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The point symmetric single step procedure PSS1 has R-order of convergence at least 3. This
procedure is modified by adding another single-step, which is the third step in PSS1. This modified
procedure is called the point zoro symmetric single-step PZSS1. It is proven that the R-order of
convergence of PZSS1 is at least 4 which is higher than the R-order of convergence of PT1, PS1,
and PSS1. Hence, computational time is reduced since this procedure is more efficient for bounding
simple zeros simultaneously.

1. Introduction

The iterative procedures for estimating simultaneously the zeros of a polynomial of degree n
were discussed, for example, in Ehrlich [1], Aberth [2], Alefeld and Herzberger [3], Farmer
and Loizou [4], Milovanovi¢ and Petkovi¢ [5] and Petkovi¢ and Stefanovi¢ [6]. In this paper,
we refer to the methods established by Kerner [7], Alefeld and Herzberger [3], Monsi, and
Wolfe [8], Monsi [9] and Rusli et al. [10] to increase the rate of convergence of the point zoro
symmetric single-step method PZSS1. The convergence analysis of this procedure is given
in Section 3. This procedure needs some preconditions for initial points xfo) (i=1,...,n)to
converge to the zeros x} (i = 1,...,n), respectively, as shown subsequently in the sequel. We
also give attractive features of PZSS1 in Section 3.
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2. Methods of Estimating polynomial zeros

Letp : C — C be a polynomial of degree n defined by
p(x) = Dlaix!, (2.1)
i=0

a€C((i=1,...,n and a,#0. Let x* = (x’l‘,xz,...,x,";)T be the distinct zeros of p(x) = 0,
expressed in the form:

px)=]J(x-=x) =0, (2.2)
i=1

with a, = 1. Suppose that, for j = 1,...,n, x;j is an estimate of x}f, and letg : C — Cbe
defined by

g(x) = H(x - xj). (2.3)
j=1
Then,
g (x;) = H(xi -xj), (i=1,...,n). (2.4)
j#i

By (2.2),iffori=1,...,n,x;#x; (j =1,...,n;j#i), then

X;=x;i— & (2.5)

(=)
Now, x; = x;f (j=1,...,n)soby (2.5),

X = X & i=1,...,n). (2.6)

T i (xi - xg)

An iteration procedure PT1 of (2.6) is defined by

) p(x")

: o ) (i=1,...,n) (k>0), (2.7)
JEI\"i j
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which has been studied by Kerner [7]. Furthermore, the following procedure PS1

(k)
kD G P<xi > 2.8)
! ! i-1 (. (k) (k+1) (k) (k) ’
I (6 = o )T (5 - )

has been studied by Alefeled and Herzberger [3].

The symmetric single-step idea of Aitken [11] and the procedure PS1 of Alefeld and
Herzberger [3] are used to derive the point symmetric single-step procedure PSS1(Monsi
[9]). The procedure PSS1 is defined by

xi(k’o) = xl.(k) (i=1,...,n),

(k)
& = R p(xi > (i=1,...,n)
i i 1/ (0 (k1) k) _ _(k0) A

H}:l <xi X )H?:Hl (xi % )
2.9)
(k)
p(x

&2 _ k) ( ! > (i=1,...,n),

i i i-1(_(k) (k,1) (k) (k,2)
H;’:l(‘xi X )H;l=i+1(xi ¥ )

xl.(kH) = xlfk’z) (i=1,...,n).

The following definitions and theorem (Alefeld and Herzberger [12], Ortega and
Rheinboldt [13]) are very useful for evaluation of R-order of convergence of an iterative
procedure I.

Definition 2.1. If there exists a p > 1 such that for any null sequence {w®)} generated from
{x®)}, then the R-factor of the sequence {w®} is defined to be

lim sup ||ew® ||1/k,

p=1

Ry(w®) ={ k7 (2.10)
p< > klim sup ||w® ||1/pk, p>1,
where R, is independent of the norm || - ||.
Definition 2.2. We next define the R-order of the procedure I in terms of the R-factor as
+oo if Ry(I,x*) =0, forp>1,
Or(I,x*) = (2.11)
inf{p | p €[1,0),Ry(I,x*) =1}, otherwise.

