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Four fixed point theorems for nonlinear set-valued contractivemappings in completemetric spaces
are proved. The results presented in this paper are extensions of a few well-known fixed point
theorems. Two examples are also provided to illustrate our results.

1. Introduction and Preliminaries

The existence of fixed points for various set-valued contractive mappings had been
researched by many authors under different conditions, see, for example, [1–9] and the
references cited therein. In 1969, Nadler [7] proved a well-known fixed point theorem for
the set-valued contraction mapping (1.1) below.

Theorem 1.1 (see [7]). Let (X, d) be a complete metric space and T : X → CB(X) be a set-valued
mapping such that

H
(
Tx, Ty

) ≤ rd
(
x, y
)
, ∀x, y ∈ X, (1.1)

where r ∈ (0, 1) is a constant. Then T has a fixed point.

In 1972, Reich [8] extended Nadler’s result and established an interesting fixed point
theorem for the set-valued contraction mapping (1.2) below.

Theorem 1.2 (see [8]). Let (X, d) be a complete metric space and T : X → C(X) satisfy that

H
(
Tx, Ty

) ≤ ϕ
(
d
(
x, y
))
d
(
x, y
)
, ∀x, y ∈ X, (1.2)
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where

ϕ : (0,+∞) −→ [0, 1) with lim sup
r→ t+

ϕ(r) < 1, ∀t ∈ (0,+∞). (1.3)

Then T has a fixed point.

In [8] Reich posed the question whether Theorem 1.2 is also true for the set-valued
contractive mapping T : X → CB(X) with (1.2). The affirmative answer under the hypo-
thesis of lim supr→ t+ϕ(r) < 1, for all t ∈ [0,+∞) was given by Mizoguchi and Takahashi in
[6]. They deduced the following fixed point theorem which is a generalization of the Nadler
fixed point theorem.

Theorem 1.3 (see [6]). Let (X, d) be a complete metric space and T : X → CB(X) satisfy (1.2),
where

ϕ : (0,+∞) −→ [0, 1) with lim sup
r→ t+

ϕ(r) < 1, ∀t ∈ [0,+∞). (1.4)

Then T has a fixed point.

Remark 1.4. It is clear that the mappings T in Theorems 1.1–1.3 are continuous on X.

Remark 1.5. Each of Theorems 1.2 and 1.3 ensures that T has a fixed point a ∈ Ta ⊆ X, which
together with (1.2) implies that ϕ(0) = ϕ(d(a, a)), that is, ϕ is defined at 0. Thus the domain
of ϕ in each of (1.3) and (1.4) should be [0,+∞) but not (0,+∞).

The aim of this paper is to present four fixed point theorems for some nonlinear set-
valued contractive mappings. Our results extend, improve, and unify the corresponding
results in [6–8]. Two nontrivial examples are given to show that our results are genuine
generalizations or different from these results in [6–8].

Throughout this paper, we assume that R = (−∞,+∞), R
+ = [0,+∞), N and N0 denote

the sets of all positive integers and nonnegative integers, respectively, and

Θ = {θ : θ : R
+ −→ R

+ satisfies (a)–(d)}, (1.5)

where

(a) θ is nondecreasing on R
+;

(b) θ(t) > 0, for all t ∈ (0,+∞);

(c) θ is subadditive in (0,+∞), that is,

θ(t1 + t2) ≤ θ(t1) + θ(t2), ∀t1, t2 ∈ (0,+∞); (1.6)

(d) θ(R+) = R
+.

Clearly (a)–(d) imply that

(e) θ is strictly inverse on R
+, that is, if there exist t, s ∈ R

+ satisfying θ(t) < θ(s), then
t < s.
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Let (X, d) be a metric space, CL(X), CB(X), and C(X) denote the families of all non-
empty closed, all nonempty bounded closed, and all nonempty compact subsets of X. For
x ∈ X and A,B ∈ CL(X), put d(x,A) = inf{d(x, y) : y ∈ A} and

H(A,B) =

⎧
⎪⎨

⎪⎩

max

{

sup
x∈A

d(x, B), sup
y∈B

d
(
y,A

)
}

, if the maximum exists

+∞, otherwise.
(1.7)

Such a mapping H is called a generalized Hausdorff metric induced by d in CL(X). It is well
known that H is a metric on CB(X). Let T : X → CL(X) be a set-valued mapping, x0 ∈ X
and f : X → R

+ be defined by

f(x) = d(x, Tx), ∀x ∈ X. (1.8)

A sequence {xn}n∈N0
is said to be an orbit of T if it satisfies that {xn}n∈N0

⊂ X and xn ∈ Txn−1
for each n ∈ N0. The function f : X → R

+ is said to be T -orbitally lower semicontinuous at z ∈ X
if for each orbit {xn}n∈N0

⊂X of T with limn→∞xn = z, we have that f(z) ≤ lim infn→∞f(xn).

