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This work numerically studies the flow pattern of a magnetic fluid filled within an annulus whose
inner cylinder is moving at a constant rotational speed, while the outer cylinder is stationary
but under the influence of a nonuniform external magnetic field. The magnetic field consists of
four basic configurations, that is, completely circular, semicircular, quarter circular, and alternately
quarter circular. The strength of the external magnetic field is characterized using a reference
Hartmann number. As the reference Hartmann number increases, the fluid elements need to
overcome greater resistance to enter the region with magnetic field. Hence, there always exists
an apparent recirculation cell within the region without externally applied magnetic field. The
strength and size of the recirculation cell depend on the reference Hartmann number, the number
and size of the discrete regionswithout externalmagnetic field. Only the shear stress on themoving
cylinder always increases in magnitude with the reference Hartmann number and the span of the
single external magnetic field region. Splitting and separating the external magnetic field may
increase the magnitude of the shear stress on the moving inner cylinder but decrease that on the
stationary outer cylinder. If the magnitude of the shear stress on the outer cylinder reduces beyond
zero, a shear stress in the opposite sense will increase in magnitude with Hartmann number.

1. Introduction

The study of magnetohydrodynamics (MHD) has recently become a topic of study which has
attracted a lot of attention. In the 1960s, Papell of NASA mixed very fine magnetite particles
below 10nm with appropriate surfactant so that the nanomagnetite could be effectively
dispersed in nonpolar solvents [1]. He then successfully produced a magnetic fluid which
had demonstrated many very distinctive physical behaviors. In general, magnetic fluid can
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be classified as either conducting or nonconducting depending on their nature of electric
conductivity. Under the influence of an external magnetic field, a conducting magnetic fluid
in motion will produce an electromotive force that causes an induced electric current to
flow. The presence of this induced electric field then in turn produces an induced magnetic
field. At the same time, the induced electric field interacts with the overall magnetic field to
produce Lorentz force that acts on the fluid elements. Since the Lorentz force acts to oppose
the mechanisms that create it, it therefore generally serves to reduce the magnitude of fluid
element velocity field.

As a matter of fact, Hartmann, way ahead of Papell’s study, had successfully
investigated the nature of magnetic Poiseuille flow based on experimental and theoretical
approaches as early as 1937 [2]. His study was later referred to as the well-known Hartmann
flow and the dimensionless parameter appeared in the problem was named after him as
the Hartmann number. This parameter basically represents the relative importance between
the magnetic and the inertial forces. In 1970, Finlayson [3] performed a theoretical study of
a magnetic fluid behavior under the influence of perpendicular uniform external magnetic
field.

Chang and Lundgren [4] have also performed a rather complete investigation on
Hartmann flow. In their paper, they pointed out that the flow at the middle between the
upper and lower surfaces tends to become flatter as Ha increases. Not only so, the overall
velocity of the fluid decreases with Ha. In 1999, Yamaguchi et al. [5] studied the instability
of magnetic fluid in a two-dimensional enclosure subjected to an external magnetic field
through experimental and numerical simulations. As of this moment, magnetic fluid is
widely employed in various engineering applications.

(a) Medical Therapy

For cancer detection, magnetic fluids are commonly used as the MRI contrast agents.
Moreover, magnetic fluid is also used in experimental cancer treatments named magnetic
hyperthermia.

(b) Seals for Electronic Devices

Magnetic fluids are used to form liquid seals surrounding the driver shafts in hard disk
drives. A small amount of oil-based magnetic fluid can be injected into the gap between
the magnet and the rotating shaft. The magnetic attraction holds the fluid in place forming a
protection that prevents dusts from entering the hard disk drive.

(c) Lubrication

Oil-based magnetic fluids are also excellent lubricants. They can be injected into the gaps
between moving mechanical parts of distinctive speeds. During operation, the leakage of the
fluid can be prevented under the influence of magnetism. This feature is highly valued in the
industry for it greatly reduces the hassle for consistent lubricant refill [6].