Suppose that Rp(w(k)) < 1, then it follows from Ortega and Rheinboldt [13] that the R-order
of I satisfies the inequality Or(I, x*) > p.
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Theorem 2.3. Let I be an iterative procedure and let Q(I,x*) be the set of all sequences

{x®)} generated by I which converges to the limit x*. Suppose that there exists a p > 1 and a constant
y such that for any {x®)} € Q(I, x*),

” D) _

< Y”x(k) - x* g

k> k= k0<{x<’<>}). (2.12)

Then, it follows that R-order of I satisfies the inequality Og(I, x*) > p.

We will use this result in order to calculate the R-order of convergence of PZSS1 in the
subsequent section.

For comparison, the procedure (2.7) has R-order of convergence at least 2 or
ORr(PT1,x*) > 2, while the R-order of convergence of (2.8) is greater than 2 or Og(PS1, x*) > 2.
However, the R-order of convergence of PSS1 is at least 3 or Og(PSS1, x*) > 3.

3. The Point Zoro Symmetric Single-Step Procedure PZSS1
The value of xfk’z) which is computed from (3.1c) requires (n—i) multiplications, one division,
and (n—-i+1) subtractions, increasing the lower bound on the R-order by unity compared with
the R-order of PS1. Furthermore, the value of xi(k’3) which is computed from (3.1d) requires
(n — i) multiplications, one division, and (n — i + 1) subtractions, increasing the lower bound
on the R-order by unity compared with the R-order of PSS1. This observation gives rise to
the idea that it might be advantageous to add another step in PSS1. This leads to what is so
called the point zoro symmetric single-step procedure PZSS1 which consists of generating

the sequences {x?k)} (i=1,...,n) from

0= % i=1,..,m), (3.1a)

1

(k)

LD _ ) P <xi >
i T i-1( (k) (k1) (k) _ .(k0)
T )T ()

(i=1,...,n), (3.1b)

(k,2) (k) .
X=X — © D © w2 i=1,...,n), (3.1¢)
[Ti= <xi - X )H?:m <xi X )
(k)
p(x")
(k,3) (k) ! .
X=X S — 5 e o > i=1,...,n), (3.1d)
TG ) (P )
V=% (i=1,..,n) (k2 0). (3.1¢)

The procedure PZSS1 has the following attractive features.
From (3.1b), (3.1¢c), and (3.1d), it follows that for k > 0,

(i) the values p(xi(k)) (i =1,...,n) which are computed for use in (3.1b) are reused in
(3.1¢) and (3.1d).

(ii) x,(qk’z) = x,(qk’l) and x§k’3) = x§k’2), so that xilk’Z) and xikﬁ) need not be computed.
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(iii) The product
i-1

(9 =) i=2,...,m), (3.2)

j=1

which are computed for use in (3.1b) are reused in (3.1c).

(iv) The product

ﬁ <x§") - x}"'”) (i=n-1,...,1) (3.3)

j=i+l
which are computed for use in (3.1c) are reused in (3.1d).
The following lemmas (Monsi [9]) are required in the proof of Theorem 3.4.

Lemma 3.1. If
(i) p: C — Cisdefined by (2.1);
(ii) pi : C — C is defined by

pi(x) = H(x xm)H(x xy) (i=1,...,n); (3.4)

m=i+1

(iii) g; : C — C is defined by

i(x) = H(x %) [ (=%) (=1,..,m), (35)

m=i+1

where Xj # X and Xj #Xm (jm=1,...,n;j#m);
(iv) ¢i : C — Cis defined by

pi(x;)qi(x) Lopi(X)aix)
i i _— =1,...,n), 3.6
P =il ,zixx])(x 5 2 A -z CTheem GO
then
¢i(x) =pi(x) (VxeC) (i=1,...,n). (3.7)

