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An integrable 2-component Camassa-Holm (2-CH) shallow water system is studied by using
integral bifurcation method together with a translation-dilation transformation. Many traveling
wave solutions of nonsingular type and singular type, such as solitary wave solutions, kink wave
solutions, loop soliton solutions, compacton solutions, smooth periodic wave solutions, periodic
kink wave solution, singular wave solution, and singular periodic wave solution are obtained.
Further more, their dynamic behaviors are investigated. It is found that the waveforms of some
traveling wave solutions vary with the changes of parameter, that is to say, the dynamic behavior
of these waves partly depends on the relation of the amplitude of wave and the level of water.

1. Introduction

In this paper, employing the integral bifurcation method together with a translation-dilation
transformation, we will study an integrable 2-component Camassa-Holm (2-CH) shallow
water system [1] as follows:

mt + εmux +
1
2
εumx +

σ

ε

(
ρ2
)
x
= 0, ρt +

ε

2
(
ρu

)
x = 0, (1.1)

which is a nonlinear dispersive wave equation that models the propagation of unidirectional
irrotational shallow water waves over a flat bed [2], as well as water waves moving over
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an underlying shear flow [3]. Equation (1.1) also arises in the study of a certain non-
Newtonian fluids [4] and also models finite length, small amplitude radial deformation
waves in cylindrical hyperelastic rods [5], where m = u − (1/3)δ2uxx + κ/2, σ = ±1 and
ε = ã/�, δ = �/λ are two dimensionless parameters. The interpretation of (u, ρ), respectively,
describes the horizontal fluid velocity and the density in the shallow water regime, where the
variable u(x, t) describes the horizontal velocity of the fluid in x direction at time t, and the
variable ρ(x, t) is related to the free surface elevation from equilibrium position (or scalar
density) with the boundary assumptions. The parameter � denotes the level of water, the
parameter ã denotes the typical amplitude of the water wave, and the parameter λ denotes
the typical wavelength of the water wave. The constant κ denotes the speed of the water
current which is related to the shallow water wave speed. The case σ = ±1, respectively,
corresponds to the two situations in which the gravity acceleration points downwards and
upwards. Especially, when the speed of the water current κ = 0 and the parameter σ = 1, (1.1)
becomes the following form

m̃t + εm̃ux +
1
2
εum̃x +

1
ε

(
ρ2
)
x
= 0, ρt +

ε

2
(
ρu

)
x = 0, (1.2)

where m̃ = u − (1/3)δ2uxx. The system (1.2) appeared in [1], which was first derived by
Constantin and Ivanov from the Green-Naghdi equations [6, 7] via the hydrodynamical point
of view. Under the scaling u �→ (2/ε)u, x �→ (δ/

√
3)x, t �→ (δ/

√
3)t, (1.1) can be reduced to

the following two-component generalization of thewell-known 2-component Camassa-Holm
(2-CH) system [1, 8–10]:

mt + 2mux + umx + σρρx = 0, ρt +
(
ρu

)
x = 0, (1.3)

where m = u − (1/3)δ2uxx + κ/2. The equation (1.3) attracts much interest since it
appears. Attention was more paid on the local well-posedness, blow-up phenomenon, global
existence, and so forth. When κ = 0, (1.3) has been studied by many authors, see [11–26] and
references cited therein. Especially, under the parametric conditions δ = 1, ρ = 0, σ = −1,
(1.3) can be reduced to the celebrated Camassa-Holm equation [27, 28],

ut + κux − uxxt + 3uux = 2uxuxx + uuxxx. (1.4)

In 2006, the integrability of (1.3) for σ = −1 was proved and some peakon and multikink
solutions of this system were presented by Chen et al. in [9]. In 2008, the Lax pair of (1.3)
for any value of σ was given by Constantin and Ivanov in [1]. In [29], by using the method
of dynamical systems, under the traveling wave transformation u(x, t) = φ(x − ct), ρ(x, t) =
ψ(x − ct), some explicit parametric representations of exact traveling wave solutions of (1.3)
were obtained. But the loop solitons were not obtained in [29]. In [30], under σ = −1, one-
loop and two-loop soliton solutions and multisoliton solutions of (1.3) are obtained by using
the Darboux transformations.

Although (1.1) can be reduced to (1.3) by the scaling transformation u �→ (2/ε)u, x �→
(δ/

√
3)x, t �→ (δ/

√
3)t, the dynamic properties of some traveling wave solutions for these

two equations are very different. In fact, the dynamic behaviors of some traveling waves of
system (1.1) partly depends on the relation (ε = ã/�) of the amplitude of wave and the level
(deepness) of water. In the other words, their dynamic behavior vary with the changes of
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parameter ε, that is, the changes of ratio for the amplitude of wave ã and the deepness of
water �. In addition, compared with the research results of (1.3), the research results for (1.1)
are few in the existing literatures. Thus, (1.1) is very necessary to be further studied.

