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The linear canonical transform is shown to be one of the most powerful tools for nonstationary
signal processing. Based on the properties of the linear canonical transform and the classical
Wigner-Ville transform, this paper investigates theWigner-Ville distribution in the linear canonical
transform domain. Firstly, unlike the classical Wigner-Ville transform, a new definition of Wigner-
Ville distribution associated with the linear canonical transform is given. Then, the main properties
of the newly defined Wigner-Ville transform are investigated in detail. Finally, the applications of
the newly defined Wigner-Ville transform in the linear-frequency-modulated signal detection are
proposed, and the simulation results are also given to verify the derived theory.

1. Introduction

With the development of the modern signal processing technology for the nonstationary
signal processing, a series of novel signal analysis theories and processing tools have been
put forward to meet the requirements of modern signal processing, for example, the short-
time Fourier transform [1], the wavelet transform (WT) [2], the ambiguity function (AF)
[3], the Wigner-Ville distribution (WVD) [4], the the fractional Fourier transform (FRFT),
and the linear canonical transform (LCT) [5–7]. Recently, more and more results [8, 9] show
that the LCT is one of the most powerful signal processing tools; it receives much interests in
signal processing community and has been applied inmany fields, such as the time-frequency
analysis [10], the filter design [11], the pattern recognition [6], encryption, andwatermarking
[12]. For more results associated with the LCT, one can refer to [5–7].

The linear-frequency-modulated (LFM) signal is one of the most important nonsta-
tionary signals, which is widely used in communications, radar, and sonar system [13–17].
The detection and parameter estimation of LFM signal are important in signal processing
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community; many methods have been given, such as iterative algorithm [13, 14], the Radon-
ambiguity transform [15], the chirp-Fourier transform method [16], and the Wigner-Hough
transform [17]. Among these methods, the Wigner-Ville distribution is shown to be an
important method in LFM signal detection and parameter estimation; it is also proved to be
one of the classical time-frequency representations and has been shown to play an important
role in nonstationary signal processing [18, 19]. Based on the properties of the LCT, the FRFT,
and the classical WVD, Pei and Ding [10] firstly investigate theWVD associated with the LCT
and discuss the relations among the common fractional and canonical operators. Unlike the
definition ofWVD associated with the LCT in [10], we propose a new kind ofWVD definition
associated with the LCT in this paper; the main properties and the application of the newly
defined WVD in the LFM signal detection are also investigated.

The paper is organized as follows: Section 2 reviews the preliminaries about the LCT,
the classical Wigner-Ville, distributions and the relations between them. The new definition
of the WVD associated with the LCT is proposed in Section 3; its main properties are
also investigated in this section. The applications of the newly defined WVD in the LFM
signal detection are proposed in Section 4; the simulation results are also given to show the
correctness and effectiveness of the proposed techniques. Section 5 concludes the paper.

2. Preliminary

2.1. The Linear Canonical Transform (LCT)

The LCT is the name of a parameterized continuum of transformswhich include, as particular
cases, most of the integral transforms, such as the Fourier transform, the fractional Fourier
transform, and the scaling operator. The LCT of a signal f(t) with parameter A is defined as
follows [7]:

FA(u) = LA

[
f(t)

]
(u) =

⎧⎪⎪⎨⎪⎪⎩
∫∞

−∞
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√
1

j2πb
e(j/2)((a/b)t
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where A =
(
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)
is the parameter matrix of LCT satisfying ad − bc = 1, that is, det(A) = 1.
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)
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(2.2)

From the definition of LCT, we can see that, when b = 0, the LCT of a signal is
essentially a chirp multiplication and it is of no particular interest to our object. Therefore,
without loss of generality, we set b > 0 in the following sections of the paper.

