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This paper deals with the approximation of systems of differential-algebraic equations based on
a certain error functional naturally associated with the system. In seeking to minimize the error,
by using standard descent schemes, the procedure can never get stuck in local minima but will
always and steadily decrease the error until getting to the solution sought. Starting with an initial
approximation to the solution, we improve it by adding the solution of some associated linear
problems, in such a way that the error is significantly decreased. Some numerical examples are
presented to illustrate the main theoretical conclusions. We should mention that we have already
explored, in some previous papers (Amat et al., in press, Amat and Pedregal, 2009, and Pedregal,
2010), this point of view for regular problems. However, the main hypotheses in these papers ask
for some requirements that essentially rule out the application to singular problems. We are also
preparing a muchmore ambitious perspective for the theoretical analysis of nonlinear DAEs based
on this same approach.

1. Introduction

Differential-algebraic equations are becoming increasingly important in a lot of technical
areas. They are currently the standard modeling concept in many applications such as circuit
simulation, multibody dynamics, and chemical process engineering; see for instance [1–5]
with no attempt to be exhaustive.

A basic concept in the analysis of differential-algebraic equations is the index. The
notion of index is used in the theory of DAEs for measuring the distance from a DAE to its
related ODE. The higher the index of a DAE is, the more difficulties are for its numerical
solution. There are different index definitions, but for simple problems they are identical. On
more complicated nonlinear and fully implicit systems they can be different (see [5] and the
references therein.)
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For simplicity, we focus our attention on problems of the form

Mx′(t) = f(x(t)) in (0, T), x(0) = x0, (1.1)

where M is a given, eventually singular, matrix depending on t. More general situations can
be allowed. This type of equations arises, for instance, in the functional analytic formulation
of the initial value problem for the Stokes as well as for the linearized Navier-Stokes or Oseen
equations [6].

For the approximation of these equations collocation-type methods are usually used.
These methods are implicit, and we need to solve a nonlinear system of equations in each
iteration using a Newton’s type method. Given different coefficients ci, 1 ≤ i ≤ s, there is a
(unique for h sufficiently small) polynomial of collocation q(t) of degree less than or equal to
s such that

q(t0) = y0, q′(t0 + cih) = f
(
t0 + cih, q(t0 + cih)

)
if 1 ≤ i ≤ s. (1.2)

The collocation methods are defined by an approximation y(t) � q(t) and are equivalent to
implicit RK methods of s stages

ki = f

⎛

⎝t0 + cih, y0 + h
s∑

j=1

ai,jkj

⎞

⎠,

y1 = y0 + h
s∑

i=1

biki,

(1.3)

for the coefficients

ai,j =
∫ ci

0

∏

l /= j

u − cl
cj − cl

du,

bi =
∫1

0

∏

l /= i

u − cl
ci − cl

du.

(1.4)

The coefficients ci play the role of the nodes of the quadrature formula, and the associated
coefficients bi are analogous to the weights. From (1.4), we can find implicit RK methods
called Gauss of order 2s, Radau IA and Radau IIA of order 2s − 1, and Lobatto IIIA of order
2s−2. Also we can consider perturbed collocation methods like Lobato IIIC. (See [4] for more
details).

A number of convergence results have been derived for these methods introducing the
so-called B-convergence theory. In [7, 8] the authors extend the B-convergence theory to be
valid for a class of nonautonomous weakly nonlinear stiff systems, in particular, including
the linear case. As pointed out by the same authors, it is not clear if it is possible to cover, in a
satisfactory way, highly nonlinear stiff problems, that is, problems where also the nonlinear
terms are affected by large parameters. Moreover, any result should assume that, in each step,
the associated nonlinear system is well approximated [5]. In particular, we should be able to
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start with a good initial guess for the iterative scheme. This might be very restrictive for many
stiff problems.

On the other hand, iterative methods are the typical tool to solve nonlinear systems
of equations. In these schemes we compute a sequence of approximations solving associated
linear problems. In this paper, we would like to introduce a new variational approach for the
treatment of DAEs where we linearize the original equations obtaining an iterative scheme.
Our ideas are based on the analysis of a certain error functional of the form

E(x) =
1
2

∫T

0

∣
∣Mx′(t) − f(x(t))

∣
∣2dx (1.5)

to be minimized among the absolutely continuous paths x : (0, T) → RN with x(0) = x0.
Note that if E(x) is finite for one such path x, then automatically Mx′ is square integrable.
This error functional is associated, in a natural way, with the Cauchy problem (1.1). Indeed,
the existence of solutions for (1.1) is equivalent to the existence of minimizers for E with
vanishing minimum value. This is elementary.