It is worthy to mention that the solutions obtained by us in this paper are different
from others in existing references, such as [9, 12–17, 29]. On the other hand, under different
transformations, by using different methods, different results will be presented. In this
paper, by using the integral bifurcation method [31], we will investigate different kinds of
new traveling wave solutions of (1.1) and their dynamic properties under the translation-
dilation transformation u(x, t) = v[1 + φ(x − vt)], ρ(x, t) = v[1 + ψ(x − vt)]. By the way,
the integral bifurcation method possessed some advantages of the bifurcation theory of the
planar dynamic system [32] and auxiliary equation method (see [33, 34] and references cited
therein), it is easily combined with computer method [35] and useful for many nonlinear
partial diffential equations (PDEs) including some PDEs with high power terms, such as
K(m,n) equation [36]. So, by using this method, we will obtain some new traveling wave
solutions of (1.1). Some interesting phenomena will be presented.

The rest of this paper is organized as follows. In Section 2, we will derive the two-
dimensional planar system of (1.1) and its first integral equations. In Section 3, by using
the integral bifurcation method, we will obtain some new traveling wave solutions of
nonsingular type and singular type and investigate their dynamic behaviors.

2. The Two-Dimensional Planar System of (1.1) and
Its First Integral Equations

Obviously, (1.1) can be rewritten as the following form

ut +
1
2
εκux +

3
2
εuux − 1

3
δ2uxxt +

2σ
ε
ρρx =

1
6
εδ2(2uxuxx + uuxxx), ρt +

ε

2
(
ρxu + ρux

)
= 0.

(2.1)

In order to change the PDE (2.1) into an ordinary differential equation, we make a
transformation

u(x, t) = v
[
1 + φ(ξ)

]
, ρ(x, t) = v

[
1 + ψ(ξ)

]
, (2.2)

where ξ = x − vt and v is an arbitrary nonzero constant. In fact, (2.2) is a translation-dilation
transformation, it has been used extensively in many literatures. Its idea came from many
existing references. For example, in [37], the expression u = λ1/(m−l)U[λ(m−n)/2(m−l)(x + λt)]
is a dilation transformation. In [38], the expression U(x, t) = u(x − ωt) + ω is a translation
transformation. In [39, 40], the expression z = (u − v)/|v|which was first used by Parkes and
Vakhnenko is also a translation-dilation transformation.

After substituting (2.2) into (2.1), integrating them once yields

(
3ε
2

+
εκ

2v
− 1

)
φ +

3ε
4
φ2 +

1
3
δ2φ′′ +

2σ
ε
ψ +

σ

ε
ψ2 =

εδ2

6

[
1
2
(
φ′)2 + φ′′ + φφ′′

]
,

[
1 − ε

2
(
φ + 1

)]
ψ =

ε

2
φ +A,

(2.3)
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where the integral constant A/= 0 and φ′ denotes φξ. From the second equation of (2.3), we
easily obtain

ψ =
2A + εφ

(2 − ε) − εφ , (2.4)

where ε /= 0. Substituting (2.4) into the first equation of (2.3), we obtain

φ′′=

[
(3ε/2+εκ/2v − 1)φ+(3ε/4)φ2 − (

εδ2/12
)(
φ′)2]

A
2−(2σ/ε)(2A+εφ

)
A+(σ/ε)

(
2A+εφ

)2

(1/6)δ2A3
,

(2.5)

where A denotes (ε − 2 + εφ).
Let φ′ = dφ/dξ = y. Thus (2.5) can be reduced to 2-dimensional planar system as

follows:

dφ

dξ
= y,

dy

dξ
=

[
(3ε/2+εκ/2v − 1)φ+(3ε/4)φ2]

A
2−(2σ/ε)(2A+εφ

)
A+(σ/ε)

(
2A+εφ

)2−(εδ2/12)A2y2

(1/6)δ2A3
,

(2.6)

where A denotes (ε − 2 + εφ).
Making a transformation

dξ =
(
ε − 2 + εφ

)
dτ, (2.7)

(2.6) becomes

dφ

dτ
=
(
ε − 2 + εφ

)
y,

dy

dτ
=

6
δ2

[(
3ε
2

+
εκ

2v
− 1

)
φ +

3ε
4
φ2

]
+
6σ

(
2A + εφ

)(
2A + 4 − 2ε − εφ)

