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This paper is concerned with the numerical approximations of the Cahn-Hilliard-type equation
with concentration-dependent mobility. Convergence analysis and error estimates are presented
for the numerical solutions based on the spectral method for the space and the implicit Euler
method for the time. Numerical experiments are carried out to illustrate the theoretical analysis.

1. Introduction

In this paper, we apply the spectral method to approximate the solutions of Cahn-Hilliard
equation, which is a typical class of nonlinear fourth-order diffusion equations. Diffusion
phenomena is widespread in the nature. Therefore, the study of the diffusion equation
caught wide concern. Cahn-Hilliard equation was proposed by Cahn and Hilliard in
1958 as a mathematical model describing the diffusion phenomena of phase transition in
thermodynamics. Later, such equations were suggested as mathematical models of physical
problems in many fields such as competition and exclusion of biological groups [1], moving
process of river basin [2], and diffusion of oil film over a solid surface [3]. Due to the
important application in chemistry, material science, and other fields, there were many
investigations on the Cahn-Hilliard equations, and abundant results are already brought
about.

The systematic study of Cahn-Hilliard equations started from the 1980s. It was Elliott
and Zheng [4] who first study the following so-called standard Cahn-Hilliard equation with
constant mobility:

%—l: + div[kVAu - VA(u)] = 0. (1.1)
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Basing on global energy estimates, they proved the global existence and uniqueness of
classical solution of the initial boundary problem. They also discussed the blow-up property
of classical solutions. Since then, there were many remarkable studies on the Cahn-Hilliard
equations, for example, the asymptotic behavior of solutions [5-8], perturbation of solutions
[9, 10], stability of solutions [11, 12], and the properties of the solutions for the Cahn-Hilliard
equations with dynamic boundary conditions [13-16]. In the mean time, a number of the
numerical techniques for Cahn-Hilliard equations were produced and developed. These
techniques include the finite element method [4, 17-24], the finite difference method [25-
29], the spectral method, and the pseudospectral method [30-35]. The finite element method
for the Cahn-Hilliard equation is well investigated by many researchers. For example, in
[23, 36], (1.1) was discreted by conforming finite element method with an implicit time
discretization. In [22], semidiscrete schemes which can define a Lyapunov functional and
remain mass constant were used for a mixed formulation of the governing equation. In [37],
a mixed finite element formulation with an implicit time discretization was presented for the
Cahn-Hilliard equation (1.1) with Dirichlet boundary conditions. The conventional strategy
to obtain numerical solutions by the finite differece method is to choose appropriate mesh
size based on the linear stability analysis for different schemes. However, this conventional
strategy does not work well for the Cahn-Hilliard equation due to the bad numerical stability.
Therefore, an alternative strategy is proposed for general problems, for example, in [26, 38]
the strategy was to design such that schemes inherit the energy dissipation property and the
mass conservation by Furihata. In [27, 28], a conservative multigrid method was developed
by Kim.

The advantage of the spectral method is the infinite order convergence; that is, if
the exact solution of the Cahn-Hilliard equation is C* smooth, the approximate solution
will be convergent to the exact solution with power for exponent N7, where N is the
number of the basis function. This method is superior to the finite element methods and
finite difference methods, and a lot of practice and experiments convince the validity of
the spectral method [39]. Many authors have studied the solution of the Cahn-Hilliard
equation which has constant mobility by using spectral method. For example, in [33-35],
Ye studied the solution of the Cahn-Hilliard equation by Fourier collocation spectral method
and Legendre collocation spectral method under different boundary conditions. In [30], the
author studied a class of the Cahn-Hilliard equation with pseudospectral method. However,
the Cahn-Hilliard equation with varying mobility can depict the physical phenomena more
accurately; therefore, there is practical meaning to study the numerical solution for the Cahn-
Hilliard equation with varying mobility. Yin [40, 41] studied the Cahn-Hilliard equation
with concentration-dependent mobility in one dimension and obtained the existence and
uniqueness of the classical solution. Recently, Yin and Liu [42, 43] investigate the regularity
for the solution in two dimensions. Some numerical techniques for the Cahn-Hilliard
equation with concentration-dependent mobility are already studied with the finite element
method [28] and with finite difference method [44].