(d) Transportation

Magnetic fluids are now widely used in the magnetorheological damper, a kind of active
suspension system surrounded with an electromagnet. The viscosity of the magnetic fluid in
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this kind of vehicle damper can be dramatically varied to account for the driver preference or
the vehicle overall weight. More importantly, its viscosity may be dynamically regulated to
improve overall vehicle stability control because the damping factor of the active suspension
system can be adjusted once every millisecond in response to actual road conditions. As a
matter of fact, magnetorheological dampers are also used in helicopter cockpit seats as safety
devices which serve to significantly decrease the rate of permanent injury during a crash.

(e) Energy Conversion

The energy conversion device using magnetic fluid is attractive for space use or in a situation
where no maintenance is required. Yamaguchi et al. [7] have designed and constructed
a direct-heat-to-power energy conversion device that makes use of temperature-sensitive
magnetic fluid.

For a very long period of time, fluid behaviors between a pair of independently
rotating cylinders have been investigated extensively. Perhaps all studies in rotational
MHD flow trace back to the work by Taylor [8, 9] who has investigated both theoretically
and experimentally the stability of the classical Couette-Taylor flow. Shortly after Taylor’s
discovery of the onset of axisymmetric Taylor vortices, Jeffreys [10] has extended the concept
of Couette-Taylor flow and shown that the earth rotational motion has a negligible influence
on the mantle convective motion. On the other hand, Meksyn [11] has investigated a similar
problem using a different asymptotic method of integration. Later, Coles and van Atta [12–
14] disclose nonaxisymmetric spiral vortices as a result of counter-rotating cylinders. Since
then, just to name a few, many monumental studies [15–27]mostly deal with flow instability
have been reported laying a solid foundation and inspiration for numerous future research
topics and activities.

As a matter fact, Chandrasekhar [27] has recognized the need for further understand-
ing of magnetic fluid instability associated to rotating cylinders. He extended the work by
Taylor, Jeffreys, and Meksyn and considered an electrically conducting under the influence
of an axial magnetic field. There are several factors affecting the effectiveness of the magnetic
field in suppressing the onset of thermal instability. However, instability suppression due
to the presence of the magnetic field is always more pronounced for rotational motion than
for differential heating from below. While there were many research works related to a disk
configuration, Donnelly et al. [28–30], Brahme [31], Ji et al. [32, 33] have contributed to the
understanding of megnetorotational instability (MRI) in rotating fluid.

Despite the vast collection of MHD Couette flow problems, rarely found are those
not tackling instability problems. Willis and Barenghi [34] investigated the response of a
conducting liquid in a three dimensional cylindrical geometry subjected to an imposed axial
magnetic field. The patterns of a typical nonlinear steady hydromagnetic flow were shown.
Because of the magnetic field, the Taylor cells found in classical Coutte-Taylor flow are
apparently elongated in the axial direction.

Szklarski and Rüdiger [35, 36] have actually simulated a magnetorotational MHD
Taylor-Couette flow with an external helical magnetic field at small Prandtl number limits.
Through plots of stream function contour, they showed the existence of drifting vortex pairs
within an infinitely long annular space. For an enclosure with a motionless bottom endplate
and a rotating upper endplate, a traveling wave propagates in the upward axial direction
dramatically distorting the drifting vortex pairs observed in infinitely long annulus. The
formation of Ekman-Hartmann layer is observed near the endplates where a Hartmann
current exists and penetrates the bulk of the conducting fluid.
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The purpose of this paper is to numerically study the flow pattern of a magnetic
fluid filled within an annulus under the influence of different nonuniform externally applied
magnetic field configurations. Based on the flow field obtained for different magnetic field
configurations and field strengths, the shear stress along the moving cylinder is evaluated.

The description for the formulation of the magnetic fluid confined within a pair
of infinitely long cylinders is given in Section 2. The governing equations along with
the appropriate boundary conditions were made dimensionless and numerical approach
was employed to solve the equations. The flow patterns of the magnetic fluid under the
influence of the nonuniform externally applied magnetic field are investigated in Section 3.
It is shown that the flow pattern depend strongly on the Hartmann number, that is, the
strength of the external magnetic field. In particular, it is shown that the configuration of
the external magnetic field plays a very important role in local acceleration and deceleration
of the magnetic fluid. The change in shear stress due to the change in flow pattern is also
documented. Finally, some important findings are reported in Section 4.