εδ2
(
ε − 2 + εφ

)2 − ε

2
y2,

(2.8)

where τ is a parameter. From the point of view of the geometric theory, the parameter τ is
a fast variable, but the parameter ξ is a slow one. The system (2.8) is still a singular system
through the system (2.6) becomes (2.8) by the transformation (2.7). This case is not same as
that in [29]. Of course, as in [29], we can also change the system (2.6) into a regular system
under another transformation dξ = (ε − 2 + εφ)3dτ . But we do not want to do that due to the
following two reasons: (i)we need to keep the singularity of the original system; (ii)we need
not to make any analysis of phase portraits as in [29].
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Obviously, systems (2.6) and (2.8) have the same first integral as follows:

y2 =
1

(
ε − 2 + εφ

)2

×
[
2ε2

δ2
φ4 +

3ε(4εv − 4v + εκ)
vδ2

φ3 +
3
(
ε2κ + 3ε2v + 4v − 4σv − 8εv − 2εκ

)

vδ2
φ2

+
ε2δ2h − 12εσ + 24σ

εδ2
φ + (ε − 2)h − 48σA2 + 96σA + 12σε2 + 48σ − 48σε − 48σεA

ε2δ2

]
,

(2.9)

where h is an integral constant.

3. Traveling Wave Solutions of Nonsingular Type and Singular Type for
(1.1) and Their Dynamic Behaviors

In this section, we will investigate different kinds of exact traveling wave solutions for (1.1)
and their dynamic behaviors.

It is easy to know that (2.9) can be reduced to four kinds of simple equations when the
parametric conditions satisfy the following four cases:

Case 1. A = ε − 2, h = 12σ(ε − 2)/ε2δ2 and ε /= 0, 2, v /= εκ/4(1 − ε).

Case 2. v = εκ/4(1 − ε), h = 12σ(ε − 2)/ε2δ2 and ε /= 0, 1, A/= ε − 2.

Case 3. A = ε − 2, h = 12σ(ε − 2)/ε2δ2, v = εκ/4(1 − ε) and ε /= 0, 1, 2.

Case 4. h = 12σ(2A + 2 − ε)2/ε2δ2(ε − 2).

We mainly aim to consider the new results of (1.1), so we only discuss the first two
typical cases in this section. The other two cases can be similarly discussed, here we omit
them.

3.1. The Exact Traveling Wave Solutions under Case 1

Under the parametric conditions A = ε − 2, h = 12σ(ε − 2)/ε2δ2, v /= εκ/4(1 − ε) and
ε /= 0 or 2, σ = ±1, (2.9) can be reduced to

y = ±

√
cφ4 + bφ3 + aφ2

ε − 2 + εφ
, (3.1)
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where c = 3ε2/δ2 ≥ 0, b = (3ε/δ2)[4(ε−1)+εκ/v], a = (3/δ2)[4(1−σ)+ε(3ε−8)+εκ(ε−2)/v].
Substituting (3.1) into the first expression in (2.8) yields

dφ

dτ
= ±

√
cφ4 + bφ3 + aφ2. (3.2)

Write

ε = ±1 and Δ =
9ε2

(
4v2ε2 + 4vεκ + ε2κ2 + 16σv2)

v2δ4
. (3.3)

The Δ = 0 if only if κ = 2v(ε ± 2
√−σ)/ε. By using the exact solutions of (3.2), we can obtain

different kinds of exact traveling wave solutions of parametric type of (1.1), see the following
discussion.

(i) If a > 0, then (3.2) has one exact solution as follows:

φ =
−ab sech2((√a/2)τ)

b2 − ac[1 + ε tanh
((√

a/2
)
τ
)]2 , a > 0. (3.4)

Substituting (3.4) into (2.7), and then integrating it yields

ξ = (ε − 2)τ − 2ε
ε
√
c
tanh−1

[√
ac

b

(
1 + ε tanh

(√
a

2
τ

))]
. (3.5)

Substituting (3.4) into (2.2) and (2.4), then combining with (3.5), we obtain a couple
of soliton-like solutions of (1.1) as follows:

u = v

[
1 − ab sech2((√a/2)τ)

b2 − ac[1 + ε tanh
((√

a/2
)
τ
)]2

]
,

ξ = (ε − 2)τ − 2ε
ε
√
c
tanh−1

[√
ac

b

(
1 + ε tanh

(√
a

2
τ

))]
,

(3.6)

ρ = v

⎡
⎢⎣1 +

2(ε − 2)
(
b2 − ac[1 + ε tanh

((√
a/2

)
τ
)]2) − abε sech2((√a/2)τ)

(2 − ε)
(
b2 − ac[1 + ε tanh((√a/2)τ)]2

)
+ abε sech2((√a/2)τ)

⎤
⎥⎦,

ξ = (ε − 2)τ − 2ε
ε
√
c
tanh−1

[√
ac

b

(
1 + ε tanh

(√
a

2
τ

))]
.