Lemma 3.2. If (i)—(iv) of Lemma 3.1 are valid; (v) %; (i = 1,...,n) are such that p(%;) #0
i=1,...,n),%#xy, (m=1,...,i—-1), % #X, (in=i+1,...,n), and

X = #i - — p) (i=1,...,n); (3.8)

1 — o ~
[Tz (i = X)) T Tmiin (i = Xim)
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w; =X —-x;, w;=X;—x;,andw; =x; —x} (i=1,...,n), then
i-1 n
w; = W; Zyl].—,- + D @i ¢ (i=1,...,m), (3.9)
j=1 j=i+l
where
— Hm#z](x] xm) . .
Yii = (j=1,...,i-1),
q;(x;) (% - %)
o = ) (3.10)
~ m#i,j .’Xf]' - x:n . .
Yii = — (j=i+1,...,n).
R ACHICTEES)

Lemma 3.3. If (i)—(v) of Lemma 3.2 are valid; (vi) [¥; — x}| < 0d/(2n - 1) and |X; - x}| <

0d/2n— 1) (i=1,. .,
[wi| < 6lwi| (i=1,...,n).

Theorem 3.4. If (i) p : C — C defined by (2.1) has n distinct zeros x} (i = 1,...

@ - xf < 6d/@n- 1) (i=1,.

n: j#i}, and the sequences {x ()} i=1,...

n), where d = min{|x} — x;fl [i,j=1,...

n;, j#i} and 0 < 8 < 1, then

,n); (i)

..,n), where 0 < 6 < 1and d = min{[x] —x]’f| li,j=1,...,

,n) are generated from PZSS1 (i.e., from (3.1a)—

n) and Og(PZSS1, x*) > 4.

(3.1¢)), then x¥ — x* (k — o0) (i=1,...,

Proof. Fori=1,...,n,let
i-1
_ (k1) (kD)
qii(x) = g<x Xpm ml;l1<x Xon >,
Goi(x) = ﬁ(x x,(jf’l)> H (x xf,llcz)), (3.11)
m=1 m=i+1
i1
() = (k,3) (k,2)
qs,i(x) 11 (x Xpn 11 X=X, )
Then, by (3.5) and (3.6),
@ (e e (e
$1,i(x) = qui(x) + Z ( (k1)> <x x(k 1)) j§1 0, (x](k 0)> <x Lk 0)) ’
. KDY g (%2 g
$2i(x) = qoi x)+z ( >q2 ) zn: i (x; >q2’ ) (3.12)

A ()
< )qSl( ) LG
R

¢3l(x) %z(x) + Z

o ()

where p;(x) is defined by (3.4).



Journal of Applied Mathematics

By Lemmas 3.1 and 3.2 with g; = g4, X; = x(k) %= x0 %, = (k Dogi=dri(i=1,.

1

n), it follows that, fori=1,...,n,k >0,

i-1
(k 1) (k1) (k 1) 260,
- a;; + Z ,
j=1 j=i+l
where
I(k S = xfk’s) xf (s=0,...,3),
(k,1) *
(k1) Iz <x]. - xm>
@ = (j=1,...,i-1)
’ (k1) (k1) (k)
T <xf ><x1 X >
(k,0) *
(k,0) [Tnzi (x]. B xm> (j=i+1 )
%ij S RO (k0 oy TRl
91 JC]- > <X] t >

® 7 - x*D 3 -

Slmllarly, by Lemmas 3.1 and 3.2, with q; = g2, Xi = x;, X;
(i=1,...,n),itfollows that, fori=1,...,n,k >0,

i

i-1
(k,2) (k) (k1) (k 1) (k,2) (k 2)
w; =W Zﬁ Z ﬂ ’

]1+

where

[Lnsij x;(kl) X > .
. (k)> (j=1,..
X;

Li-1),

/N
‘NRA

Ep) (j=i+1,...,n).
1

Similarly, by Lemma 3.1 and Lemma 3.2, with q; = g3, X; = x(k) X; = x(k 2 x

(i=1,...,n),it follows that, fori=1,...,n,k >0,

i-1
(k 3) _ (k,3) (k 3) (k2),,(k2)
ZYU + Z j 4
j=i+l

(3.13)