2. Governing Equations

Current work numerically simulates the flow field of a two-dimensional cylindrical magnetic
Couette flow. The polar coordinate system is represented by (r, θ), while the velocity and
external magnetic fields are represented by (ur, uθ) and (Br, Bθ), respectively. The radii of the
inner and outer cylinders are represented by ri and ro. Also, the inner cylinder rotates at a
constant speed Ω.

The behaviors of electromagnetism are governed by the Maxwell’s equations. As a
matter of fact, these equations are a collection of four fundamental governing equations
individually known as the Gauss’s law, the Gauss’s law for magnetism, the Faraday’s law
of induction, and the Ampère’s law with Maxwell’s correction. Together with the so-called
material equations, these equations are mathematically given as [37]

∇· ⇀B= 0, (2.1)

∇× ⇀

E= −∂
⇀

B
∂t

, (2.2)

∇× ⇀
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⇀
j , (2.3)

∇· ⇀D= 0, (2.4)

where the above parameters are interrelated through the following relationships:
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Combining (2.1), (2.2), (2.3), (2.5), and (2.6), the general magnetic field equation for
any magnetic fluid can be obtained in the following form:

∂�B

∂t
+
(
�V · ∇

)
�B +

(
∇ · �V

)
�B =

(
�B · ∇

)
�V +

1
μσ

∇2 �B. (2.8)

Although one can clearly understand the relationships and behaviors between the
magnetic and electric fields, the theory of electromagnetism has also suggested that an
electromagnetic force namely the Lorentz force will be produced in the magnetic fluid as
it flows in the region under the influence of magnetic field. This force later tends to influence
the motion of the fluid elements. For this reason, the magnetic, electric, and flow fields are
interinfluential. The conservations of mass and momentum of the fluid are governed by the
continuity and Navier-Stokes equation as

Dρ

Dt
= 0,

D
(
ρ �V

)

Dt
= −∇p + ρ�g +

1
μ

(
∇ × �B

)
× �B + μ∇2 �V .

(2.9)

Current study assumes that the magnetic fluid is steady, incompressible, and laminar
while the gravitational acceleration is negligible. Equation (2.9) simplifies as

∇ · �V = 0, (2.10)

(
�V · ∇

)
�V = −1

ρ
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1
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(
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)
× �B + ν∇2 �V . (2.11)

With the help of continuity equation, (2.8) can be further simplified to give

(
�V · ∇

)
�B =

(
�B · ∇

)
�V +

1
μσ

∇2 �B. (2.12)

The external magnetic field varies as a function of radial direction, that is, B0/r,
where B0 will then be used to define the reference Hartmann number in current study. The
dynamical state of the magnetic fluid can therefore be determined by solving (2.10)–(2.12)
simultaneously. This set of equations is apparently too complicated to be solved directly. To
further simplify it, stream function ψ is introduced to eliminate the continuity equation and
thus to reduce the number of equation needed to solve simultaneously. The stream function
ψ is defined such that

ur =
1
r

∂ψ

∂θ
, uθ = −∂ψ

∂r
, (2.13)
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where ur and uθ are the dimensionless radial and azimuthal components of velocity. On the
other hand, the following dimensionless parameters are also introduced to normalize the
remaining set of equations:

r∗ =
r

ri
, ψ∗ =

ψ

ν
, Ω∗ =

Ω
ν/r2i

,

ω∗ =
ω

ν/r2i
, A∗ =

A

B0
, Ha =

B0a

ri

√
σ

ρν
.

(2.14)

The parameter Ha is referred to as the reference Hartmann number because the term
B0/ri is actually the amount of reference external magnetic field density at ri. Clearly, a
larger Ha indicates a stronger external magnetic field B0. The parameters appeared within the
square root are merely electrical and mechanical properties of the magnetic fluid. To simplify
the formulation, the distribution of the magnetic potential A is more frequently solved to
replace the magnetic field density. The magnetic potential A is defined similar to the stream
function and is given as below for a two-dimensional formulation

Br =
1
r

∂A

∂θ
, Bθ = −∂A

∂r
. (2.15)

Neglecting displacement currents, induced magnetic field, dissipation, and Joule
heating, the Navier-Stokes equations can be transformed into the following nondimensional
stream function-vorticity form after dropping the asterisk in (2.14) for simplicity:
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(2.16)

where the definition of dimensionless vorticity is given below without asterisk

1
r

∂

∂r

(
r
∂ψ

∂r

)
+

1
r2
∂2ψ

∂θ2
= −ω. (2.17)