(3.7)

(ii) If a > 0, c > 0, Δ > 0, then (3.2) has one exact solution as follows:

φ =
2a sech

(√
aτ

)

ε
√
Δ − b sech(√aτ)

. (3.8)
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Similarly, by using (3.8), (2.7), (2.2), and (2.4), we obtain two couples of soliton-like
solutions of (1.1) as follows:

u = v

[
1 +

2a sech
(√

aτ
)

ε
√
Δ − b sech(√aτ)

]
,

ξ = (ε − 2)τ − 2ε√
c
tanh−1

[
b + ε

√
Δ

2
√
ac

tanh
(√

a

2
τ

)]
,

ρ = v

⎡
⎢⎣1 +

2(ε − 2)
(
ε
√
Δ − b sech(√aτ)

)
+ 2aε sech

(√
aτ

)

(2 − ε)
(
ε
√
Δ − b sech(√aτ)

)
− 2aε sech

(√
aτ

)

⎤
⎥⎦,

ξ = (ε − 2)τ − 2ε√
c
tanh−1

[
b + ε

√
Δ

2
√
ac

tanh
(√

a

2
τ

)]
.

(3.9)

(iii) If a > 0 and Δ < 0, then (1.1) has one couple of soliton-like solutions as follows:

u = v

[
1 +

2a csch
(√

aτ
)

ε
√−Δ − b csch(√aτ)

]
,

ξ = (ε − 2)τ − 2ε√
c
tanh−1

[
b tanh

((√
a/2

)
τ
)
+ ε

√−Δ
2
√
ac

]
,

ρ = v

⎡
⎢⎣1 +

2(ε − 2)
(
ε
√−Δ − b csch(√aτ)

)
+ 2aε csch

(√
aτ

)

(2 − ε)
(
ε
√−Δ − b csch(√aτ)

)
− 2aε csch

(√
aτ

)

⎤
⎥⎦,

ξ = (ε − 2)τ − 2ε√
c
tanh−1

[
b tanh

((√
a/2

)
τ
)
+ ε

√−Δ
2
√
ac

]
.

(3.10)

(iv) If a > 0 and c /= 0 (i.e., ε /= 0), then (1.1) has one couple of soliton-like solutions as
follows:

u = v

[
1 − a sech2((√a/2)τ)

b + 2ε
√
ac tanh

((√
a/2

)
τ
)
]
,

ξ = (ε − 2)τ − ε

ε
√
c
ln
∣∣∣∣b + 2ε

√
ac tanh

(√
a

2
τ

)∣∣∣∣,

ρ = v

[
1 +

2(ε − 2)
[
b + 2ε

√
ac tanh

((√
a/2

)
τ
)] − aε sech2((√a/2)τ)

(2 − ε)[b + 2ε
√
ac tanh

((√
a/2

)
τ
)]

+ aε sech2((√a/2)τ)
]
,

ξ = (ε − 2)τ − ε

ε
√
c
ln
∣∣∣∣b + 2ε

√
ac tanh

(√
a

2
τ

)∣∣∣∣.

(3.11)
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(v) If a > 0 and Δ = 0 (i.e. κ = (v/ε)[(4 − 4v + 2vε − 4ε) ± 2
√
v(v − 1)(ε − 2)2 − 4σ]),

then (1.1) has one couple of kink and antikink wave solutions as follows:

u = v
[
1 − a

b

(
1 + ε tanh

(√
a

2
τ

))]
,

ξ = (ε − 2)τ − ε
[
a

b
τ +

2ε
√
a

b
ln
∣∣∣∣cosh

(√
a

2
τ

)∣∣∣∣
]
,

ρ = v

[
1 +

2b(ε − 2) − aε[1 + ε tanh((√a/2)τ)]

b(2 − ε) + aε[1 + ε tanh((√a/2)τ)]
]
,

ξ = (ε − 2)τ − ε
[
a

b
τ +

2ε
√
a

b
ln
∣∣∣∣cosh

(√
a

2
τ

)∣∣∣∣
]
,

u = v
[
1 − a

b

(
1 + ε coth

(√
a

2
τ

))]
,

ξ = (ε − 2)τ − ε
[
a

b
τ +

2ε
√
a

b
ln
∣∣∣∣sinh

(√
a

2
τ

)∣∣∣∣
]
,

ρ = v

[
1 +

2b(ε − 2) − aε[1 + ε coth((√a/2)τ)]

b(2 − ε) + aε[1 + ε coth((√a/2)τ)]
]
,

ξ = (ε − 2)τ − ε
[
a

b
τ +

2ε
√
a

b
ln
∣∣∣∣sinh

(√
a

2
τ

)∣∣∣∣
]
.