(3.14)

K,
X, ¢ = o

(3.15)

(3.16)

(k3) (I) (l)
i 3,i

(3.17)
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where
k3)
I ) R
BT G GE ey T
93\ %; i i
(3.18)
kD) .
(k2) _ H"’?""f(xf xm> (j=i+1,...,n)
Vij T TNk oy T T
)

It follows from (3.13)-(3.14) and Lemma 3.3 that |wi(0’1)| < 9|wl.(0’0)| (i=1,...,n),and it follows

from (3.15)-(3.16) and Lemma 3.3 that |wi(0’2)| < 92|w1.(0’0)| (i=1,...,n) follows from (3.1e). It
follows from (3.17)-(3.18) and Lemma 3.3 that

'w§°'3)| < 93|w§°'°>' (i=1,...,n), (3.19)

whence |w1.(1'0)| < 93|w(o’0)| (i=1,...,n). It then follows by induction on k that, for all k > 0,

i
|w§k'°>| < 94k-1|w§°'°>| (i=1,...,n), (3.20)

whence xl.(k) — X7 (k = o0),(i=1,...,n). Let
2n -1
k) = %|w§k'm>| (i=1,...,n)(m=0,...,3). (3.21)

Then, by (3.13), (3.15), (3.17), and (3.21), fori =1,...,n, (recall (3.1b), (3.1c), (3.1d))

i—1 n
(k1) L w0 ) ok (k,0)
j=1 j=i+l
fori=mn,...,1,
PRI S ) 'ih(k,l) . i k2 (323)
P Smen &N &l :
j=1 j=i+l

andfori=1,...,n,

i-1 n
(k3) () ShED 3 Rt

=1 j=itl
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Let

4, (i=1),
u@):{ (1' ) (3.25)

Forr=1,2,3, let

(k) _
(k+1r) _ du; ", (i=1...,n-1) (3.26)
' 4% +1, (i=n)
Then, by (3.25)—(3.26), for all k > 1,
2(4k-1), i=1,...,n-1),
(k 1) _ ( ) G n-1)
10 1
46Dy _ 2 (=
S -2 =),
4(4%-D), (i=1), (3.27)
(kz) 3(4k-D), (i=2,...,n-1)
Wy Loy,
3
4(4<k-1>), (i=1,...,n-1),
ul®? 1 (3.28)
(4(k‘1)) -=, (i=n).
3
Suppose, without loss of generality, that
K <h<1 (i=1,...,n). (3.29)

Then, by a lengthy inductive argument, it follows from (3.21)-(3.29) that fori = 1,...,n, for
allk > 1,

A i
i = 7

h(krl) < hu(kﬂ,l)

h (k,2) hu(k” 2)’ (3.30)

k,3 (k+1,3)
h*D < g,
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whence, by (3.28) and (3.1e), forall k > 1,
KO <h (i=1,...,n).

By (3.21) for m = 3,

k-4 &y
|wi i_(Zn—l)hi (i=1,...,n),
then by (3.1e),
k] d (k1) .
|} =Gt =L,
So,
®|__ 4 w0 S
|| Gl A=l (20)
Let

w(k) = max{
1<i<n

(k)
«}

Rk = max{hi(k) }

1<i<n
Then, by (3.22)(3.35)

*) d

ST (k20

So,

1,4k d 1/4k
R4<w(k)> = klim sup{(w‘”) } < klim sup{(zn_ 1) h} =h<l

Therefore (Ortega and Rheindboldt [13]),

Or(PZSS1,x}) >4 (i=1,...,n).

4. Conclusion

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

The result above shows that the procedure PZSS1 has R-order of convergence at least 4 that
is higher than does PT1, PS1, and PSS1. The attractive features given in Section 3 of this
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procedure will give less computational time. Our experiences in the implementation of the
interval version of PZSS1, that is, the procedure IZSS1(Rusli et al. [10]) showed that this
procedure is more efficient for bounding the zeros simultaneously.
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