In this paper, we consider an initial-boundary value problem for Cahn-Hilliard
equation of the following form:

%—”t‘ + D[m(u) <D3u - DA(u))] -0, (x,b)€(0,1)x(0,T), (1.2)

Dul,_o; = D3u|x =0, te©), (1.3)

u(x/ 0) =uUy, XE (0/1)/ (14)
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where D = 0/0x and
A(s) =-s+ )q:;z + yzs3, y2 > 0. (1.5)

Here, u(x,t) represents a relative concentration of one component in binary mixture. The
function m(u) is the mobility which depends on the unknown function u, which restricts
diffusion of both components to the interfacial region only. Denote Qr = (0,1) x (0,T).
Throughout this paper, we assume that

0<mg<m(s) <My, |m'(s)|<M, VseR, (1.6)

where my, My, and M are positive constants. The existence and uniqueness of the classical
solution of the problems (1.2)—(1.4) were proved by Yin [41].

In this paper, we will apply the spectral method to discretize the spatial variables
of (1.2) to construct a semidiscrete system. We prove the existence and boundedness of
the solutions of this semidiscrete system. Then, we apply implicit midpoint Euler scheme
to discretize the time variable and obtain a full-discrete scheme, which inherits the energy
dissipation property. The property of the mobility depending on the solution of (1.2) causes
much troubles for the numerical analysis. Furthermore, with the aid of Nirenberg inequality
we investigate the boundedness and convergence of the numerical solutions of the full-
discrete equations. We also obtain the error estimation for the numerical solutions to the exact
ones.

This paper is organized as follows. In Section 2, we study the spectral method for (1.2)—
(1.4) and obtain the error estimate between the exact solution u and the spectral approximate
solution uy. In Section 3, we use the implicit Euler method to discretize the time variable
and obtain the error estimate between the exact solution u and the full-discrete approximate
solution U},. Finally in Section 4, we present a numerical computation to illustrate the
theoretical analysis.

2. Semidiscretization with Spectral Method

In this section, we apply the spectral method to discretize (1.2)-(1.4) and study the error
estimate between the exact solution and the semidiscretization solution.

Denote by || ||k and |- |x the norm and seminorm of the Sobolev spaces H*(0,1) (k € N),
respectively. Let (-, -) be the standard L? inner product over (0, 1). Define

H2(0,1) = {v € H%(0,1); Dol,g; = o}. 2.1)

A function u is said to be a weak solution of the problems (1.2)-(1.4), if u €
L*(0,T;H f: (0,1)) and satisfies the following equations:

<%—Zt,v> + <D2u - A(u),D(m(u)Dv)> =0, VYveHS, (2.2)

(u(-,0),v) - (up,v) =0, Vv € Hj. (2.3)
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For any integer N > 0, let Sy = span{coskxrx,k =0,1,2,..., N}. Define a projection

operator Py : H: — Sy by
1 1
J‘ (Pn)u(x)v(x)dx = J‘ u(x)v(x)dx, VYv e Sy.
0 0

We collect some properties of this projection Py in the following lemma (see [39]).

Lemma 2.1. (i) Py commutes with the second derivation on Hz(I), that is,
PyD?*v = D*Pyv, Yo € Hi(I).
(ii) For any 0 < u < o, there exists a positive constant C such that

lv - Pxoll, < CN#[o,, v e H(I).

The following Nirenberg inequality is a key tool for our theoretical estimates.

Lemma 2.2. Assume that Q C R" is a bounded domain, u € W™ (Q), then we have

|D7u]], < CillD™ul, i + Callully,
where

<ax<l,

7 1
m p

By [41], we have the following.