(3.12)

(vi) If a > 0 and b = 0 (i.e. κ = 4v(1/ε − 1)), then (1.1) has one couple of soliton-like
solutions as follows:

u = v

[
1 −

√
a

c
csch

(
ε
√
aτ

)]
, ξ = (ε − 2)τ − ε

ε
√
c
ln
[
tanh

(
1
2
ε
√
aτ

)]
,

ρ = v

[
1 +

2(ε − 2)
√
c − ε√a csch(ε√aτ)

(2 − ε)√c + ε√a csch(ε√aτ)
]
, ξ = (ε − 2)τ − ε

ε
√
c
ln
[
tanh

(
1
2
ε
√
aτ

)]
.

(3.13)

In order to show the dynamic properties of above soliton-like solutions and kink and antikink
wave solutions intuitively, as examples, we plot their graphs of some solutions, see Figures 1,
2, 3, and 4. Figures 1(a)–1(h) show the profiles of multiwaveform to solution the first solution
of (3.6) for fixed parameters ε = 1, σ = −1, κ = 4, v = 4, δ = 5 and different ε-values.
Figures 2(a)–2(d) show the profiles of multiwaveform to solution (3.7) for fixed parameters
ε = 1, σ = −1, κ = 4, v = 3, δ = 5 and different ε-values. Figures 3(a)–3(d) show the
profiles of multiwaveform to solution (3.9) for fixed parameters ε = −1, σ = −1, κ = −2, v =
−4, δ = 3.5 and different ε-values. Figures 4(a)-4(b) show the profiles of kink wave solution
(the first formula of (3.12)) for fixed parameters ε = 1, σ = −1, v = 0.4, δ = 3.5 and different
(ε, κ)-values.
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Figure 1: Continued.
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3.88

3.9

3.92
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u

(g) Loop soliton of thin waveform
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u

(h) Loop soliton of oblique waveform

Figure 1: The profiles of multiwaveform of (3.6) for the given parameters and different ε-values: (a) ε = 1.2;
(b) ε = 1.26; (c) ε = 1.4; (d) ε = 1.99; (e) ε = 2; (f) ε = 2.2; (g) ε = 3; (h) ε = 5.

We observe that some profiles of above soliton-like solutions are very much sensitive
to one of parameters, that is, their profiles are transformable (see Figures 1–3). But the others
are not, their waveforms do not vary no matter how the parameters vary (see Figure 4).
Some phenomena are very similar to those in [41, 42]. In [41], the waveforms of soliton-like
solution of the generalized KdV equation vary with the changes of parameter and depend on
the velocity c extremely. Similarly, in [42], the properties of some traveling wave solutions of
the generalized KdV-Burges equation depend on the dissipation coefficient α; if dissipation
coefficient α ≥ λ1, it appears as a monotonically kink profile solitary wave; if 0 < α ≤ λ1, it
appears as a damped oscillatory wave.

From Figures 1(a)–1(h), it is easy to know that the profiles of solution (3.6) vary
gradually, its properties depend on the parameter ε. When parametric values of ε increase
from 1.2 to 5, the solution (3.6) has eight kinds of waveforms: Figure 1(a) shows a shape of
antikink wave when ε = 1.2; Figure 1(b) shows a shape of transmutative antikink wave when
ε = 1.6; Figure 1(c) shows a shape of thin and dark solitary wave when ε = 1.4; Figure 1(d)
shows a shape of fat and dark solitary wave when ε = 1.99; Figure 1(e) shows a shape of
compacton wave when ε = 2; Figure 1(f) shows a shape of fat loop soliton when ε = 2.2;
the Figure 1(g) shows a shape of thin loop soliton when ε = 3; Figure 1(h) shows a shape of
oblique loop soliton when ε = 5.

Similarly, from Figures 2(a)–2(d), it is also easy to know that the profiles of solution
(3.7) are transformable, but their changes are not gradual, it depends on the parameter
ε extremely. When parametric values of ε increase from 1.2 to 2.4, the solution (3.7) has
four kinds of waveforms: Figure 2(a) shows a shape of smooth kink wave when ε = 1.2;
Figure 2(b) shows a shape of fat and bright solitary wave when ε = 1.20000001; Figure 2(c)
shows a shape of thin and bright solitary wave when ε = 1.22; Figure 2(d) shows a shape
of singular wave of cracked loop soliton when ε = 2.4. Especially, the changes of waveforms
from Figure 2(a) to Figure 2(b) and from Figure 2(c) to Figure 2(d) happened abruptly.
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Figure 2: The profiles of multiwaveform of (3.7) for the given parameters and different ε-values: (a) ε = 1.2;
(b) ε = 1.20000001; (c) ε = 1.22; (d) ε = 2.4.