To be consistent, the dimensional magnetic field equation, (2.12), was also nondimen-
sionalized and simplified after some manipulation to yield

1
r

∂

∂r

(
A
∂ψ

∂θ

)
− 1
r

∂

∂θ

(
A
∂ψ

∂r

)

=
1
r

∂

∂r

(
ω
∂A

∂θ

)
− 1
r

∂

∂θ

(
ω
∂A

∂r

)
+

1
Pm

[
1
r

∂

∂r

(
r
∂A

∂r

)
+

1
r2
∂2A

∂θ2

]
,

(2.18)

where Pm is the magnetic Prandtl number defined as Pm = μσν.
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(a) (b)

(c) (d)

Figure 1:Distribution of externally applied magnetic fields: (a) uniform, (b) a semicircular, (c) two-quarter
circular, and (d) a three-quarter circular.

Appropriate boundary conditions for the velocity field are imposed by specifying the
values of dimensionless stream function on the surface of the inner and outer cylinders. After
dropping the asterisk, they are given in terms of dimensionless rotational speed of the inner
cylinder as

Inner cylinder,

ψ =
ro − ri
ri

Ω at r = 1, (2.19a)

Outer cylinder,

ψ = 0 at r =
ro
ri
. (2.20a)

Other than the above velocity boundary conditions, an external magnetic field must
be imposed on the magnetic fluid. The various configurations of the externally applied
magnetic field considered in this study are shown in Figure 1. The dimensionless magnetic
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Figure 2: Grid distribution.

potential within the region R including its inner and outer bounds where the magnetic field
is externally applied is given as

Region with magnetic field,

A = θ for 1 ≤ r ≤ ro
ri
, θ ⊂ R, (2.21a)

Region without magnetic field,

A = 0 for 1 ≤ r ≤ ro
ri
, θ /⊂ R. (2.22a)

In the present work, a finite difference method was employed. The governing
equations (2.16)–(2.18) were approximated by algebraic equations at the nodal points over
the computational domain. A finite volume was constructed surrounding each nodal point.
The governing differential equations were then integrated over the control volume. This
ensures that the conservation laws were satisfied both over the control volume as well as
the computational domain. This numerical method has been successfully employed by the
authors [38]. The geometry and grid system of the annular space was constructed using
a structured orthogonal mesh system. The grid distribution in this work was 40 × 260, as
shown in Figure 2. Under- and over-relaxation was employed for most of the calculations to
ensure the efficiency and accuracy of the numerical results. The reference Hartmann number
investigated in this work includes 1, 3, 5, 10, 20, 30, 40, and 50. A grid refinement test had
been performed and it was found that there was no significant improvement on present
computational results even if the number of grid was increased up to 8 times denser than
the current one.

3. Results and Discussion

Since the magnetic fluid flow in the annular space is subjected to an external magnetic field,
its fluid elements experience either a local acceleration or a local deceleration. It has long
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Figure 3: Locations where the velocity profiles are displayed.

Figure 4: Distribution of the contours of stream function for a uniform external magnetic fluid of Ha =
30 (Δψ = 0.0025).

been recognized through various studies that as Ha increases, the velocity close to the inner
cylinder decelerates while that close to the outer cylinder accelerates. Not only so, the velocity
gradient at the surfaces of both the inner and outer cylinders increases with Ha. In current
study in which the external magnetic field is regional, it is found that the velocity gradient
becomes relatively more obvious when Ha > 20. For this reason, the discussion that follows
will only focus on the scenario where Ha = 30 and 50. In order to further examine these
phenomena, this paper divides the upper half section of annulus (i.e., 0◦ ≤ θ ≤ 180◦) into
12 sections which are 15◦ wide. These cross-sections between these sections are shown in
Figure 3.

The contour of stream functions for Ha = 30 is presented in Figure 4. Since the external
magnetic field is completely circular within the annular space, the flow patterns are certainly
axis-symmetrical. This fact is evident from the distribution of stream function contours.
It can be seen that the contours of stream functions appear to be a family of concentric
circles. In other words, the magnetic fluid is merely a swirl flow under the influence of the
complete circular external magnetic field proving the fact that the flow field is completely
one-dimensional and angular independent.