In this initial contribution, we want to concentrate on the approximation issue through
this perspective. We will place ourselves under the appropriate hypotheses so that there are
indeed solutions for (1.1), that is, there are minimizers for the error with vanishing minimum
value. In addition, we would like to guarantee that the main ingredients for the iterative
approximating scheme to work are valid. More explicitly, our approach for the numerical
approximation of such problems relies on three main analytical hypotheses that we take for
granted here.

(1) The Cauchy problem (1.1) admits a unique solution for every feasible initial
condition x0 (the definition of feasible path should depend on the index of the
equation).

(2) The linearization around any feasible, absolutely continuous, path x(t)with x(0) =
x0,

My′(t) − ∇f(x(t))y(t) = f(x(t)) −Mx′(t) in (0, T), y(0) = 0, (1.6)

always has a unique solution, and moreover, for some constant L > 0 depending on
M, f , x and its derivatives,

∥∥y
∥∥2
L∞(0,T) ≤ TL

∥∥f(x(t)) −Mx′(t)
∥∥
L2(0,T). (1.7)

(3) The only solution of the problem

d

dt

(
M�z(t)

)
+∇f(x(t))�z(t) = 0 in (0, T), M�z(T) = 0, (1.8)

is z ≡ 0, for every feasible, absolutely continuous, path x(t)with x(0) = x0.

Here the superscript � indicates transpose.



4 Journal of Applied Mathematics

These requirements depend on the index of the equation and on some regularity on
the pair (M,∇f(x(t))). They should be more restrictive for equations with high index. More
details can be found, for example, in [9, Theorem 3.9], where the authors consider DAEs
transferable into standard canonical form. More precise information is outside of the scope of
this paper. In any case, the equations verifying our hypotheses are, in general, a subclass of
all analytically solvable systems.

In addition to the basic facts just stated on existence and uniqueness of solutions for
our problems, the analysis of the approximation scheme, based on aminimization of the error
functional E, requires one main basic assumption on the nonlinearity f :RN → RN . It must
be smooth, so that∇f :RN → RN×N is continuous and globally Lipschitz with constantK > 0
(|∇f | ≤ K). Moreover, the main result of this paper demands a further special property on
the map f : for every positive C > 0 and small ε > 0, there is DC,ε > 0 so that

∣∣f
(
x + y

) − f(x) − ∇f(x)y
∣∣ ≤ DC,ε

∣∣y
∣∣2, |x| ≤ C,

∣∣y
∣∣ ≤ ε. (1.9)

This regularity is somehow not surprising as our approach here is based on regularity and
optimality. On the other hand, that regularity holds for most of the important problems in
applications. It certainly does in all numerical tests performed in this work. Our goal here is
placed on the fact that this optimization strategy may be utilized to set up approximation
schemes based on the minimization of the error functional. Indeed, we provide a solid
basis for this approximation procedure. One very important and appealing property of our
approach states that typical minimization schemes like (steepest) descent methods will work
fine as they can never get stuck in local minima and converge steadily to the solution of the
problem, no matter what the initialization is.

We should mention that we have already explored, in some previous papers, this
point of view. Since the initial contribution [10], we have also treated the reverse mechanism
of using first discretization and then optimality [11]. The perspective of going through
optimality and then discretization has already been indicated and studied in [12], though
only for the steepest descent method, and without going through any further analytical
foundation for the numerical procedure. However, the main hypotheses in these papers ask
for some requirements that essentially rule out the application to singular problems. We will
however address shortly [13] a complete treatment of DAEs with no a priori assumptions on
existence and uniqueness. Rather, we will be interested in showing existence and uniqueness
from scratch by examining the fundamental properties of the error functional E.

On the other hand, variational methods have been used also before in the context of
ODEs. See [14, 15], where numerical integration algorithms for finite-dimensional mechanical
systems that are based on discrete variational principles are proposed and studied. This is one
approach to deriving and studying symplectic integrators. The starting point is Hamilton’s
principle and its direct discretization. In those references, some fundamental numerical
methods are presented from that variational viewpoint where the model plays a prominent
role.

The rest of the paper is divided in three sections. In Section 2 we introduce our
variational approach and develop a convergence analysis. Section 3 introduces the numerical
procedure. We analyze some numerical results in Section 4. Finally, we present the main
conclusions in Section 5.
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2. A Main Descent Procedure

We start with a fundamental fact for our approach.