Lemma 2.3. Assume that m(s) € CY(R), ug € C**(I), Diug(0) = D'ug(1) = 0
0,1,2,3,4), m(s) > 0, then there exists a unique solution of the problems (1.2)—(1.4) such that

u € Clra/4dra <§T>

The spectral approximation to (2.2) is to find an element un (-, t) € Sy such that

ot

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(i =

(2.9)

<au—N,’0N> + <D2uN - PNA(uN),D(m(uN)DvN)> =0, VUN c SN, (2.10)

(uN(-,O), UN) - (uo,’UN) =0, Youn € Sn. (2.11)

Now we study the L* norm estimates of the function un (-, ) and Dun(-,t) for 0 <
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Theorem 2.4. Assume (1.6) and uy € H % Then there is a unique solution of (2.10) and (2.11) such
that

lunll, <C, ||Dun||<C, 0<t<T, (2.12)

where C = C(uo, T, y1,12) is a positive constant.

Proof. From (2.11) it follows that un(-,0) = Pnuo(:). The existence and uniqueness of the
initial problem follow from the standard ODE theory. Now we study the estimate.
Define an energy function:

F() = (H(un), 1) + 21 Dun, (2.13)

where H(s) = [; A(t)dt = (1/4)y2s* + (1/3)115° - (1/2)s?. Direct computation gives

dF _ auN auN _ auN _ 2 auN
ar <A(uN)/ 7) + <DuN,D7> = <PNA(MN),7> <D Uun, 7)
(2.14)
= <ag_t]_\]rPNA(uN) - Dzu]\]>.

Noticing that Py A(un) — D*un € Sy and setting vn = Py A(un) — D?uy in (2.10), applying
integration by part, we obtain

‘;—f = (m(uN)<D3uN - DPNA(uN)),D<PNA(uN) - DZuN)>
= - (m(un)(D*un - DPyA(un)), DPuy - DPx A(ux) ) (2.15)
< —mo||D(PxA(un) - D2u) ||2 <0.
Hence,
F(t) < F(0) = j: H (Pnug)ds + %HDPNuon, VO<t<T. (2.16)

Applying Young inequality, we obtain
uIZ\] < gu}{] + Cqg, u?\, < £u;1\, + Cy, (2.17)

where C;, and Cy, are positive constants. Letting € = 3y, /(8|y1]| + 12), then forall0 <t < T,

1 1 1
J‘ H(un)dx > J‘ <1qujl\, - 1|Y1u]3\,| - 1ui,)ulx > r J‘ (un)*dx - Ky, (2.18)
0 0 4 3 2 8 0
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where K; is a positive constant depending only on y; and y,. Therefore, we get

SIDux (b + 2 f (ux () *dx ~ Ky < 2IDun (B +f H(un (- £))dx
1 (2.19)
= F(t) < F(0) = f H(Pnuo)dx + ||DPyug|*.
0

Thus,
1
|Dun (-, £)|]> < 2K; +2F(0) = 2K, + 2f H(Pnug)dx + |DPnuol* £ C,
0

(2.20)
1

J (un(x, 1) dx < E(1<1 +F(0)) = 8 <1<1 +J H(Pnug)dx + —||DPNu0|| > 2,
0 Y2 )2

where C = C(up, y1,72) is a constant. By Holder inequality, we obtain

1 1 1/2 1 1/2 1 1/2
llun|)? :I u?vdx < <f u?vdx> <J 12dx> <’[ u‘}\]dx> . (2.21)
0 0 0 0

Therefore,

lunll <C,  ||Dun|<C (2.22)

From the embedding theorem it follows that

lunll, <C, VO<E<LT. (2.23)

O

Theorem 2.5. Assume (1.6) and let un(-,t) be the solution of (2.10) and (2.11). Then there is a
positive constant C = C(ug, m, T, y1,y2) > 0 such that

IDun|,, < C, ||D2uN|| <C. (2.24)
Proof. Setting vy = D*uy in (2.10) and integrating by parts, we get

Zdt |D2”N” < ”N)<D4”N DZPNA(”N)> D4uN)

+ (m’(uN)DuN <D3uN - DPNA(uN)>,D4uN> = 0.