2. Main Results

The following lemmas play important roles in this paper.

Lemma 2.1. Let (X, d) be a metric space and B ∈ CL(X). Then for each x ∈ X and ε > 0 there exists
b ∈ B satisfying d(x, b) ≤ d(x, B) + ε.

Proof. Suppose that there exist x0 ∈ X and ε0 > 0 such that

d(x0, b) > d(x0, B) + ε0, ∀b ∈ B, (2.1)

which yields that

d(x0, B) = inf
b∈B

d(x0, b) ≥ d(x0, B) + ε0 > d(x0, B), (2.2)

which is a contradiction. This completes the proof.

Lemma 2.2. Let (X, d) be a metric space, B ∈ CL(X) and θ ∈ Θ. Then for each x ∈ X and q > 1
there exists b ∈ B such that

θ(d(x, b)) ≤ qθ(d(x, B)). (2.3)

Proof. Let x ∈ X and q > 1. Now we consider two possible cases as follows.
Case 1. Suppose that θ(d(x, B)) = 0. It follows from (b) and (d) that d(x, B) = 0. Since

B is a closed subset of X, it follows that x ∈ B. Put b = x. Clearly (2.3) holds.
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Case 2. Suppose that θ(d(x, B)) > 0. Note that (b) and (d) mean that

(
q − 1

)
θ(d(x, B)) ∈ R

+ \ {0} = θ(R+ \ {0}). (2.4)

Choose p ∈ θ−1((q − 1)θ(d(x, B))) and ε = p/2 > 0. Lemma 2.1 ensures that there exists b ∈ B
satisfying d(x, b) ≤ d(x, B) + ε, which together with (a) and (c) gives that

θ(d(x, b)) ≤ θ(d(x, B) + ε) ≤ θ(d(x, B)) + θ(ε)

≤ θ(d(x, B)) + θ
(
θ−1((q − 1

)
θ(d(x, B))

))
= qθ(d(x, B)).

(2.5)

That is, (2.3) holds. This completes the proof.

Now we prove four fixed point theorems for the nonlinear set-valued contractive
mappings (2.6), (2.25), (2.26), and (2.36) below in complete metric spaces.

Theorem 2.3. Let (X, d) be a complete metric space and T : X → CL(X) satisfy that

θ
(
d
(
y, Ty

)) ≤ ϕ
(
d
(
x, y
))
θ
(
d
(
x, y
))
, ∀(x, y) ∈ X × Tx, (2.6)

where θ ∈ Θ and

ϕ : R
+ −→ [0, 1) with lim sup

r→ t+
ϕ(r) < 1, ∀t ∈ R

+. (2.7)

Then for each x0 ∈ X, there exists an orbit {xn}n∈N0
of T and z ∈ X such that limn→∞xn = z.

Furthermore, z ∈ X is fixed point of T if and only if the function f defined by (1.8) is T orbitally lower
semicontinuous at z.

Proof. Let x0 ∈ X be any initial point and choose x1 ∈ Tx0. It follows from (2.6), (2.7) and
Lemma 2.2 that for q1 = 1/max{√ϕ(d(x0, x1)), 1/2} > 1 there exists x2 ∈ Tx1 satisfying

θ(d(x1, x2)) ≤ θ(d(x1, Tx1))

max
{√

ϕ(d(x0, x1)), 1/2
} ≤ ϕ(d(x0, x1))θ(d(x0, x1))

max
{√

ϕ(d(x0, x1)), 1/2
}

≤
√
ϕ(d(x0, x1))θ(d(x0, x1)),

(2.8)

and for q2 = 1/max{√ϕ(d(x1, x2)), 1/3} > 1 there exists x3 ∈ Tx2 satisfying

θ(d(x2, x3)) ≤ θ(d(x2, Tx2))

max
{√

ϕ(d(x1, x2)), 1/3
} ≤ ϕ(d(x1, x2))θ(d(x1, x2))

max
{√

ϕ(d(x1, x2)), 1/3
}

≤
√
ϕ(d(x1, x2))θ(d(x1, x2)).