As in Figure 1, the profiles of the first solution of (3.9) in Figure 3 vary gradually. When
parametric values of ε increase from 1.8 to 2.8, the waveform becomes a bright compacton
from a shape of bright solitary wave, then becomes a shape of fat loop soliton and a shape of
thin loop soliton at last.

Different from the properties of solutions (3.6), (3.7) and (3.9), the property of the first
solution of (3.12) is stable. The profile of the first solution of (3.12) is not transformable no
matter how the parameters vary. Both Figures 4(a) and 4(b) show a shape of smooth kink
wave.
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ε-values: (a) ε = 1.8; (b) ε = 2; (c) ε = 2.2; (d) ε = 2.8.

3.2. The Traveling Wave Solutions Under Case 2

Under the parametric conditions v = εκ/4(1 − ε), h = 12σ(ε − 2)/ε2δ2 and ε /= 0 or 1, (2.9)
becomes

y = ±

√
Pφ4 +Qφ2 + R

ε − 2 + εφ
, (3.14)
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where P = 3ε2/δ2 > 0, Q = (−3/δ2)[4(σ+1)+ε(ε−4)], R = 48σA(ε−2−A)/ε2δ2. Substituting
(3.14) into the first expression in (2.8) yields

dφ

dτ
= ±

√
Pφ4 +Qφ2 + R. (3.15)

We know that the case σ = −1 corresponds to the situation in which the gravity acceleration
points upwards. As an example, in this subsection, we only discuss the case σ = −1. The
case σ = 1 can be similarly discussed, but we omit them here. Especially, when σ = −1,
the above values of P, Q,R can be reduced to P = 3ε2/δ2 > 0, Q = −3ε(ε − 4)/δ2, R =
48A(A + 2 − ε)/ε2δ2.

(i) If A = (−1 + ε/2) ±
√
(1 − ε)(4 + ε2)/2, m =

√−ε/2, δ = ±2√−3ε, −4 < ε < 0, then
the P = m2, Q = −(1 + m2), R = 1. Under these parametric conditions, (3.15) has a Jacobi
elliptic function solution as follows:

φ = sn(τ,m) (3.16)

or

φ = cd(τ,m), (3.17)

wherem =
√−ε/2 is the model of Jacobi elliptic function and 0 < m < 1.
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Substituting (3.16) and (3.17) into (2.7), respectively, we obtain

ξ = (ε − 2)τ − 2ε√−ε cosh
−1
[
2dn

(
τ,
√−ε/2)√
4 + ε

]
, (3.18)

ξ = (ε − 2)τ +
2ε√−ε ln

[
1 +

(√−ε/2)sn(τ,√−ε/2)

dn
(
τ,
√−ε/2)

]
. (3.19)

Substituting (3.16) into (2.2) and (2.4), using (3.18) and the transformation ξ = x − vt =
x − (εκ/4(1 − ε))t, we obtain a couple of periodic solutions of (1.1) as follows:

u =
εκ

4(1 − ε)
[
1 + sn

(
τ,
√−ε/2)],

x = (ε − 2)τ − 2ε√−ε cosh
−1
[
2dn

(
τ,
√−ε/2)√
4 + ε

]
+

εκ

4(1 − ε) t,

ρ =
εκ

4(1 − ε)

[
1 +

2A + εsn
(
τ,
√−ε/2)

(ε − 2) − εsn(τ,√−ε/2)
]
,

x = (ε − 2)τ − 2ε√−ε cosh
−1
[
2dn

(
τ,
√−ε/2)√
4 + ε

]
+

εκ

4(1 − ε) t.

(3.20)

Substituting (3.17) into (2.2) and (2.4), using (3.19) and the transformation ξ = x − vt =
x − (εκ/4(1 − ε))t, we also obtain a couple of periodic solutions of (1.1) as follows:

u =
εκ

4(1 − ε) [1 + cd(τ,m)],

x = (ε − 2)τ +
ε

m
ln
[
1 +m sn(τ,m)

dn(τ,m)

]
+

εκ

4(1 − ε) t,

ρ =
εκ

4(1 − ε)
[
1 +

2A + εcd(τ,m)
(ε − 2) − εcd(τ,m)

]
,

x = (ε − 2)τ +
ε

m
ln
[
1 +m sn(τ,m)

dn(τ,m)

]
+

εκ

4(1 − ε) t.

