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We consider the global existence of strong solution u, corresponding to a class of fully nonlinear
wave equations with strongly damped terms uy —kAu; = f(x, Au)+ g(x,u, Du, D?u) in a bounded
and smooth domain € in R", where f(x, Au) is a given monotone in Au nonlinearity satisfying
some dissipativity and growth restrictions and g(x,u, Du, D*u) is in a sense subordinated to
f(x, Au). By using spatial sequence techniques, the Galerkin approximation method, and some
monotonicity arguments, we obtained the global existence of a solution u € L® ((0, ), W7 (Q) N

loc
W,7(Q)).

1. Introduction

We are concerned with the following mixed problem for a class of fully nonlinear wave

equations with strongly damped terms in a bounded and C* domain Q C R™:

uy — kAuy = f(x, Au) + g(x, u,Du, D2u>, in [0,00) x Q,

u0,x)=¢, u(0,x)=¢, inQ,
u(t,x) =0, on [0,c0) x 08,

(1.1)
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s A_zn:_z D_<i i) D2_6—2
B atZ’ - ‘ axIZ’ - a.’Xj’.”, axn ! - ax?l ...axzn’ (12)

g+ +a, =2, x=(x1,...,x,), k>0.

Equations of type (1.1) are a class essential nonlinear wave equations describing the speed
of strain waves in a viscoelastic configuration (e.g., a bar if the space dimension N = 1 and
a plate if N = 2) made up of the material of the rate type [1, 2]. They can also be seen as
field equations governing the longitudinal motion of a viscoelastic bar obeying the nonlinear
Voigt model [3]. Concerning damped cases, there is much to the global existence of solutions
for the problem:

U + U — Uxx = f(u), in [0,00) x Q,
1.3
u(0,x) =up(x), u(0,x)=ui(x), inQ; (13)

they discussed the global existence of weak solutions and regularity in R! and R" [4-8]. On
the other hand, Ikehata and Inoue [9] considered the global existence of weak solutions for
two-dimensional problem in an exterior domain Q C R* with a compact smooth boundary
0Q for a semilinear strongly damped wave equation with a power-type nonlinearity |u|7 and
q>6:

uy(t,x) — Au(t,x) — Auy(t, x) = [u(t,x)|7 in [0,0) x Q,
u(0,x) =up(x), u(0,x)=u(x) in€, (1.4)
u(t,x) =0, on [0,00) x 0Q.

Cholewa and Dlotko [10] discussed the global solvability and asymptotic behavior of
solutions to semilinear Cauchy problem for strongly damped wave equation in the whole of
R". They assume the nonlinear term f grows like |u|? and g < (n +2)/(n - 2) if n > 3. Similar
problems attracted attention of the researchers for many years [11-13]. Especially, Yang [14]
studied the global existence of weak solutions to the more general equation including (1.4),
but he did not discuss the regularity of weak solution for the quasilinear wave equation. We
are interested in discussing the global existence and regularity of weak solutions for strongly
damped wave equation with the dissipative terms g containing Du and the nonlinear terms
f containing Au. Here f(x, Au) is a given monotone in Au nonlinearity satisfying some
dissipativity and growth restrictions and g(x,u, Du, D?u) is in a sense subordinated to
f(x, Au).

In [15], we have investigated the existence of global solutions to a class of nonlinear
damped wave operator equations. In this paper, our first aim is to study the global existence
of strong solutions to the more general equation including (1.4), which is the motivation that
we establish our abstract strongly damped wave equation model with. The second aim is to
deal with the global existence of strong solutions to a class of fully nonlinear wave equations
with strongly damped terms under some weakly growing conditions.
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This paper is organized as follows:

(i) in Section 2, we recall some preliminary tools and definitions;

(ii) in Section 3, we put forward our abstract strongly damped wave equation model
and proof the global existence of strong solution of it;

(iii) in Section 4, we provide the proof of the main results about the mixed problem
(1.1).