(2.9)
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Repeating the above argument we obtain a sequence {xn}n∈N0
⊂ X such that xk ∈ Txk−1 for

1 ≤ k ≤ n and for qn = 1/max{√ϕ(d(xn−1, xn)), 1/(n + 1)} > 1, there exists xn+1 ∈ Txn

satisfying

θ(d(xn, xn+1)) ≤ θ(d(xn, Txn))

max
{√

ϕ(d(xn−1, xn)), 1/(n + 1)
}

≤ ϕ(d(xn−1, xn))θ(d(xn−1, xn))

max
{√

ϕ(d(xn−1, xn)), 1/(n + 1)
}

≤
√
ϕ(d(xn−1, xn))θ(d(xn−1, xn)), ∀n ≥ 1.

(2.10)

Suppose that there exists some n0 ∈ N0 satisfying xn0 = xn0+1 ∈ Txn0 . It follows from
(a), (b), and (2.10) that xn = xn0 for all n ≥ n0 + 1. It is clear the conclusion of Theorem 2.3
holds.

Suppose that xn+1 ∈ Txn \ {xn} for any n ∈ N0. It follows that d(xn, xn+1) > 0 for
each n ∈ N0. Note that (b), (2.7), and (2.10) give that {θ(d(xn, xn+1))}n∈N0

is a positive and
decreasing sequence. It follows from (e) that {d(xn, xn+1)}n∈N0

is decreasing. Therefore, there
exist constants p and q satisfying

lim
n→∞

θ(d(xn, xn+1)) = p ≥ 0 , lim
n→∞

d(xn, xn+1) = q ≥ 0. (2.11)

Notice that (2.7) implies that there exists a constant r satisfying

lim sup
n→∞

ϕ(d(xn, xn−1)) ≤ lim sup
t→ q+

ϕ(t) = r ∈ [0, 1). (2.12)

Taking upper limits in (2.10) and by (2.11) and (2.12) we get that

p ≤
√
lim sup

n→∞
ϕ(d(xn−1, xn))lim sup

n→∞
θ(d(xn−1, xn)) ≤

√
rp, (2.13)

which implies that p = 0.
Next we assert that q = 0. Since {d(xn, xn+1)}n∈N0

is a decreasing sequence, it follows
from (a) and (2.11) that

0 ≤ θ
(
q
)
< θ(d(xn, xn+1)) −→ p = 0 as n −→ ∞, (2.14)

that is, θ(q) = 0, which together with (b) and (d) yields that q = 0.
Put c = (1 + r)/2. It follows from (2.12) that c ∈ (r, 1) ⊂ [0, 1), which gives that c2 ∈

(r, 1). Notice that (2.11), (2.12), and q = 0 ensure that there exist δ > 0 andN ∈ N satisfying

ϕ(t) < c2, ∀t ∈ (0, δ), d(xn, xn+1) < δ, ∀n ≥ N, (2.15)
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which implies that

ϕ(d(xn, xn+1)) < c2, ∀n ≥ N. (2.16)

Note that (2.10) and (2.16) mean that

θ(d(xn, xn+1)) ≤
n−1∏

k=N

√
ϕ(d(xk, xk+1))θ(d(xN, xN+1))

≤ cn−Nθ(d(xN, xN+1)), ∀n ≥ N.

(2.17)

Given ε > 0. Since limn→∞cn−Nθ(d(xN, xN+1)) = 0, it follows from (b) that there exists N1 >
N satisfying

cn−N

1 − c
θ(d(xN, xN+1)) < θ(ε), ∀n ≥ N1, (2.18)

which together with (2.17), (a), and (c) gives that

θ(d(xn, xm)) ≤ θ

(
m−1∑

k=n

d(xk, xk+1)

)

≤
m−1∑

k=n

θ(d(xk, xk+1))

≤
m−1∑

k=n

ck−Nθ(d(xN, xN+1))

≤ cn−N

1 − c
θ(d(xN, xN+1)) < θ(ε), ∀m > n ≥ N1.