Proposition 2.1. Let x be a critical point for the error E. Then x is the solution of the Cauchy problem
(1.1).

Proof. The proof is elementary. Based on the smoothness and bounds assumed on the
mapping f , we conclude that if x ≡ x is a critical point for the error E, then x ought to be
a solution of the problem

− d

dt

(
M�(Mx′(t) − f(x(t))

)
− ∇f(x(t))�

((
Mx′(t) − f(x(t))

)
= 0 in (0, T),

x(0) = x0, M�(Mx′(T) − f(x(T))
)
= 0.

(2.1)

The vector-valued map y(t) = Mx′(t)− f(x(t)) is then a solution of the linear, nondegenerate
problem

M�y′(t) +∇f(x(t))�y(t) = 0 in (0, T), M�y(T) = 0. (2.2)

The only solution of this problem, by our initial conditions on uniqueness of linearizations,
is y ≡ 0, and so x is the solution of our Cauchy problem.

On the other hand, suppose we start with an initial crude approximation x(0) to the
solution of our basic problem (1.1). We could take x(0) = x0 for all t or x(0)(t) = x0 + tf(x0).
We would like to improve this approximation in such a way that the error is significantly
decreased. We have already pointed out that descent methods can never get stuck on
anything but the solution of the problem, under global lipschitzianity hypotheses.

It is straightforward to find the Gâteaux derivative of E at a given feasible x in the
direction y with y(0) = 0. Namely

E′(x)y =
∫T

0

((
Mx′(t) − f(x(t))

) · (My′(t) − ∇f(x(t))y(t)
))
dt. (2.3)

This expression suggests a main possibility to select y from. Choose y such that

My′(t) − ∇f(x(t))y(t) = f(x(t)) −Mx′(t) in (0, T), y(0) = 0. (2.4)

In this way, it is clear that E′(x)y = −2E(x), and so the (local) decrease of the error is of the
size E(x). Finding y requires solving the above linear problem which is assumed to have
a unique solution by our main hypotheses in the introduction. In some sense, this is like a
Newton method with global convergence.
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Suppose x(0) is a feasible path in the interval (0, T) so that x(0)(0) = x0, M(x(0))′ is
square integrable, |x(0)(t)| ≤ C for a fixed constant C, all t ∈ (0, T), and the quantity

E
(
x(0)
)
=

1
2

∫T

0

∣
∣
∣∣M
(
x(0)
)′
(t) − f

(
x(0)(t)

)∣∣
∣∣

2

dt (2.5)

measures how far such x(0) is from being a solution of our problem.

Theorem 2.2. For T sufficiently small, the iterative procedure x(j) = x(j−1) + y(j), starting from the
above feasible x(0) and defining y(j) as the solution of the linear problem

M
(
y(j)
)′
(t) − ∇f

(
x(j−1)(t)

)
y(j)(t) = f

(
x(j−1)(t)

)
−M

(
x(j−1)

)′
(t) in (0, T), y(j)(0) = 0,

(2.6)

converges strongly in L∞(0, T) to the solution of (1.1).

Proof. Choose ε > 0 and 0 < α < 1 so that

ε

1 − √
α
≤ C,

∣∣f
(
z + y

) − f(z) − ∇f(z)y
∣∣ ≤ D

∣∣y
∣∣2,

∣∣y
∣∣ ≤ ε, |z| ≤ 2C,

(2.7)

for some constant D > 0 (see the main hypotheses in Section 1). We then solve for y(0) as the
solution of the nonautonomous linear problem

My′(t) − ∇f(x(t))y(t) = f(x(t)) −Mx′(t) in (0, T), y(0) = 0, (2.8)

and pretend to update x(0) to x(0) + y(0) in such a way that the error for x(0) + y(0) be less than
the error for the current iteration x(0). Note that

E
(
x(0) + y(0)

)
=

1
2

∫T

0

∣∣∣f
(
x(0)(t) + y(0)(t)

)
− f
(
x(0)(t)

)
− ∇f

(
x(0)(t)

)
y(0)(t)

∣∣∣
2
dt, (2.9)

where we have used the differential equation satisfied by y(0) and the definition of E(x). By
our assumption on f above,

∣∣∣f
(
x(0)(t) + y(0)(t)

)
− f
(
x(0)(t)

)
− ∇f

(
x(0)(t)

)
y(0)(t)