2. Preliminaries
We introduce two spatial sequences:

XCH3;CcX,CcX;CH,
(2.1)
X, CH, CH CH,

where H, Hi, Hy, and Hj are Hilbert spaces, X is a linear space, and X, X, are Banach spaces.
All embeddings of (2.1) are dense. Let

L:X — X; Dbe one-for-one dense linear operator,

(2.2)
(Lu,v)y = (u,v)y, YuveX
Furthermore, L has eigenvectors {ey} satisfying
Lek = )Lkek, (k = 1, 2, .. .), (2.3)

and {ex} constitutes common orthogonal basis of H and Hs.
We consider the following abstract wave equation model:

d*u d
— + k—

T Lu=G(u), k>0,

dt (2.4)
u(0) = ¢, u(0) = ¢,

where G : X, x R* — X7 is a map, R* = [0,00), and £ : X, — Xj is a bounded linear
operator, satisfying

(Lu,Lo)y = (u,v)y,, Yu,veXs. (2.5)

Definition 2.1. We say that u € W= ((0,T), H1) N L*((0,T), X,) is a global weak solution of
the (2.4) provided for (¢, ¢) € Xo x H;

t
(U, )y + k{(Lu, )y = IO(G(u),v>dT +(p,v); +k(Lp,v),,, (2.6)

foreachv e X;and 0<t< T < o0.
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Definition 2.2. Let u,, uy € LP((0,T), X>). We say that u, — up in LP((0,T), X) is uniformly
weakly convergent if {u,} C L*((0,T), H) is bounded, and

u, —uy, in LP((0,T),Xz),

T (2.7)
lim | [(u, —uo,v)y[?dt =0, VoveH.
0

n—oo

Lemma 2.3 (see [16]). Let {u,} € LP((0,T), W™P(Q)) (m > 1) be bounded sequences and {u,,}
uniformly weakly convergent to uy € LP((0,T), W™ (Q)). Then, for each |a| < m —1, it follows that

D%u, — Duy, in L*((0,T) x Q). (2.8)

Lemma 2.4 (see [17]). Let Q C R" be an open set and f : Q x RN — R! satisfy Caratheodory
condition and

N
|f(x,8)] < CS[&lP'? + b(x). (2.9)
i=1

If {u; } ¢ LPI(Q) (1 < i < N) is bounded and u;, convergent to u; in Ly for all bounded Qy C Q,
then for each v € L¥ (Q), the following equality holds

lim I f(x,u1,, ..., un,)vdx :f f(x,u1,...,un)vdx. (2.10)
Q Q

k— o0

3. Model Results
LetG=A+B:X; x R" — XJ. Assume

(A1) thereis a C! functional F : X, — R' such that

(Au,Lv) = (-DF(u),v), Yu,veX; (3.1)

(A2) functional F : X, — R! is coercive, that is,

F(u) — oo, & |Jullx, — oo; (3.2)
(A3) B satisfies

|(Bu, Lv)| < C1F(u) + §||v||%{1 +Cy, VuvekX, (3.3)

forge L} (0,00).
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Theorem 3.1. Set G : X x R* — XJ, for each (¢, ¢) € X x Hy, then the following assertions hold.

(1) If G = A satisfies (A1) and (A2), then (2.4) has a globally weak solution

u € WH((0,00), Hi) N W'((0,00), Hz) N L*((0, 0), Xa). (3.4)

(2) If G = A + B satisfies (A1)—(A3), then (2.4) has a global weak solution

u € WP ((0,00), Hi) N W2((0,00), Hp) N L ((0, 0), X2). (3.5)

loc loc loc

(3) Furthermore, if £ : X, — X is symmetric sectorial operatot, that is, (Lu,v) = (u, Lv),
and G = A + B satisfies

1
|(Gu,v)| < C1F(u) + §||v||§1 +Cy, (3.6)

then u € W>*((0,00), H).

loc

Proof. Let {ex} C X be a common orthogonal basis of H and H3, satisfying (2.3). Set

i=1

n
Xn = {Zdiei | ai € Rl},

(3.7)

X, = {iﬂj(t)ej | B; € C2[O,oo)}.

=1

Clearly, LX, = X,,, LX,, = X,..
By using Galerkin method, there exits u, € C?([0, «0), X,,) satisfying

du, t
<d—ti,v>H +k{Luy,v)y = IO(G(un),v>dT + (@, v) y + k(Lpy,0) 58)

Un (0) = QPn, u;(O) = Pn,

for Vv € X,,, and

t 2 t
f |:<%,v> + k<£%,v> ]dT = f (Guy, v)dr (3.9)
0 . H 0

for Vv € )N(n.
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Firstly, we consider G = A. Let v = (d/dt)Lu, in (3.9). Taking into account (2.2) and
(3.1), it follows that

o/ d?u, d du, d t d
0= J‘0|:<W, ELun>:| + k<£7, ELun>HdT - IO<Aun, ELun>dT,

"11d /du, du, du, du, du,
- — 4 [%H8n GUn B N4 3.10
0 f0[2dt< dt’ dt >Hl+k< dt’ dt >HZ+<DF(””)’ dt> T (3.10)
1||du, ||> 1 2 If duy ||
=== -=|e.ll5 +k dr + F(u,) — F(¢n).
We get
1| du, || 1l du, || 1 >
—|== "W dr+F(u,) = F(g,) + =5 - 3.11
2| ar H1+kfo at ||, 7 ) = FCou) + 3ol (3.1)