(2.19)

In view of (e) and (2.19), we deduce that d(xn, xm) < ε, for all m > n ≥ N1, which means
that {xn}n∈N0

is a Cauchy sequence. Hence there exists z ∈ X such that limn→∞xn = z by
completeness of X.

Suppose that f is T orbitally lower semicontinuous at z. Since {xn}n≥0 is an orbit of T
with limn→∞xn = z, it follows that

f(z) ≤ lim inf
n→∞

f(xn). (2.20)

Using (2.6) and (2.7), we infer that

θ(d(xn, Txn)) ≤ ϕ(d(xn−1, xn))θ(d(xn−1, xn)) < θ(d(xn−1, xn)), ∀n ∈ N, (2.21)
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which together with (e), (2.11), and q = 0 implies that

0 < d(xn, Txn) < d(xn−1, xn) −→ 0 as n −→ ∞, (2.22)

that is, limn→∞d(xn, Txn) = 0, which together with (2.20) yields that

0 ≤ d(z, Tz) = f(z) ≤ lim inf
n→∞

f(xn) = lim
n→∞

d(xn, Txn) = 0, (2.23)

which gives that d(z, Tz) = 0, that is, z ∈ Tz.
Conversely, suppose that z ∈ X is a fixed point of T . Let {yn}n∈N0

⊂ X be an arbitrarily
orbit of T with limn→∞yn = z. It is clear that

f(z) = d(z, Tz) = 0 ≤ lim inf
n→∞

f
(
yn

)
, (2.24)

which implies that f is T orbitally lower semicontinuous at z. This completes the proof.

Notice that d(y, Ty) ≤ H(Tx, Ty) for each y ∈ Tx. In light of Theorem 2.3, we have

Theorem 2.4. Let (X, d) be a complete metric space and T : X → CL(X) satisfy that

θ
(
H
(
Tx, Ty

)) ≤ ϕ
(
d
(
x, y
))
θ
(
d
(
x, y
))
, ∀(x, y) ∈ X × Tx, (2.25)

where θ ∈ Θ and ϕ satisfies (2.7). Then for each x0 ∈ X, there exists an orbit {xn}n∈N0
of T and z ∈ X

such that limn→∞xn = z. Furthermore, z ∈ X is fixed point of T if and only if the function f defined
by (1.8) is T orbitally lower semicontinuous at z.

If ϕ(d(x, y)) in (2.6) is replaced by ϕ(d(x, Tx)), one has

Theorem 2.5. Let (X, d) be a complete metric space and T : X → CL(X) satisfy that

θ
(
d
(
y, Ty

)) ≤ ϕ(d(x, Tx))θ
(
d
(
x, y
))
, ∀(x, y) ∈ X × Tx, (2.26)

where θ ∈ Θ and ϕ satisfies (2.7). Then for each x0 ∈ X, there exists an orbit {xn}n∈N0
of T and z ∈ X

such that limn→∞xn = z. Furthermore, z ∈ X is fixed point of T if and only if the function f defined
by (1.8) is T orbitally lower semicontinuous at z.
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Proof. Let x0 ∈ X be any initial point and choose x1 ∈ Tx0. It follows from (2.7), (2.26),
and Lemma 2.2 that for q = 1/max{√ϕ(d(x0, Tx0)),

√
ϕ(d(x1, Tx1)), 1/2} > 1 there exists

x2 ∈ Tx1 such that

θ(d(x1, x2)) ≤ θ(d(x1, Tx1))

max
{√

ϕ(d(x0, Tx0)),
√
ϕ(d(x1, Tx1)), 1/2

}

≤ ϕ(d(x0, Tx0))θ(d(x0, x1))

max
{√

ϕ(d(x0, Tx0)),
√
ϕ(d(x1, Tx1)), 1/2

}

≤
√
ϕ(d(x0, Tx0))θ(d(x0, x1)),

θ(d(x2, Tx2)) ≤ ϕ(d(x1, Tx1))θ(d(x1, x2))

≤ ϕ(d(x1, Tx1))θ(d(x1, Tx1))

max
{√

ϕ(d(x0, Tx0)),
√
ϕ(d(x1, Tx1)), 1/2

}

≤
√
ϕ(d(x1, Tx1))θ(d(x1, Tx1)).