It is shown in [5–7] that the FT, FRFT, chirp, and scaling operations are all the special
cases of the LCT. Therefore, the LCT can be used to solve some problems that cannot be solved
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well by these operations [20]. The well-known theories and concepts in the classical Fourier
transform domain are generalized to the LCT domain by different researchers. The uniform
and nonuniform sampling theories are well studied in the LCT domain and showed that we
can obtain the better results compared to the classical ones in the Fourier domain [8, 9, 21–
23]. The other concepts, for example, the WVD [10], the convolution and product theories
[24, 25], the uncertainty principle [26], the spectral analysis [27], and the eigenfunctions [28],
are also proposed and investigated in the LCT domain. The discrete methods and the fast
computation of the LCT are investigated in detail in [29–31].

2.2. The Wigner-Ville Distribution (WVD)

The instantaneous autocorrelation function of a signal f(t) is defined as [1]

Rf(t, τ) = f
(
t +

τ

2

)
f∗

(
t − τ

2

)
, (2.3)

and the classical WVD of f(t) is defined as the FT of Rf(t, τ) for τ

W(t,w) =
∫+∞

−∞
Rf(t, τ)e−jwτdτ. (2.4)

The WVD is one of the most powerful time-frequency analysis tools and has a series
of good properties, the main properties of the WVD are listed as follows.

(1) Conjugation symmetry property:

W(t,w) = W∗(t,w). (2.5)

(2) Time marginal property:

1
2π

∫+∞

−∞
W(t,w)dw =

∣∣f(t)∣∣2. (2.6)

(3) Frequency marginal property:

∫+∞
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(4) Energy distribution property:
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2.3. The Previous Results about WVD Associated with LCT

With the developments of the FRFT and the LCT, Almeida in [32] and Lohmann in [33]
investigate the relationship between the WVD and the FRFT; they show that the WVD of the
FRFTed signal can be seen as a rotation of the classical WVD in the time-frequency plane.
Along this direction, Pei and Ding discuss the relationship between the classical WVD and
the WVD associated with the LCT [10]. In their definition, suppose the LCT of a signal f(t)
with parameterA is denoted as FA(u) = LA[(f(t)](u); then theWVD associated with the LCT
is defined as

WFA(u, v) =
∫+∞

−∞
FA

(
u +

τ

2

)
F∗
A

(
u − τ

2

)
e−jvτdτ. (2.9)

It is shown in [10, 32, 33] that this definition of the WVD associated with the LCT can
be seen as the rotation or affine transform of the LCTed signal in the time-frequency plane.
If the classical WVD of a signal f(t) is denotes as Wf(t,w) and the newly defined WVD
associated in (2.9) is denotes as WFA(u, v), we have the following result [10]:

Wf(t,w) = WFA(u, v), (2.10)

where

(
u
v

)
=
(
a b
c d

)(
t
w

)
. (2.11)

Unlike the WVD definition in (2.9) associated with the LCT, we propose a new kind
of definition for WVD in the LCT domain and the potential applications in the LFM signal
detection are also proposed in the following sections.

3. The New Definition and Properties of WVD Associated with LCT

3.1. The New Definition of WVD

Based on the properties of the LCT and the form of the classical WVD definition associated
with the Fourier transform, we give a new definition of WVD by the LCT of instantaneous
autocorrelation function Rf(t, τ). In other words, we take place of the kernel of FT with the
kernel of LCT to get a new kind of WVD associated with the LCT as follows.

Definition 3.1. Suppose the kernel of the LCT with parameter A is KA(t, u); then the WVD of
a signal f(t) associated with the LCT is defined as

W
f

A(t, u) =
∫+∞

−∞
Rf(t, τ)KA(u, τ)dτ (3.1)

with KA(t, u) =
√
1/j2πbej(d/2b)u

2
ej(a/2b)τ

2−j(uτ/b) and Rf(t, τ) = f(t + τ/2)f∗(t − τ/2). The
parameters a, b, c, d are the real numbers satisfying ad − bc = 1.
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In order to make different from the existing results about the WVD, we denote the
WVD associated with the LCT for parameterA = (a, b; c, d) byW

f

A(t, u) and simplified as the
WDL of f(t).