Let ¢ € H;z. From (2.1) and (2.2), it is known that {e, } are orthogonal basis of H;. We
find that ¢, — ¢ in H3, and ¢, — ¢ in H;. Since H3 C X, is imbedding, it follows that

P, — ¢, inXo,

(3.12)
¢gn — ¢, in Hj.
From (3.2), (3.11), and (3.12), we obtain that,
{un} € W2 ((0,00), Hi) N W2((0, 00), Ha) N LE (0, 0), X») is bounded. (3.13)
Let
Uk — g, in W2 ((0,00), Hy) N L ((0, 00), X2),
(3.14)

Uy — up, in W2((0,00), Hz),

loc

which implies that u, — up in Wllo’g((O,oo),H ) is uniformly weakly convergent from that
H, C H is compact imbedding.
If we have the following equality:

n—oo

t
lim [-f |(Guy, — Gug, L, — Lug)|dT + gﬂun - u0||§12] =0, (3.15)
0

then ug is a weak solution of (2.4) in view of (3.8), (3.14).
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We will show (3.15) as follows. It follows that from (2.5),

td d 1(d

L <E£un - E.ﬁug,Lun - Lu0>HdT =5 fo E(”n = U, Un — Up) py,dT
1 1 2

= S ln(®) = w01z, = 5 llpn = Il

Taking into account (2.2), (2.5), and (3.9), we get that
! k
- [ (Gt = Guto Lty Loy + 5 s~ ol
0

!

t
= f [(Guo, Lu, — Lug) + (Guy, Lug) — (Guy, Luy, ) — k<%,uo>
0

d d
(Guy — Guy, Luy, — Lug) + k<—£un - —Luy, Lu, — Lu0>
dt dt u

dug d k 2
() ot LS,

t
=f (Guo,Lun—Lu())+(Gun,Lu0)—k<%,uo> —k<@,un—uo>
0 dt H2 dt H2

d*u,, d d k 2
—< T +kE£un,Lun>H+k<a,ﬁun,Lun>H]dT+E"‘Pn“P”HZ

t
= f [(Guo/ Luy, — Lug) + (Guy, Lug)

0
dun d dun dun
"‘<7'”0>H2 - "<a”°'”" ‘”°>H2 * <7f 7>H1]‘”

() )i+ 5 len ol
At s Yn H Un, Pn H; 2 Pn—@ Hy*

From (2.1) and (3.14), we have

lim [l¢n = ]|, =0,

n—oo

t
lim | (Guo, Lu, — Lug)dr =0,
0

n—oo

b d
nlgr;o . <Eu0, Uy, — u0>H2dT =0.

(3.16)

k
ar+ S lgu - ol

(3.17)

(3.18)
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Then, we get

t
k
lim — | (Guy = Guo, Luy, = Lug)dr + = lim [l — 1ol
0 n— oo

n— oo

du,
dt

2
]dr (3.19)
H;

= lim ['| (G, Lug) - k<%,uo> +
n—co dt H,
. [/duy
i (), 00
In view of (3.9), (3.14), we obtain for all v € U;’f:lf(n
t t duy dug do
lim | (Guy,, Lv)dr = J‘ k<—,v> - <—,—> dr
n—oo 0 0 dt H, dt dt H,

+ <%,0>Hl - ((p,u(O))Hl.

(3.20)

Since U, X,, is dense in W'2((0,T), H2) N L((0, T), Xz), for all p < oo, (3.20) holds for
allv € W2((0,T), H,) N LP((0,T), X5). Thus, we have
2
dar
H,y

dug
dt

t t
lim (Gun,Luo)dT:f k<@,uo> -
n—w Jo 0 dt Hy

du()
+ <gr”0>H1 —(w (P>H1'

(3.21)

From (3.14) and H, C H; being compact imbedding, it follows that
2
dr,

2 t
ar = f
H1 0 H1

du, dug
lim ( & ) = (2 ae t>0.
5’30< ar " >H1 <dt ”°>H1 aetz0

t

du,
dt

) dug
lim —_—
n—oo 0 dt

(3.22)