(2.27)

Repeating the above argument we obtain a sequence {xn}n∈N0
⊂ X satisfying xn+1 ∈ Txn for

each n ∈ N0,

θ(d(xn, xn+1)) ≤ θ(d(xn, Txn))

max
{√

ϕ(d(xn−1, Txn−1)),
√
ϕ(d(xn, Txn)), 1/(n + 1)

}

≤ ϕ(d(xn−1, Txn−1))θ(d(xn−1, xn))

max
{√

ϕ(d(xn−1, Txn−1)),
√
ϕ(d(xn, Txn)), 1/(n + 1)

}

≤
√
ϕ(d(xn−1, Txn−1))θ(d(xn−1, xn)), ∀n ∈ N,

(2.28)

θ(d(xn+1, Txn+1)) ≤ ϕ(d(xn, Txn))θ(d(xn, xn+1))

≤ ϕ(d(xn, Txn))θ(d(xn, Txn))

max
{√

ϕ(d(xn−1, Txn−1)),
√
ϕ(d(xn, Txn)), 1/(n + 1)

}

≤
√
ϕ(d(xn, Txn))θ(d(xn, Txn)), ∀n ∈ N.

(2.29)

Suppose that xn0 ∈ Txn0 for some n0 ∈ N0. It is easy to verify that xn = xn0 for all n ≥ n0

and the conclusion of Theorem 2.5 holds.
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Suppose that xn /∈ Txn for each n ∈ N0. It follows that {d(xn, Txn)}n∈N0
and

{d(xn, xn+1)}n∈N0
are positive sequences. Combining (2.7), (2.28), (2.29), (b) and (e), we

infer that {θ(d(xn, xn+1))}n∈N0
and {θ(d(xn, Txn))}n∈N0

are both positive and decreasing, so
do {d(xn, xn+1)}n∈N0

and {d(xn, Txn)}n∈N0
. It follows that there exist constants α, β, s and t

satisfying

lim
n→∞

θ(d(xn, xn+1)) = α ≥ 0, lim
n→∞

d(xn, xn+1) = β ≥ 0,

lim
n→∞

θ(d(xn, Txn)) = s ≥ 0, lim
n→∞

d(xn, Txn) = t ≥ 0.
(2.30)

Notice that (2.7) implies that there exists a constant r such that

lim sup
n→∞

ϕ(d(xn, Txn)) ≤ lim sup
l→ t+

ϕ(l) = r ∈ [0, 1). (2.31)

Taking upper limits in (2.29) and by (2.30) and (2.31) we get that

s ≤
√
lim sup

n→∞
ϕ(d(xn, Txn))lim sup

n→∞
θ(d(xn, Txn)) ≤

√
rs, (2.32)

which implies that s = 0, which together with (2.30) and (a) ensures that

0 ≤ θ(t) < θ(d(xn, Txn)) −→ 0, n −→ ∞, (2.33)

that is, θ(t) = 0, which gives that t = 0 by (b) and (d). It follows from (2.28), (2.30), and (2.31)
that

α ≤
√
lim sup

n→∞
ϕ(d(xn, Txn))lim sup

n→∞
θ(d(xn−1, xn)) ≤

√
rα, (2.34)

which yields that α = 0. Notice that (2.30) and (a) guarantee that

0 ≤ θ
(
β
)
< θ(d(xn, xn+1)) −→ 0, n −→ ∞, (2.35)

which together with (b) and (d) yields that β = 0. The rest of the proof is similar to that of
Theorem 2.3 and is omitted. This completes the proof.

The result below follows from Theorem 2.5.

Theorem 2.6. Let (X, d) be a complete metric space and T : X → CL(X) satisfy that

θ
(
H
(
Tx, Ty

)) ≤ ϕ(d(x, Tx))θ
(
d
(
x, y
))
, ∀(x, y) ∈ X × Tx, (2.36)

where θ ∈ Θ and ϕ satisfies (2.7). Then for each x0 ∈ X, there exists an orbit {xn}n∈N0
of T and z ∈ X

such that limn→∞xn = z. Furthermore, z ∈ X is fixed point of T if and only if the function f defined
by (1.8) is T orbitally lower semicontinuous at z.
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3. Comparisons and Examples

Now we construct two examples to compare the results in Section 2 with the corresponding
results in [6–8].