(3.21)

(ii) IfA = −m2−2m±
√
m6 + 4m4 + 4m2 + 16/m3, 0 < m < 1, δ = ± 4

√
3/m, ε = − 4/m2,

then the P = 1, Q = −(1 +m2), R = m2. In the case of these parametric conditions, (3.15) has
a Jacobi elliptic function solution as follows:

φ = ns(τ,m) or φ = dc(τ,m). (3.22)
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As in the first case (i) using the same method, we obtain a couple of periodic solutions
of (1.1) as follows:

u = − κ

m2 + 4
[1 + ns(τ,m)],

x =
(
− 4
m2

− 2
)
τ − 4

m2
ln
[

sn(τ,m)
cn(τ,m) + dn(τ,m)

]
− κ

m2 + 4
t,

(3.23)

ρ = − κ

m2 + 4

[
1 +

2m2A − 4ns(τ,m)
−(4 + 2m2) + 4ns(τ,m)

]
,

x =
(
− 4
m2

− 2
)
τ − 4

m2
ln
[

sn(τ,m)
cn(τ,m) + dn(τ,m)

]
− κ

m2 + 4
t

(3.24)

or

u = − κ

m2 + 4
[1 + dc(τ,m)],

x =
(
− 4
m2

− 2
)
τ − 4

m2
ln
[
1 + sn(τ,m)
cn(τ,m)

]
− κ

m2 + 4
t,

ρ = − κ

m2 + 4

[
1 +

2m2A − 4dc(τ,m)
−(4 + 2m2) + 4dc(τ,m)

]
,

x =
(
− 4
m2

− 2
)
τ − 4

m2
ln
[
1 + sn(τ,m)
cn(τ,m)

]
− κ

m2 + 4
t.

(3.25)

Especially, when m → 1 (i.e., A = 2 or − 8, δ = ± 4
√
2, ε = − 4, v = −κ/5), ns(τ,m) →

coth(τ), sn(τ,m) → tanh(τ), cn(τ,m) → sech(τ), dn(τ,m) → sech(τ). From (3.23) and
(3.24), we obtain a couple of kink-like solutions of (1.1) as follows:

u = −κ
5
[1 + coth(τ)], x = −6τ − 4 ln

[
1
2
sinh(τ)

]
− κ

5
t,

ρ = −κ
5

[
1 +

A − 2 coth(τ)
−3 + 2 coth(τ)

]
, x = −6τ − 4 ln

[
1
2
sinh(τ)

]
− κ

5
t.

(3.26)

(iii) IfA = (ε/2−1)±
√
(1 − ε)(ε2 + 4)/2, m = 2

√
1/(ε + 4), δ = ±

√
3ε2 + 12ε, 0 < ε ≤ 1,

then the P = 1−m2, Q = 2m2 − 1, R = −m2. In the case of these parametric conditions, (3.15)
has a Jacobi elliptic function solution as follows:

φ = nc(τ,m). (3.27)
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As in the first case (i), similarly, we obtain a couple of periodic solutions of (1.1) as follows:

u =
εκ

4(1 − ε)[1 + nc(τ,m)],

x = (ε − 2)τ +
ε√

1 −m2
ln

[√
1 −m2 sn(τ,m) + dn(τ,m)

cn(τ,m)

]
+

εκ

4(1 − ε) t,

ρ =
εκ

4(1 − ε)
[
1 +

2A + ε nc(τ,m)
(ε − 2) − ε nc(τ,m)

]
,

x = (ε − 2)τ +
ε√

1 −m2
ln

[√
1 −m2 sn(τ,m) + dn(τ,m)

cn(τ,m)

]
+

εκ

4(1 − ε) t,

(3.28)

wherem = 2
√
1/(ε + 4).

(iv) If A = (ε/2 − 1) ±
√
2(4 − ε2)(ε2 − 2ε + 2)/4, m =

√
(3ε − 4)/(2ε − 4), δ =

±
√
−6ε2 + 12ε, 0 < ε < 1 and 1 < ε < 4/3, then the P = 1 −m2, Q = 2 −m2, R = 1. In the case

of these parametric conditions, (3.15) has a Jacobi elliptic function solution as follows:

φ = sc(τ,m). (3.29)

Similarly, we obtain a couple of periodic solutions of (1.1) as follows:

u =
εκ

4(1 − ε)[1 + sc(τ,m)],

x = (ε − 2)τ +
ε

2
√
1 −m2

ln

[
dn(τ,m) +

√
1 −m2

dn(τ,m) −
√
1 −m2

]
+

εκ

4(1 − ε) t,

ρ =
εκ

4(1 − ε)
[
1 +

2A + ε sc(τ,m)
(ε − 2) − ε sc(τ,m)

]
,

x = (ε − 2)τ +
ε

2
√
1 −m2

ln

[
dn(τ,m) +

√
1 −m2

dn(τ,m) −
√
1 −m2

]
+

εκ

4(1 − ε) t,

(3.30)

wherem =
√
(3ε − 4)/(2ε − 4).