(2.25)
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Consequently,
||D2uN“2 + <m(uN)D4uN, D4MN> = Il + Iz + 13,

where

I = (m(ux)D*Py A(un), Duy ),
L=~ <ml(uN)DuND3uN/D4uN>/

I3 = <m'(uN)DuNDPNA(uN), D4uN> .

Noticing (1.6), we have

||D2uN||2 + m0||D4uN||2 < %%”DZMNII2 + <m(uN)D4uN, D4uN>.

In terms of the Nirenberg inequality (2.7), there is a constant C > 0 such that

3/8
4 5/8
IDunl,, < C(||D ||l + ||u||),
3/4
2 1/4
IDunll,, < C<||D || 4 + ||u||>,

7/8
[oras], < (ot ).

Noticing the definition of the function A and the estimates in (2.12), we have

A, <C  [[AN],<C AN, <C

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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for some constant C = C(uo, T, y1,Y2) > 0. Applying Holder inequality and Young inequality,
for any € > 0,

it 10 ) O - [|

< Mol|A' ()|, - | D2un || D | + Moll A" un) ., - IDun NI D1l | D |

< eptun] corus] e[| 1) o]

s (2.31)

<ot clptn | +clrun] "+ clorus]
< 5“D4uN||2 + <:||D2uN||2 + §||D4uN||2 +C+ §||D4uN||2 +C

4 2 2 2
< 25||D uN” +C“D uN” +C,
where C = C(ug, m, T, 11, Y2, €) > 0 is a positive constant. Similarly, we obtain

112l < My [ Du || Dun||_[|D*un|
< c(lotun] 1) o]
<c(forun] ™+ otux]))
EHDA‘uN” +C+ = HD“uN“ +C
§£||D4uN|| +C,

|13 < My DPN Al - [Du] - | D |

< C||DPNA(MN)||00||D4”N||

< C(||D2PNA(uN) ||3/4||PNA(uN)||1/4 + ||PNA(uN)||> ||D4uN||

I/\

c([|o*Pr At | Aawnl 4 + ||A<uN>||)||D4uN||

IN

c([[pprvaw | tawn L + 1w, ) [Pl

< c(||p*Py At +1)||D4uN||
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< C(|p2Pvan)]|| + 1) || D*ux |
< c(||p2Aqw)| + 1) | Dtux|
(e (Y P

4 2
< €||D uN” +C.

(2.32)
Hence,
Sl + mo|Drun | < e s + | Dn |+ 233)
Taking € = m/8, we have
%%”DzuN”z + 2 Dt < | p2un| + . (2:34)
where C = C(up,m, T, y1,72) > 0 is a positive constant. Therefore,
S AP < cljpus| + c. (235)
From Gronwall inequality it follows that
[P < exet (|| 1) < exe™ (Do +1) <, 2.36)

where C = C(ug,m, T, y1,72) > 0 is a positive constant. According to the embedding theorem,
we have

|IDun|l,<C, 0<t<T, (2.37)

where C = C(ug,m, T, y1,Y2) > 0is a positive constant. O

Now, we study the error estimates between the exact solution u and the semidiscrete
spectral approximation solution uy;. Set the following decomposition:

u-un=1+e, 1 =u-Pnu, e =Pnu-un. (2.38)
From the inequality (2.6) it follows that

7]l <N (2.39)

Hence, it remains to obtain the approximate bounds of e.
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Theorem 2.6. Assume that u is the solution of (1.2)—(1.4), un € Sn is the solution of (2.10) and
(2.11), and m is smooth and satisfies (1.6), then there exists a constant C = C(ug, m, y1, y2) such that

lell < C(N"2+ [le(0)]]). (2.40)

Before we prove this theorem, we study some useful approximation properties.