Remark 3.1. Theorems 2.3 and 2.4 extend Theorems 1.1–1.3, and Theorems 2.5 and 2.6 are
different from Theorems 1.1–1.3, respectively, in the following ways:

(1) the ranges CL(X) of the nonlinear set-valued contractive mappings T in Theorems
2.3–2.6 are more general than the ranges C(X) and CB(X) of the set-valued
contraction mappings T in Theorems 1.1–1.3, respectively;

(2) the T orbit lower semicontinuity at some z ∈ X of the functions f(x) = d(x, Tx)
in Theorems 2.3 and 2.4 is weaker than the continuity of the set-valued contraction
mappings T in X in Theorems 1.1–1.3, respectively;

(3) the set-valued contraction mappings (1.1) and (1.2) are special cases of the
nonlinear set-valued contractive mapping (2.6)with θ ≡ 1 because

d
(
y, Ty

) ≤ H
(
Tx, Ty

)
, ∀(x, y) ∈ X × Tx. (3.1)

Example 3.2 below shows that Theorems 2.3 and 2.4 extend substantively Theorems
1.1–1.3, respectively.

Example 3.2. Let X = (−∞, 3/10] and d be the standard metric in X. Let θ : R
+ → R

+,
ϕ : R

+ → [0, 1) and T : X → CL(X) be defined by

θ(t) = t1/2, ϕ(t) =
2
√
6

5
, ∀t ∈ R

+, Tx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
−∞,

1
4
x

]
, ∀x ∈ (−∞, 0),

[
0, 2x2], ∀x ∈

[
0,

3
10

]
,

(3.2)

respectively. It is clear that θ ∈ Θ, ϕ satisfies (2.7) and

f(x) = d(x, Tx) =

⎧
⎪⎪⎨

⎪⎪⎩

0, ∀x ∈ (−∞, 0)

x − 2x2, ∀x ∈
[
0,

3
10

] (3.3)

is T orbitally lower semicontinuous in X. In order to prove (2.6) holds, we consider two
possible cases.

Case 1. Let x ∈ (−∞, 0) and y ∈ Tx = (−∞, (1/4)x]. It is clear that

θ
(
d
(
y, Ty

)) ≤ θ
(
H
(
Tx, Ty

))
=

1
2
θ
(
d
(
x, y
)) ≤ ϕ

(
d
(
x, y
))
θ
(
d
(
x, y
))
. (3.4)
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Case 2. Let x ∈ [0, 3/10] and y ∈ Tx = [0, 2x2]. It follows that

θ
(
d
(
y, Ty

)) ≤ θ
(
H
(
Tx, Ty

))
=
√
2
∣∣x + y

∣∣1/2θ
(
d
(
x, y
))

≤
√
2
(

3
10

+
9
50

)1/2

θ
(
d
(
x, y
))

= ϕ
(
d
(
x, y
))
θ
(
d
(
x, y
))
,

(3.5)

that is, (2.6) holds. Therefore all assumptions of Theorems 2.3 and 2.4 are satisfied. It follows
from each of Theorems 2.3 and 2.4 that T has a fixed point in X. However, we cannot invoke
any one of Theorems 1.1–1.3 to show the existence of fixed points for the mapping T in X.
Indeed, taking x0 = 3/10 and y0 = 1/5, we get that

H
(
Tx0, Ty0

)
= d

(

2
(

3
10

)2

, 2
(
1
5

)2
)

=
1
10

�
r

10
= rd

(
x0, y0

)
, (3.6)

for any r ∈ (0, 1) and

H
(
Tx0, Ty0

)
= d

(

2
(

3
10

)2

, 2
(
1
5

)2
)

=
1
10

�
1
10

ϕ

(
1
10

)
= ϕ
(
d
(
x0, y0

))
d
(
x0, y0

)
, (3.7)

for any mapping ϕ : R
+ → [0, 1) with each of (1.3) and (1.4).

Next we construct an example to explain Theorems 2.5 and 2.6.