∣∣∣ ≤ D
∣∣∣y(0)(t)

∣∣∣
2
, t ∈ (0, T), (2.10)

provided that |y(0)(t)| ≤ ε. Since we know that y(0) is the solution of a certain linear problem,
by the upper bound assumed in Section 1 on the size of these solutions,

∣∣∣y(0)(t)
∣∣∣
2 ≤ TLE

(
x(0)
)

∀t ∈ [0, T], L ∈ R
+. (2.11)
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Assume that we select T > 0 so small that

E0,T

(
x(0)
)
≡ E
(
x(0)
)
≤ ε2

TL
, (2.12)

and then |y(0)(t)| ≤ ε for all t ∈ [0, T]. By (2.9), (2.10), and (2.11), we can write

E
(
x(0) + y(0)

)
≤ D2

2

∫T

0

∣
∣
∣y(0)(t)

∣
∣
∣
4
dt ≤ D2

2
L2T3E

(
x(0)
)2
. (2.13)

If, in addition, we demand, by making T smaller if necessary,

E
(
x(0)
)
≤ 2α

D2T3L2
, (2.14)

then E(x(0) + y(0)) ≤ αE(x(0)). Moreover, for all t ∈ (0, T),

∣∣∣x(0)(t) + y(0)(t)
∣∣∣ ≤ C + ε ≤ 2C. (2.15)

All these calculations form the basis of a typical induction argument, verifying

∣∣∣∣∣

j−1∑

i=0

x(i)(t)

∣∣∣∣∣
≤ C + ε

(
j−2∑

i=0

√
αi

)

(≤ 2C),

∣∣∣x(j−1)(t)
∣∣∣ ≤ ε

√
αj−2 ∀t ∈ [0, T],

E

(
j−1∑

i=0

x(i)

)

≤ αj−1E
(
x(0)
)(

≤ E
(
x(0)
))

.

(2.16)

It is therefore clear that the sum

∞∑

i=0

x(i)(t) (2.17)

converges strongly in L∞(0, T) to the solution of our initial Cauchy problem in a small interval
(0, T).

Since the various ingredients of the problem do not depend on T , we can proceed
to have a global approximation in a big interval by successively performing this analysis in
intervals of appropriate small size. For instance, we can always divide a global interval (0, T)
into a certain number n of subintervals of small length h (T = nh) with

E0,T
(
x(0))D2L2

2α
≤ 1

h3
, (2.18)

according to (2.14).
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Figure 1: Index 1, T = 2π , the y-coordinate, “o”-original, “+”-approximation.

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

−1
−0.8
−0.6
−0.4
−0.2

Figure 2: Index 1, T = 2π , the z-coordinate, “o”-original, “+”-approximation.

3. Numerical Procedure

Since our optimization approach is really constructive, iterative numerical procedures are
easily implementable.

(1) Start with an initial approximation x(0)(t) compatible with the initial conditions
(e.g. x(0)(t) = x0 + tf(x0)).

(2) Assume we know the approximation x(j)(t) in [0, T].

(3) Compute its derivative M(x(j))′(t).

(4) Compute the auxiliar function y(j)(t) as the numerical solution of the problem

My′(t) − ∇f
(
x(j)(t)

)
y(t) = f

(
x(j)(t)

)
−M

(
x(j)
)′
(t) in (0, T), y(0) = 0, (3.1)
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Figure 3: Index 2, T = 2, the y1-coordinate, “o”-original, “+”-approximation.
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Figure 4: Index 2, T = 2, the y2-coordinate, “o”-original, “+”-approximation.

by making use of a numerical scheme for DAEs with dense output (like collocation
methods).

(5) Change x(j) to x(j+1) by using the update formula

x(j+1)(t) = x(j)(t) + y(j)(t). (3.2)

(6) Iterate (3), (4), and (5), until numerical convergence.

In practice, we use the stopping criterium

max
{∥∥∥y(j)

∥∥∥
∞
,
√
2E
(
x(j)
)
}

≤ TOL. (3.3)
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Figure 5: Index 2, T = 2, the z-coordinate, “o”-original, “+”-approximation.
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Figure 6: Index 3, T = 2, the y1-coordinate, “o”-original, “+”-approximation.

In particular, one can implement, in a very easy way, this numerical procedure using
a problem-solving environment like MATLAB [16].

4. Some Experiments

In this section, we approximate some problems well known in the literature for a different
index [5, 17, 18]. High-order accuracy and stability are major areas of interest in this type of
simulations. We do not perform an analysis of the convergence conditions imposed in the
above section. We are only interested to test numerically our approach.