(v) If A = (−m4 + 4m2 − 3 ±
√
m8 − 8m6 + 22m4 − 40m2 + 25)/(m2 − 3)2, 0 < m < 1, δ =

± 4
√
3/(m2 − 3), ε = 4/(3 −m2), then the P = 1, Q = 2 −m2, R = 1 −m2. In the case of these

parametric conditions, (3.15) has a Jacobi elliptic function solution as follows:

φ = cs(τ,m). (3.31)
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As in the first case (i) using the same method, we obtain a couple of periodic solutions
of (1.1) as follows:

u = − κ

1 +m2 [1 + cs(τ,m)],

x =
(

4
3 −m2

− 2
)
τ +

4
3 −m2

ln
[
1 − dn(τ,m)
sn(τ,m)

]
− κ

1 +m2
t,

ρ = − κ

1 +m2

[
1 +

2
(
3 −m2)A + 4cs(τ,m)

4 − 2(3 −m2) − 4cs(τ,m)

]
,

x =
(

4
3 −m2

− 2
)
τ +

4
3 −m2

ln
[
1 − dn(τ,m)
sn(τ,m)

]
− κ

1 +m2
t.

(3.32)

In order to show the dynamic properties of above periodic solutions intuitively, as
examples, we plot their graphs of the solutions (3.20), (3.23) and (3.24), see Figures 5 and 6.

Figures 5(a) and 5(b) show two shapes of smooth and continuous periodic waves, all
of them are nonsingular type. Figure 6(a) shows a shape of periodic kink wave. Figure 6(b)
shows a shape of singular periodic wave. Both Figures 6(a) and 6(b) show two discontinuous
periodic waves, all of them are singular type.

From the above illustrations, we find that the waveforms of some solutions partly
depend onwave parameters. Indeed, in 2006, Vakhnenko and Parkes’s work [43] successfully
explained similar phenomena. In [43], the graphical interpretation of the solution for gDPE
is presented. In this analysis, the 3D-spiral (whether one loop from a spiral or a half loop of a
spiral) has the different projections that is the essence of the possible solutions. Of caurse, this
approach also can be employed to the 2-component Camassa-Holm shallow water system
(1.1). By using the Vakhnenko and Parkes’s theory, the phenomena which appeared in this
work are easily understood, so we omit this analysis at here. However, it is necessary to
say something about the cracked loop soliton (Figure 2(d)) and the singular periodic wave
(Figure 6(b)), what are the 3D-curves with projections associated with two peculiar solutions
(3.7) and (3.24) which are shown in Figure 2(d) and Figure 6(b)? In order to answer this
question, by using the Vakhnenko and Parkes’s approach, as an example we give the 3D-
curves of solution (3.24) and their projection curve in the xoρ-plane, which are shown in
Figure 7. For convenience to distinguish them, we colour the 3D-curves red and colour their
projection curve green. From Figure 7, we can see that the 3D-curves are not intersected, but
their projection curve is intersected in xoρ-plane.

4. Conclusion

In this work, by using the integral bifurcation method together with a translation-dilation
transformation, we have obtained some new traveling wave solutions of nonsingular type
and singular type of 2-component Camassa-Holm equation. These new solutions include
soliton solutions, kink wave solutions, loop soliton solutions, compacton solutions, smooth
periodic wave solutions, periodic kink wave solution, singular wave solution, and singular
periodic wave solution. By investigating these new exact solutions of parametric type, we
found some new traveling wave phenomena, that is, the waveforms of some solutions partly
depend on wave parameters. For example, the waveforms of solutions (3.6), (3.7), and (3.9)
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Figure 6: The profiles of noncontinuous periodic waves of solutions (3.23) and (3.24) for the given
parameters: (a) κ = −4,m = 0.6, t = 1; (b) κ = −2,m = 0.6, t = 1.

vary with the changes of parameter. These are three peculiar solutions. The solution (3.6) has
five kinds of waveforms, which contain antikink wave, transmutative antikink wave, dark
soliton, compacton, and loop soliton according as the parameter ε varies. The solution (3.7)
has three kinds of waveforms, which contain kink wave, bright soliton, and singular wave
(cracked loop soliton) according as the parameter ε varies. The solution (3.9) also has three
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kinds of waveforms, which contain bright soliton, compacton, and loop soliton according as
the parameter ε varies. These phenomena show that the dynamic behavior of these waves
partly depends on the relation of the amplitude of wave and the level of water.
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