The LCT of a signal f(t) can be looked as the affine transform of the signal in the
time-frequency plane; so the WDL of a signal can be interpreted as the affine transform of
the instantaneous autocorrelation function Rf(t, τ) of this signal in the time-frequency plane.
Some of the important properties are investigated in the following subsection.

3.2. The Properties

Suppose the WDL of a signal f(t) is denoted as W
f

A(t, u), then the following important
properties of WDL can be obtained.

(1) Conjugation symmetry property: the WDL of f∗(t) is

W
f∗
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]∗

(3.2)

and the WDL of f(−t) is Wf

A(−t, u).
(2) Shifting property: if we remark f ′(t) = f(t − t0), then
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(3) Limited support: if f(t) = 0, |t| > t0, then W
f

A(t, u) = 0, |t| > t0.

(4) Inverse property: the signal f(t) can be expressed by the WDL of f(t) as:
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Proof. From the definition of WDL for a signal f(t), we know
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By the inverse transform of the LCT, we obtain the instantaneous autocorrelation function
Rf(t, τ) as follows:
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Letting τ/2 = t, (3.7)will reduce to
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Proof. From the definition of the WDL, we obtain

∫∫+∞

−∞
W

f

A(t, u)
[
W

g

A(t, u)
]∗
dt, du

=
1

2π |b|
∫∫∫+∞

−∞
f
(
t +

τ

2

)
f∗

(
t − τ

2

)
e−juτ/b+jaτ

2/2bdτ

×
∫+∞

−∞
g∗
(
t +

τ ′

2

)
g

(
t − τ ′

2

)
e(juτ

′/b)−(jaτ ′2/2b)dτ ′dtdu

=
1

2π |b|
∫∫+∞

−∞
f
(
t +

τ

2

)
f∗

(
t − τ

2

)
ejaτ

2/2bdτ

×
∫+∞

−∞
g∗
(
t +

τ ′

2

)
g

(
t − τ ′

2

)
e−jaτ

′2/2bdτ ′dt
∫+∞

−∞
eju(τ

′−τ)/bdu

=
∫∫+∞

−∞
f
(
t +

τ

2

)
f∗

(
t − τ

2

)
ejaτ

2/2bdτ

×
∫+∞

−∞
g∗
(
t +

τ ′

2

)
g

(
t − τ ′

2

)
e−jaτ

′2/2bdτ ′ δ
(
τ − τ ′

)
dt

=
∫+∞

−∞

[∫+∞

−∞
f
(
t +

τ

2

)
f∗

(
t − τ

2

)
g∗
(
t +

τ

2

)
g
(
t − τ

2

)
dt

]
dτ.

(3.11)

Let μ = t − τ/2; then the above equation reduces to the final result:
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(6) The relationship between the classical WVD and WDL from the definition of LCT,
it is easy to verify that when the parameter A reduces to A = (0, 1;−1, 0), the WDL reduces
to the classical WVD. In this sense, the WDL can be seen as the generalization of the classical
WVD to the LCT domain:

W
f

A(t, u) =
√
−jW(t, u). (3.13)

4. Applications of the WDL

The newly defined WDL is applied in the LFM signal detection in this section, the one-
and two- component LFM signals are analyzed with the WDL in the LCT domain, and the
simulation results are also proposed to verify the derived results.

4.1. One-Component LFM

If the LFM signal is modeled as f(t) = ej(w0t+mt2/2); w0, m represent the initial frequency and
frequency rate of f(t), respectively. From the definition of the WDL, the WDL of f(t) is
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(4.1)

We can see from this equation that if we choose the especial parameter, theWDL of f(t)
will produce an impulse in (t, u) plane. From this fact, we propose the following algorithm
for the detection and estimation of the of LFM signal by WDL.

Step 1. Compute the WDL of a signal.

Step 2. Search for the peak values in the time-frequency plane, then estimate the
instantaneous frequency.

Step 3. Apply the least-squares ap proximation to the instantaneous frequency and obtain the
final estimation value.



