

Hence,

P
(
θî ≤ T

) ≤ ε ∀h ≤ ĥ. (3.75)

The following theorems describe the convergence in probability of the EM method to
(2.3) under the local Lipschitz condition (H1) and some additional conditions (H3).

Theorem 3.6. Under the conditions (H1) and (H3), for arbitrarily small σ ∈ (0, 1),

lim
h→ 0

P

(

ω : sup
0≤t≤T

∣∣x(t) − y(t)
∣∣ > σ

)

= 0, (3.76)

for any T > 0.

Proof. For arbitrarily small σ, ε ∈ (0, 1). We set

Ω =

{

ω : sup
0≤t≤T

∣∣x(t) − y(t)
∣∣ > σ

}

. (3.77)

By Theorem 3.2 and Lemma 3.5, there exists a pair of î and ĥ such that

P
(
ηî ≤ T

) ≤ ε

3
,

P
(
θî ≤ T

) ≤ ε

3
, ∀h ≤ ĥ.

(3.78)
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For h ≤ ĥ,

P
(
Ω
)
≤ P
(
Ω ∩ {ηî ∧ θî > T

})
+ P
(
ηî ∧ θî ≤ T

)

≤ P
(
Ω ∩ {ηî ∧ θî > T

})
+ P
(
ηî ≤ T

)
+ P
(
θî ≤ T

)

≤ P
(
Ω ∩ {ηî ∧ θî > T

})
+
2ε
3
.

(3.79)

By Lemma 3.4, we get

σ2P
(
Ω ∩ {ηî ∧ θî > T

}) ≤ E

[

sup
0≤t≤T

∣
∣x
(
t ∧ ηî ∧ θî

) − y
(
t ∧ ηî ∧ θî

)∣∣2I{ηî∧θî>T}

]

≤ E sup
0≤t≤T

∣∣x
(
t ∧ ηî ∧ θî

) − y
(
t ∧ ηî ∧ θî

)∣∣2

≤ C2

(
î
)
h1/2.

(3.80)

Hence,

P
(
Ω ∩ {ηî ∧ θî > T

}) ≤
C2

(
î
)
h1/2

σ2
. (3.81)

For all sufficiently small h, we obtain

P
(
Ω ∩ {ηî ∧ θî > T

}) ≤ ε

3
. (3.82)

From (3.79) and (3.82), we see that for all sufficiently small h,

P
(
Ω
)
≤ ε, (3.83)

which proves the theorem.

Of course, z(t) is computable but y(t) is not, so the following theorem is much more
useful in practice.

Theorem 3.7. Under the conditions (H1) and (H3), for arbitrarily small σ ∈ (0, 1),

lim
h→ 0

P

(

ω : sup
0≤t≤T

|x(t) − z(t)| > σ

)

= 0, (3.84)

for any T > 0.
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Proof. For arbitrarily small σ, ε ∈ (0, 1). We denote

Ω̂ =

{

ω : sup
0≤t≤T

|x(t) − z(t)| > σ

}

. (3.85)

In the same way as Theorem 3.6, we can see that

P
(
Ω̂
)
≤ P
(
Ω̂ ∩ {ηî ∧ θî > T

})
+
2ε
3
. (3.86)

But by Lemma 3.3, we get

σ2P
(
Ω̂ ∩ {ηî ∧ θî > T

}) ≤ E

[

sup
0≤t≤T

∣
∣x
(
t ∧ ηî ∧ θî

) − z
(
t ∧ ηî ∧ θî

)∣∣2I{ηî∧θî>T}

]

≤ E sup
0≤t≤T

∣∣x
(
t ∧ ηî ∧ θî

) − z
(
t ∧ ηî ∧ θî

)∣∣2

≤ 2E sup
0≤t≤T

∣∣x
(
t ∧ ηî ∧ θî

) − y
(
t ∧ ηî ∧ θî

)∣∣2

+ 2E sup
0≤t≤T

∣∣y
(
t ∧ ηî ∧ θî

) − z
(
t ∧ ηî ∧ θî

)∣∣2

≤ 2E sup
0≤t≤T

∣∣x
(
t ∧ ηî ∧ θî

) − y
(
t ∧ ηî ∧ θî

)∣∣2

+ 2E sup
0≤t≤T

∣∣y
(
t ∧ θî

) − z
(
t ∧ θî

)∣∣2

≤ 2
(
C2

(
î
)
+ C1

(
î
))

h1/2.

(3.87)

therefore,

P
(
Ω̂ ∩ {ηî ∧ θî > T

}) ≤
2
(
C2

(
î
)
+ C1

(
î
))

h1/2

σ2
. (3.88)

For all sufficiently small h, we obtain

P
(
Ω̂ ∩ {ηî ∧ θî > T

}) ≤ ε

3
. (3.89)

From (3.86) and (3.89), we see that for all sufficiently small h,

P
(
Ω̂
)
≤ ε, (3.90)

which proves the assertion (3.84).
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4. Numerical Example

Let us now discuss a numerical example to demonstrate the results which we obtain.

Example 4.1. Let us consider the stochastic differential equations with piecewise continuous
arguments

dx(t) =
[
−x3(t) + x([t])

]
dt +

[
sinx2(t) + x([t])

]
dB(t) ∀t ≥ 0. (4.1)

Defining V (x) = x2, we have

LV
(
x, y
)
= 2x

(
−x3 + y

)
+
(
sinx2 + y

)2 ≤ −2x4 + 2xy + 2
(
sinx2

)2
+ 2y2 ≤ 3

(
1 + x2 + y2

)
,

(4.2)

where α = 3. In other words, the equation satisfies condition (H3). By Theorem 3.1, we can
conclude that the SEPCA (4.1) has a unique global solution x(t) on t ∈ [0,∞). Moreover,
the EM method can be applied to approximate the solution of the SEPCA (4.1). Given the
stepsize h = 1/m, by (2.10), (2.11), and (2.12), the Euler method to (4.1) leads to a numerical
process of the following type:

ykm+l+1 = ykm+l +
(
−y3

km+l + ykm

)
h +
(
siny2

km+l + ykm

)
ΔBkm+l. (4.3)

The continuous Euler-Maruyama approximate solution is defined by

y(t) = y(0) +
∫ t

0

(
−z3(s) + z([s])

)
ds +

∫ t

0

(
sin z2(s) + z([s])

)
dB(s), (4.4)

where z(t) = ykm+l and z([t]) = ykm for t ∈ [tkm+l, tkm+l+1). By Theorems 3.6 and 3.7, we
also have the convergence in probability of the EM method to (4.1) under the local Lipschitz
condition (H1) and some additional conditions (H3).
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