In our approach we only need to approximate, with at least order one, the associated
linear system for y(j), in order to obtain the convergence of our scheme (see Theorem 2.2).
The stability can be ensured by the fact that we approximate a linear problem using specific
implicit methods [4]. This is not the case with a general nonlinear problem [19], where
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Figure 7: Index 3, T = 2, the y2-coordinate, “o”-original, “+”-approximation.
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Figure 8: Index 3, T = 2, the z1-coordinate, “o”-original, “+”-approximation.

we need to approximate well (with a Newton-type iterative method) the nonlinear system
related to the implicitness of the scheme (see the above section). This approximation should
be a difficult task due to the local (nonglobal) convergence of any iterative scheme for
nonlinear problems.

In this section, we consider the convergent Lobatto IIIC method [18] valid for indexes
1–3, in order to approximate the associated linear problem for y(j) in each iteration. This
method can be considered as a perturbation collocation method. The final error depends only
on the stopping criterium. In the following examples, we stop the algorithm when

max
{∥∥∥y(j)

∥∥∥
∞
,
√
2E
(
x(j)
)
}

≤ 10−6 (4.1)

and plot the solution and the approximation given by our approach.
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Figure 9: Index 3, T = 2, the z2-coordinate, “o”-original, “+”-approximation.
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Figure 10: Index 3, T = 2, the u-coordinate, “o”-original, “+”-approximation.

(i) Index 1 [5]

y′(t) = z(t),

y(t)2 + z(t)2 = 1,

y(0) = z(0) =
√
2
2

.

(4.2)

The solution of this problem is (sin(x + π/4), cos(x + π/4)).
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(ii) Index 2 [17]

y′
1(t) =

5∑

i=1

fi
(
y1(t), y2(t), z(t)

)
,

y′
2(t) =

5∑

i=1

gi
(
y1(t), y2(t), z(t)

)
,

y1(t)2y2(t) = 1,

y1(0) = y2(0) = 1,

z(0) = 1,

(4.3)

where

f1
(
y1(t), y2(t), z(t)

)

= y2(t) − 2y1(t)2y2(t) + y1(t)y2(t)2z(t)2 + 2y1(t)y2(t)2 − 2e−2ty1(t)y2(t),

f2
(
y2(t), z(t)

)
= −y2(t)2z(t) + 2y2(t)2z(t)2,

g1
(
y1(t), y2(t)

)
= −y1(t)2 + y1(t)2y2(t)2,

g2
(
y1(t), y2(t), z(t)

)
= −y1(t) + e−tz(t) − 3y2(t)2z(t) + z(t).

(4.4)

The solution of this problem is (et, e−2t, e2t).

(iii) Index 3 [18]

y′
1(t) = 2y1(t)y2(t)z1(t)z2(t),

y′
2(t) = −y1(t)y2(t)z2(t)2,

z′1(t) =
(
y1(t)y2(t) + z1(t)z2(t)

)
u(t),

z′2(t) = −y1(t)y2(t)2z2(t)2u(t),

y1(t)y2(t)2 = 1,

y1(0) = y2(0) = 1,

z1(0) = z2(0) = 1,

u(0) = 1.

(4.5)

The solution of this problem is (e2t, e−t, e2t, e−t, et).

In Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, we compare the solution of the corresponding
three problems with the approximations given by our approach. The results are very
satisfactory in all cases, obtaining always the convergence to the true solution. In a first look,
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the exact and computed solutions are indistinguishable, since after convergence the error is
smaller than the tolerance (= 10−6) used in the stopping criterium. A more systematic and
careful analysis of the numerical possibilities of the method will be pursued in the future.

5. Conclusions

A new variational approach to the analysis and numerical implementation of regular ODEs
has been recently introduced in [10, 20]. Because of its flexibility and simplicity, it can easily
be extended to treat other types of ODEs like differential-algebraic equations (DAEs). This
has been precisely the main motivation for this paper: to explore how well those ideas can be
adapted to this framework. In particular, extending to this context some of the analytical
results and performing various numerical tests that confirm that indeed the variational
perspective is worth pursuing. One remarkable feature is that this point of view only requires
to count on good numerical schemes for linear problems, and this is the reason why it fits
so well in other scenarios. Because of the many good qualities of this viewpoint, it can be
considered and implemented in essentially all fields where differential equations are relevant.
There is, then, a long way to go.
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