Lemma 2.7. For any € > 0, we have
—(qu + DZe,D(m(uN)De)> < —mO”Dze“2 + 3£||Dze||2 + C<||e||2 + N‘4>, (2.41)

where C = C(ug, m, T, 1,2, €) > 0 is a positive constant.

Proof. Direct computation gives

- <D2q + D%, D(m(uN)De)>
- —<D2e,m(uN)D2e> - (D2q,m(uN)D2e)
- (qu, m’(uN)DuNDe> - <Dze, m’(uN)DuNDe>
-] Moo oo
+ My|| D2 IDun .. Dell + M | D2 |Dun .. | Del
<-mofloe] el e« 2o

M;||Dunll3,

D 2
e

+ M1||DMN||OO<||D3||2 + ||D211||2> + E||D26'||2 +

< —mo”DZeH2 + 2€||D2€||2 + <]ZI—§ + MlllDuN||oo> HD271||2

M?||Dun|?
1l Nllm>“De”2

M, ||D
+< l“ uN||oo+ 4e

< —mo|[ D]+ 2¢][ D] ¢ <T—f : M1||DuN||w> o]
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; (MlnDuNnm : M%”Z—:N”i’> |D%]|-lel

< —m0||Dze“2 + 25||Dze||2 + C”qu”2 + e”Dze“2 +Clle)?
< —mo||D2eH2 + 35||Dze||2 + c<||e||2 + ||D211||2>

< —m0||Dze“2 + 35||D26||2 +C(JlelP + N7,

(2.42)
where C = C(ug, m, T, 71,12, €) > 01is a positive constant. O
Lemma 2.8. For any € > 0, we have
2
(A(u) - Py A(un), D(m(un)De)) < 3sMg||D2e|| + c(||e||2 + N-4), (2.43)

where C = C(ug, m, T, y1, Y2, €) > 0 is a positive constant.

Proof. Noticing that

(A(u) = PN A(un), D(m(un)De))
= (A(u) - PNA(u), D(m(un)De)) + (PnyA(u) — PN A(un), D(m(un)De))

< A@) - PyA@)| - ID(m(ux)De)ll + || Prx (A, un) (u = un) ) | - 1D Gm(un) De)|

<l A@w) = Py A@)|| - IDOm(un)De) | + [ A, un) G+ &)|| - ID(m(un) De)l,
(2.44)

where

A(s,T) = 12 <s2 + ST + 7'2) +r(s+7)-1. (2.45)

From the boundedness of ux in Theorem 2.4 and the property of # in Lemma 2.3, it follows
that

((Z(u, un) ”m <C (2.46)
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Then we obtain
10 - nAGIE < ([ - P |+ i - P+ - Pl
<onNS([e], + 2], + |u|4>2 <CN%,
[AGun) (v )| < A un)| (lel? + 1nl) < (N + 1elP),
ID () Do) < 2||m(un)D2e]|” + 2]l (ury) DunyDe (2.47)
< 20| D%+ 22D 2 (| D2 el

M?||Dunl|,

lell?
2
MO

< 2M§||Dzeu2 + M5||D2e||2 +
<3M3[| D%+ Cllel?,

where C = C(ug, m,T,y1,y2) > 0 is a positive constant. By Cauchy inequality, for any ¢ > 0,
we have

(A(u) - PnA(un), D(m(un)De))

< IA@W) = Py AW - ID(mun)De)l| + |[ A, un) (1 + e)|| - ID(m(un) De)|
< SID(m D) + - |AG) - PR AG)IE + SID(mDe)IE + 5 || A un) (1 + )|

< 3.eMg||D2e||2 +C(JlelP + N7),
(2.48)

where C = C(up, m, T, 11,12, €) > 01is a positive constant. O

Lemma 2.9. Assume that u is the solution of (1.2)—(1.4), there exists a positive constant C =
C(uo, m,y1, y2) such that

(D*u- A(w), D(m(u) - m(ux))De) < % HDZe”2 +C(JlelP + N7, (2.49)

where C = C(ug, m, T, y1,Y2) > 0 is a positive constant.