Clearly,

b du b dug
lim <—",un> dr = J‘ <—,u > dr. (3.23)
n—oo 0 dt H, 0 dt 0 H,

Then, (3.14) follows from (3.19)—(3.21), which implies assertion (1).
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Secondly, we consider G = A+ B. Let v = (d/dt)Lu, in (3.9). In view of (2.2) and (2.8),
it follows that

M/ du, d du, d t d
I0[<_dt2 , ELL{">H + k<£7, ELun>H:| dT = IO <(A + B)un, ELun>HdT
f R Ly P

ol2dt\ dt’ dt [y dt’ dt [y,
t du, d
_ L [<—DF(un), 7> . <B(u,,), ELun>H] dr,

du | 1, 2 N dun || ! d
3|5, el ek [ | G ar £ = [ (B, i)
1| duy, || H1l duy, ||? t
E‘ =5 . + kJ‘O = HZdt+ F(u,) = J‘ <B(un) Lun>dT+ F(pn) + = ||(pn||H1
(3.24)
From (3.3), we have
A d”” dT<CItCF(u)+ k| dun | +Co|dr
2| dt ||, = e dt ||y,
1 2
+F(p) + Sl 325)
< CI [F(un) duy || ]d L),
dt
where f(t) = (1/2)||q,r||Hl +sup, F(pn).
By using Gronwall inequality, it follows that
dun 2 t
= + F(uy,) < f(0)e + I f(r)efdr, (3.26)
dt ||y, 0
which implies that for all 0 < T < oo,
{u,} ¢ WY ((0,T), H;) N L*((0,T), X,) is bounded. (3.27)

From (3.25) and (3.21), it follows that

{u,} ¢ WY((0,T), Hy) is bounded. (3.28)
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Let

Uyx — uy, in WY2((0,T), H)) N L*((0,T), Xz),
(3.29)
Uy, — ug, in WY2((0,T), Hy),

which implies that u, — up in W?((0,T), H) is uniformly weakly convergent from that
H, c H is compact imbedding.

The left proof is same as assertion (1).

Lastly, assume (3.6) hold. Let v = d?u,,/dt> in (3.9). It follows that

H / d2u, dzun> < du, dzun> ]
Gty Tn N gl p%n G\ g
f0[< aw - ae |/, ar’ae |,
t d%u,
:f0<(A+B)(u,,),ﬁ dr

t 2
< f [cmm Lt
0 2

dt?
'/ d*u, d*u, k(( d,,,
() ffgedon o
2

t 1| d“u, 2
SJ;) [CF(un)+§ W H+g(t) dT,

Y dPu, d*u, k
ar’ dr at+3
0 H

k > (|1
< Sl [ [2'

2
+ g(t)] dr,
H

du, ||

dat

H;

d%u,,
dt?

2
+ CF(u,) + g(T)] dr.
H

From (3.26), the above inequality implies

|

We see that forall0 < T < oo, {u,} ¢ W*?((0,T), H) is bounded. Thus u € W*?((0,T), H). O

2

dr <C, (C>0 is constant). (3.31)
H

d%u,,
dar?




Journal of Applied Mathematics 11
4. Main Result

Now, we begin to consider the mixed problem (1.1). Set
y
F(x,y) = J‘ f(x,z)dz. (4.1)
0

We assume

F(x,y) 2Cily|"-Co, p22,

PGl <C(lyl +1), 2
(foy) = fx ) -v2) 2 Ay -’ A>0, (4.3)
|8z 8m)| < C(I=P + P2+ [n]" +1), (44)
lg(x,2,¢,m) - g(x,2,¢m)| < Ki|m -, (4.5)
where C, Cy, C; are constant and K; < AK, K is the best constant satisfying
K?|lul3p < JQ |Aul*dx. (4.6)

Theorem 4.1. If the assumptions of (4.1)—(4.5) hold, for (p,¢) € W*P(Q) N Wg’p(Q) X Hé (Q),
then (1.1) is a strong solution

uel®

2.((0,00), W@ n Wy (@),
w € Lz ((0,00), HY(Q)) 0 L, ((0,00), HA(Q)), (4.7)

ug €LV ((0,T) xQ), p = ;%1’ V0 < T < oo.