8 Journal of Applied Mathematics

Compute WDL
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Least-squares
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Figure 1: Detection algorithm diagram of instantaneous frequency.

The diagram of the LFM signal detection can be summarized in Figure 1.

4.2. Bicomponent Signal

When the processing signal is modeled as a bicomponent finite-length signal as follows.

f(t) =

⎧⎪⎪⎨⎪⎪⎩
ej(w0t+(k0t2/2)) + ej(w1t+k1t2/2), |t| < T

2
,

0, |t| ≥ T

2
,

(4.2)

this signal can be expressed as f(t) = f1(t) + f2(t), and the WDL of f(t) can be
represented by the WDL of f1(t) and f2(t) as follows:
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]
.

(4.3)
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Figure 2: The WDL of f(t).

The first two terms represent the autoterms of the signal, whereas the rest is the cross-
term. If the parame (a, b, c, d) are chosen to be special numbers, the graph of WDL for signal
f(t)will be composed of the WDL of f1(t) and f2(t), respectively.

4.3. Simulation Results

4.3.1. The WDL of One-Component LFM

The simulations are performed to verify the derived results; a finite-length LFM signal as
follows is chosen:

f(t) = ej(w0t+m0t
2/2), |t| < T

2
, (4.4)

and T = 40, w0 = 10, m0 = 0.8.
The magnitude of |Wf

A(t, u)| is plotted in Figure 2, and the projection of Wf

A(t, u) onto
time-frequency plane is plotted in Figure 3.

We can see from Figures 2 and 3 that the WDL of f(t) has the energy accumulation
property. Energy is accumulated in a straight line of the plane (t, u), which is the same as
discussed before.

4.3.2. The Parameter Estimation of One LFM

Suppose the signal f(t) is added with the white Gaussian noise; then it can be modeled as

f(t) = ej(w0t+m0t
2/2) + n(t), |t| < T

2
. (4.5)
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Figure 4: The WDL of f(t) with SNR = 5dB.

the initial parameters are set as w0 = 10, m0 = 0.8, and the length of signal T = 40. The
magnitude of theWDL of f(t) and the contour picture of the above signal is plotted in Figures
4 and 5, respectively.

Applying the parameter estimation algorithm as shown in Figure 1, search for the
peak value in the time-frequency plane of WDL, we can obtain the instantaneous frequency
as shown in Figure 6. Applying least-squares approximation to the instantaneous frequency
and obain the ultimate instantaneous frequency estimation value m̂0 = 0.808, ŵ0 = 9.8918.

4.3.3. Comparison with the Classical WVD

In order to compare the WVD with the WDL, we investigate the performance of peak value
estimating method of them for the signal f(t) added with noise. The contour picture of WVD
and WDL of f(t)with SNR = −5dB is plotted in Figures 7 and 8, respectively.
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Figure 6: Search for the peak value in the time-frequency plane of WDL.

From Figures 7 and 8, we can obtain better results by the WDL under the low SNR
circumstance as we discussed before.

5. Conclusion

Based on the LCT and the classical WVD theory, this paper proposes a new kind of definition
of WVD associated with the LCT, namely WDL, which can be seen as the generalization
of classical WVD to the LCT domain. Its main properties are derived in detail, and the
applications of the WDL in the detection the parameters of the LFM signals are investigated.
The simulations are also performed to verify the derived results. The future works will be the



12 Journal of Applied Mathematics

Time delay

Fr
eq

ue
nc

y 
sh

if
t

Contour picture

0 10 20 30 40
0

5

10

15

20

25

30

−10−20−30−40

Figure 7: The contour picture of WVD of f(t)SNR = −5dB.

Time delay

Fr
eq

ue
nc

y 
sh

if
t

Contour picture

0 10 20 30 40
0

5

10

15

20

25

30

−10−20−30−40

Figure 8: The contour picture of WDL of f(t) with SNR = −5dB.

applications of the newly defined WDL in the nonstationary signal processing and the study
of the marginal properties for Cohen’s class along this direction.
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