10 Journal of Applied Mathematics

Figure 5: Distribution of the contours of stream function for a semicircular external magnetic fluid of
Ha = 30 (Δψ = 0.0025).

Figure 5 shows the contours of stream functions for the magnetic fluid subjected to a
semicircular external magnetic field of Ha = 30. Unlike the previous case, there exists in the
lower portion of the annular space an additional recirculation cell rotating in the clockwise
direction. The eye of the cell is located to the right side of the annulus in the region without
external magnetic field. Clearly, the flow pattern is no longer axis-symmetrical. Remember
that the magnetic field is only applied in the upper half of the annulus. In this region with an
external magnetic field, the magnetic fluid simply flows in the counterclockwise direction. In
the lower half where the external magnetic field is absent, the region is mostly occupied by
a recirculation cell. The formation of the recirculation cell is solely due to the presence of the
external magnetic field in the upper half region. In the upper half region, the fluid elements
generally slow down under the influence of the Lorentz force. Prior to entering the upper
half region, the fluid elements in the lower half region has experienced a considerable flow
resistance. Hence, some of the fluid elements are forced to flow radially outward similar to the
phenomena discovered for flow impingement. This radially outward flow eventually forms
the recirculation cell. It is remarkable to see that only a very thin layer of magnetic fluid right
next to the inner rotating cylinder is capable of penetrating the upper half region because the
flow momentum at this region is continuously supplied by the rotation of the inner cylinder.
Once it enters the upper region where the recirculation cell is no longer present, it expands
almost radially and therefore fills the entire gap between the inner and outer cylinders. As
it leaves the upper half region and returns to the lower half region, its fluid elements are
squeezed radially inwards by the recirculation cell. Even though the phenomena of magnetic
fluid entering and leaving the upper half region is somewhat similar (but in a reversed
fashion), the change in velocity field is more abrupt for the magnetic fluid elements entering
than leaving the region subjected to an external magnetic field.

In Figure 6, R∗ = 0 and R∗ = 1 indicate the locations of the inner and outer cylinders,
respectively. Here, the aforementioned radial coordinate was scaled throughR∗ = (r−ri)/(ro−
ri). Similarly, the angular velocity component uθ of the magnetic fluid was calculated through
(2.10) and then normalized by the linear velocity of the inner cylinder, that is, V ∗ = uθ/ωri.
Apparently, the fluid elements on the inner cylinder move at a finite tangential velocity while
those on the outer cylinder remain motionless. Furthermore, there exists a section close to
the outer cylinder whose angular velocity component is less than zero at θ = 0◦ indicating
that the fluid elements at this section actually flow in the direction opposite to the direction
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Figure 6: Angular velocity profiles at 0◦ ≤ θ ≤ 180◦ subjected to a semicircular external magnetic field.

Figure 7: Distribution of the contours of stream function for two-quarter circular external magnetic fluids
of Ha = 30 (Δψ = 0.00025).

of the rotating inner cylinder. At other locations, that is, 30◦ ≤ θ ≤ 180◦, the angular velocity
profiles are almost identical. Based on this figure, it is not difficult to see that the magnitude
of the normalized angular velocity V ∗ in the region corresponding to 0.12 ≤ R∗ ≤ 0.84 and
30◦ ≤ θ ≤ 180◦ is about 0.06. This implies that the rotational speed in this region is inversely
proportional to its radial distance.

If the external magnetic field is applied at the first and third quadrants, the flow
patterns can be expected to bear some resemblances with that for a semicircular magnetic
field. Since there are two discrete regions without external magnetic field in this case, there
surely exist two recirculation cells within these regions, as clearly displayed in Figure 7.
However, the strength of these two cells is actually weaker than the single cell for the case
shown in Figure 5. This can be imagined as if the single recirculation cell in Figure 5 is forced
to split into two recirculation cells by the presence of the additional region with external
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Figure 8:Angular velocity profiles subjected to two-quarter circular external magnetic fields at (a) 0◦ ≤ θ ≤
90◦ and (b) 105◦ ≤ θ ≤ 180◦.