Proof. We introduce spatial sequences

X = {u € c<>°(gz)|Aku(aQ =0, k= 0,1,2,...},

X1 = LP(Q),

X, = W2 (Q) nW,7(Q),

H = [*(Q), (4.8)
H; = Hy(Q),
H, = H*(Q) N Hy(Q),

H3 = {u (S Hzm(Q) ulaQ = .. = Am71u|ag = 0}’
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where the inner products of H, and Hj are defined by

(w,0)y, = f Aulvdx, (u,v)y = f A"uA"v dx, (4.9)
Q Q

where m > 1 such that H3 C X5 is an embedding.
Linear operators £ : X — Xj and L : X — X are defined by

Lu = Lu=-Au. (4.10)

It is known that £ and L satisfy (2.2), (2.3), and (2.5). Define G= A+ B: X, — X] by
(Au,v) = J f(x,Au)vdx, (Bu,v)= f g<x, u,Du, D2u>v dx, forveX;. (4.11)
o) Q

We show that G = A + B : X, — XJ is T-coercively weakly continuous. Let {u,} C
L=((0,T), W2 (Q) n W,?(Q)) satisfying (2.7) and

T
lim | |(Gu, — Gug, Lu, — Lug)|dt
n—oo 0
! (4.12)
= lim f f [(f(x, Auy) — f(x, Aug)) (un — 1o) :
n— oo O Q
+<g<x, u,, Du,, Dzun> - g(x, ug, Dug, D2u0>> (uy, — uo)]dx dt=0.
We need to prove that
T
lim ’[ I [f(x, Auy) + g(x, u,, Du,, Dzun>]vdx dt
° TQ (4.13)
= f J [f(x, Aug) + g<x, ug, Duyg, D2u0>]vdx dt.
0Ja
From (2.7) and Lemma 2.3, we obtain
Uy — g, Du, — Dug in L*>((0,T) x Q). (4.14)

From (4.3), we get

T T
f f [f (x, Auy) = f(x, Aug)| (Auy — Aug)dx dt > AJ‘ f | Aty — Aug|*dx dt. (4.15)
0Ja 0Ja
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We have the deformation
[[ [ s o Do D) 5 (.0 Do, D), e
- f OT J; |8(x,ttn, D, D*uo ) = g (x, 0, Duto, D1 ) | (At — Auig)dlx dt (4.16)
+ JOT J; |8 (2t Ditn, D21 ) = g (x, 1, Dity, Do) | (At ~ Al it

From (4.14) and Lemma 2.4, we have

n— oo

lim LT IQ [g(x, u,, Du,, D2u0> - g(x, uo, Duy, D2u0>] (Au, — Aug)dx dt = 0. (4.17)

From (4.12), (4.15)—(4.17), it follows that

0>\ Jj IQ |Au, — Au0|2dx dt + Jj J;Z [g(x, Uy, Dun,Dzun> - g(x, u,, Du,, Dzu())]

x (Au, — Aug)dx dt

T T
Z.)L’[ '[ |Aun—Auo|2dxdt—K1j j |D2un—D2uo||Aun—Au0|dxdt
0JQ 0Ja

(4.18)
T K2 (T 2
> & J‘ f |Au, — Auo|2dxdt -1 J‘ f |D2un - DZuO' dx dt
2)o)a 20 Jo Ja
A\2K? - K% (T 5 , P2
> —f f |D u, — D u0| dxdt.
Since AK > K7, we have
T 2
lim f f |D?u, - D?up| dx dt = 0. (4.19)
n—oo 0 Q
From (4.14), (4.19), (4.1), (4.4), and Lemma 2.3, we get (4.13).
Let Fi(u) = fQ F(x, Au)dx, where F is same as (4.1). We get
(Au,Lu) = -(DFy(u),v),
(4.20)

F(u) — oo & |lullx, — oo,

which implies Conditions (A1), (A2) of model results in Theorem 3.1.
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We will show (3.3) as follows. It follows that

|[(Bu, Lv)| f|g<x,u,Du,D2u>||Av|dx
Q

g fQ |Av|2dx + % fg |g<x, u,Du, Dzu) |2dx

IN

(4.21)

IN

k
Slollz, + CJ [)D2u|’” VUl + ful +1]dx
2 Q
ki, 2
< Slolif, + CRi(w) +C,

which imply Conditions (A3) of Theorem 3.1. From Theorem 3.1, (1.1) has a solution

uelL”

loc

((0,00), W?P (@) nW,"(@),
u € L%, ((0,00), HY (@) N L, ((0,00), HX()), (4.22)

ug €LV ((0,T) xQ), p = r%l’ VO < T < oo,

satisfying

t t
f a—uvdx—kf Auvdx:ff f(x,Au)vdxdT+fj g<x,u,Du,D2u>vdxdT (4.23)
o Of Q 0Ja 0o

+f q;vdx—kf Aypvdx. 0
Q Q
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