Example 3.3. Let X = [−3/10, +∞) and d be the standard metric in X. Define θ : R
+ → R

+,
ϕ : R

+ → [0, 1) and T : X → CL(X) by

θ(t) = t1/2, ∀t ∈ R
+, ϕ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
√
2t1/2, ∀t ∈

(
0,

1
8

)
,

2
√
6

5
, ∀t ∈ {0} ∪

[
1
8
,+∞

)
,

Tx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
x

4(1 + x)
,+∞

)
, ∀x ∈ (0,+∞),

[−2x2, 0
]
, ∀x ∈

[
− 3
10

, 0
]
,

(3.8)

respectively. It is easy to see that (2.7) holds and

f(x) = d(x, Tx) =

⎧
⎪⎪⎨

⎪⎪⎩

0, ∀x ∈ (0,+∞),

−2x2 − x, ∀x ∈
[
− 3
10

, 0
] (3.9)

is T orbitally lower semicontinuous in X. In order to check (2.26), we have to consider two
cases as follows.
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Case 1. Let x ∈ (0,+∞) and y ∈ Tx = [x/4(1 + x),+∞). It is clear that

θ
(
d
(
y, Ty

))
= 0 ≤ θ

(
H
(
Tx, Ty

))
=

∣
∣
∣
∣
∣

x

4(1 + x)
− y

4
(
1 + y

)

∣
∣
∣
∣
∣

1/2

=
θ
(
d
(
x, y
))

2(1 + x)1/2
(
1 + y

)1/2 ≤ θ
(
d
(
x, y
))

2(1 + x)1/2(1 + x/4(1 + x))1/2

=
θ
(
d
(
x, y
))

(5x + 4)1/2
≤ θ
(
d
(
x, y
))

2
≤ 2

√
6

5
θ
(
d
(
x, y
))

= ϕ(0)θ
(
d
(
x, y
))

= ϕ(d(x, Tx))θ
(
d
(
x, y
))
.

(3.10)

Case 2. Let x ∈ [−3/10, 0] and y ∈ Tx = [−2x2, 0]. It follows that

θ
(
d
(
y, Ty

)) ≤ θ
(
H
(
Tx, Ty

))
=
√
2
∣∣x + y

∣∣1/2θ
(
d
(
x, y
)) ≤

√
2
∣∣∣x − 2x2

∣∣∣
1/2

θ
(
d
(
x, y
))
.

(3.11)

For x = 0, we have

√
2
∣∣∣x − 2x2

∣∣∣
1/2

θ
(
d
(
x, y
))

= 0 ≤ ϕ(d(x, Tx))θ
(
d
(
x, y
))
. (3.12)

For x ∈ [−3/10,−1/4) ∪ (−1/4, 0), we infer that

√
2
∣∣∣x − 2x2

∣∣∣
1/2

θ
(
d
(
x, y
)) ≤ 2

√
2
(
−2x2 − x

)1/2
θ
(
d
(
x, y
))

= ϕ(d(x, Tx))θ
(
d
(
x, y
))
.

(3.13)

For x = −1/4, we get that

√
2
∣
∣∣x − 2x2

∣
∣∣
1/2

θ
(
d
(
x, y
))

=
√
3
2

θ
(
d
(
x, y
)) ≤ ϕ

(
1
8

)
θ
(
d
(
x, y
))

= ϕ(d(x, Tx))θ
(
d
(
x, y
))
.

(3.14)

Hence (2.26) holds. Thus all assumptions of Theorems 2.5 and 2.6 are satisfied. It follows from
each of Theorems 2.5 and 2.6 that T has a fixed point in X.

Taking x0 = 1 and y0 = −3/10, we deduce that

H
(
Tx0, Ty0

)
= H

([
1
8
,+∞

)
,

[
− 9
50

, 0
])

= +∞ �
13r
10

= rd
(
x0, y0

)
, (3.15)

for any r ∈ (0, 1), and

H
(
Tx0, Ty0

)
= +∞ �

2
√
6

5
· 13
10

= ϕ
(
d
(
x0, y0

))
d
(
x0, y0

)
, (3.16)
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for any mapping ϕ : R
+ → [0, 1) with each of (1.3) and (1.4). That is, Theorems 1.1–1.3 are

inapplicable in proving the existence of fixed points for the nonlinear set-valued contractive
mapping T .
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