magnetic field. As the single larger recirculation cell splits into two smaller cells, their strength
apparently weakens. This means the fluid elements in Figure 7 circulate at a lower velocity.
In the regions with external magnetic fields, the distribution of stream function contours in
general is less dense in Figure 7 in comparison with those depicted in Figure 5. This clearly
suggests that, except in the vicinity very close to the rotating inner cylinder, the majority
fluid elements flow slower if the single region with an external magnetic field is split and
separated. This phenomenon implies the decrease in flow kinetic energy in the annular space
is attributed to the effect of additional flow deceleration and acceleration prior to crossing the
interface between the regions with and without external magnetic field. Based on a careful
comparison, it was also found that the flow in this case has to squeeze itself through a slightly
narrower gap between the recirculation cell and the surface of the inner rotating cylinder.

To further understand the nature of the magnetic fluid flow, the velocity profiles
in the upper half region of the annulus are plotted in Figure 8. It is observed that at θ =
0◦, there is a large section where flow reversal takes place. Among the various velocity
profiles demonstrated, the angular velocity component is all greater than 0 for 15◦ ≤ θ ≤
120◦. Although the external magnetic field is only applied at 0◦ ≤ θ ≤ 90◦, the upstream
recirculation cell actually stretches beyond the interface at θ = 0◦ while the counter-clockwise
swirl flow extends over θ = 105◦ which is beyond the other interface at θ = 90◦. In this region,
the velocity profiles at 30◦ ≤ θ ≤ 90◦ are almost the same.

The flow pattern of the magnetic fluid in the annular space under the influence of
a three-quarter-circular external magnetic field is shown in Figure 9. In this scenario, only
the forth quadrant is not subjected to an external magnetic field. In Figure 9(a), the strength
of the external magnetic field is associated to Ha = 30. The flow patterns of fluid elements
entering the region subjected to an external magnetic field are very similar to the previous
cases. However, the flow pattern of the fluid elements leaving the region is very distinctive.
Under the influence of the external magnetic field spanning over the upper half region as
in Figure 5, the fluid elements are enormously squeezed so that they manage to complete
a cycle. If the external magnetic field is split, separated, and applied alternatively over the
upper and lower half semiannular spaces as in Figure 7, the fluid elements still need to force
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(a) (b)

Figure 9: Distributions of the contours of stream function for a three-quarter-circular external magnetic
fluids of (a) Ha = 30 and (b) Ha = 50 (Δψ = 0.0025).

their way through the annular space. When an additional external magnetic field is applied
at the second quadrant as in Figure 9(a), the fluid elements actually experience less resistance
when flowing through the region without external magnetic field.

Based upon these figures, it is remarkable to find that the strength and size of the
recirculation cell are strongly dependent on the number of the discrete regions without
external magnetic field and their span in the angular direction. Among these three external
magnetic field configurations, the recirculation cell is the weakest when only a quarter of
the annular space is free of external magnetic field. As the span of this region without
external magnetic field is doubled, the strength of the cell increases due to the decrease
in Lorentz force, as evidently shown in Figure 5. If the second and third quadrants of a
semicircular external magnetic field (in Figure 5) are interchanged to form the two quarter-
circular external magnetic fields, the recirculation cell is also split into two individual cells
whose strengths are apparently less than the previous one.

Figure 9(b) shows the flow pattern for the same conditions except that Ha is increased
to 50. The flow pattern is quite similar to that in Figure 9(a) except at the regions in the
vicinity of the recirculation cell. Because of the increase in the reference Hartmann number,
the corresponding recirculation cell grows in strength and as a result it leaves the swirl
flow less space to go around. Also for this reason, the change in flow direction prior to the
formation of the recirculation cell is much more dramatic for Ha = 50 than for Ha = 30. This
also clearly proves that the strength of the recirculation cell for Ha = 50 is greater between the
two cases. As the fluid elements enter the region with an external magnetic field of Ha = 50,
they also tend to change their flow directions more rapidly under the influence of stronger
Lorentz force.

If the external magnetic field conditions shown in Figure 9 are interchanged to
form a quarter circular magnetic field, the general flow patterns interchange between the
regions with and without external magnetic field. As shown in Figure 10, the strength of
the recirculation cell actually increases tremendously as evidently depicted by the denser
distribution of the contours surrounding the eye of the recirculation cell. More surprisingly,
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Figure 10: Distributions of the contours of stream function for a quarter-circular external magnetic fluids
of Ha = 30 (Δψ = 0.0025).
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Figure 11: Variation of dimensionless shear stress on cylindrical surface: (a) inner and (b) outer.

this recirculation cell is even stronger than the one shown in Figure 9(b), which corresponds
to Ha = 50.

The shear stress τ on the inner and outer cylinders were nondimensionalized by the
product of the inner cylinder rotational speed ω and the fluid dynamic viscosity μ. The
dependence of these dimensionless shear stresses on the external magnetic field configuration
and Ha are displayed in Figure 11. As Ha increases, the shear stress on the inner cylinder
always increases but that on the outer cylinder does not necessarily follows this rule. In fact,
the formation of the recirculation cell in the region without external magnetic field serves to
reverse the shear stress the outer cylinder surface experiences. For this reason, it is found
there exists a critical reference Hartmann number beyond which the shear stress on the
outer cylinder acts on the opposite direction if only an external magnetic field is applied
to a quarter of the annular space. Not only so, whenever the external magnetic field covers
less than half of the annular space, the magnitude of the shear stress on the outer cylinder
will tends to decreases and will eventually replaced by a growing shear stress in the opposite
sense if the Hartman number is large enough. Also in these figures, the effect of splitting and
separating the external magnetic field on the shear stress on the inner and outer cylinders
is investigated. The shear stress associated with the semicircular magnetic field is found to
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increase in magnitude on the inner cylinder but to decrease in magnitude on the outer one
as it is split to form two quarter-circular magnetic field (represented by the broken lines). As
the Hartmann number is increases, this magnitude continues to reduce to zero. Then, a shear
stress in the opposite sense is anticipated to grow in magnitude. Again, this is strictly related
to the nature of the recirculation cells. As the magnetic field is split, the recirculation cell
corresponding to the semicircular magnetic field is also split to form twoweaker recirculation
cells. Because of the presence of these two recirculation cells, the shear flow next to the inner
cylinder is more difficult to squeeze through the annular space leading to an increase in shear
stress magnitude. On the other hand, the twoweaker recirculation cells exert greater reversed
friction force and therefore reduce the magnitude of the shear stress on the outer cylinder.

4. Summary

A computational study of magnetic fluid in an annular space subjected to a rotating inner
cylinder and nonuniform external magnetic fields is accomplished in this work. Based on
current investigation, the following conclusions can be drawn.

(1) The presence and absence of the external magnetic field brake the fluid elements
prior to entering the region with external magnetic field. This leads to the
generation of a recirculation cell.

(2) In the annular space, a recirculation cell always occupies every discrete region
without external magnetic field.

(3) The strength and size of the recirculation cell depend on the strength of the external
magnetic field, the number of discrete regions without external magnetic field, and
their span.

(4) The strength of the recirculation cell is inversely proportional to the span in the
angular direction of the region subjected to external magnetic field.

(5) The shear stress on the moving inner cylinder increases with the reference
Hartmann number and the span of the single external magnetic field region.

(6) The magnitude of the shear stress on the stationary outer cylinder may increase or
decrease with the reference Hartmann number depending on the external magnetic
field configuration.

(7) Splitting and separating an external magnetic field may cause the magnitude of the
shear stress on themoving inner cylinder to increase but that on the stationary outer
cylinder to decrease.

Nomenclature

A : Magnetic scalar potential, A
a: Gap width between cylinders, m
B: Magnetic field density, T
B0: External magnetic field density, T
D: Electric displacement field, C/m2

E: Electric field, V/m
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H: Magnetized field, A/m
Ha: Hartmann number,—
j: Current density, A/m2

Pm: Magnetic Prandtl number,—
q: Electric charge, C
r: Radial coordinate, m
t: Time, s
ur : Radial velocity, m/s
uθ: Angular velocity, m/s.

Greek Symbols

ε: Permittivity, F/m
ν: Fluid kinematic viscosity, m2/s
μ: Fluid dynamic viscosity, kg/m·s
θ: Angular coordinate,—
ρ: Fluid density, kg/m3

σ: Electric conductivity, Ω−1 m−1

ω: Rotational speed of the inner cylinder, rad/s.
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