Proof. By Lemma 2.3, we have

||D3u - DA(u)”m < HD3u||oo +||A"(w)Dul| < C. (2.50)
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In the other hand, it follows that
() ~ mun)l? < M~ unl? < M2 (llelP + [|n]]%). (251)
By the Young inequality,

<D2u - A(u), D(m(u) - m(uN)De)>

- (D3u ~DA(u), (m(u) - m(uN))De>

IN

|D% - DAG)||_Im() - mun)ll- 1Dl
< Cllm(u) - m(un)||[|De] (2.52)

< ellDell? + Cc(llell + |11l

< s||D2e”2 + CE<||e||2 + ||11||2>

Choosing ¢ = my/2 in the previous inequality, we obtain (2.49). O

Proof of Theorem 2.6. Setting v = e in (2.2), we obtain

(%,e) + <D2u - A(u),D(m(”)D€)> =0. (2.53)

Setting vy = e in (2.10), we get
(ag—tN,e> + (D?u - Py A(u), D(m(ux)De)) = 0. (2.54)

(2.53) minus (2.54) gives

<a€ > = - <Du2 - A(u), D(m(u) - m(uN)De)> - (Dzu - DZMN,D(m(uN)D6)>

¢ (2.55)
+ (A(u) - PN A(un), D(m(un)De)).
According to Lemmas 2.7, 2.8 and 2.9, we have
> D ell < —mo| 02|+ e[ D% + C (lel? + N )
. 35M§”D2e”2 +C(N® +[lefP) (2.56)

< (—mo + (4 + 3M§)g) ”D2e||2 + C<N’4 + ||e||2>.
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Sete=my/(4+ 3Mé), then there exists a positive constant C = C(ug, m, y1, y2) such that
2 el < C(llell® + N*). (2.57)
dt -

By Gronwall inequality, we have
lell < exp (lleoll + N2) < exp (lleoll + N2) < C(Jleoll + N72), (258)

where C = C(ug, m, T, y1,72) > 0 is a constant. O
Summig up the properties above, we obtain the following.

Theorem 2.10. Assume m(s) is sufficiently smooth and satisfies (1.6), u is the solution of (1.2)—
(1.4), and uy is the solution of (2.10) and (2.11). Then there exists a positive constant C =
C(uo,m, T,y1,y2) > 0 such that

e = unll € C(N7 + fluo ~uonl), - ¥t € (0,7). (259)

3. Full-Discretization Spectral Scheme

In this section, we apply implicit midpoint Euler scheme to discretize time variable and get
a full-discrete form. Furthermore, we investigate the boundedness of numerical solution and
the convergence of the numerical solutions of the full-discrete system. We also obtain the
error estimates between the numerical solution and the exact ones.

Firstly, we introduce a partition of [0, T]. Let 0 = to < t; < --- < t5, where t; = jh and
h = T/A is time-step size. Then the full-discretization spectral method for (1.2)—(1.4) reads:

Vo € S, find U}, € Sy (j=0,1,2,...,A) such that
<@v> T (D2Uf§”2 - pNA<uf§1,u§V>,D(rn(ﬁﬁm)Dv)) =0, (31
<U?V,v> — (up,v) =0, (3.2)
where ﬁxl/z = (Llf\}rl + U;'\])/Z and
Apg) = 2(9+ 0+ Pordg) + H(#+dpr ) -3 Br9). (I

The solution ll;\, has the following property.
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Lemma 3.1. Assume that U{V €SN (j=1,2,...,A) is the solution of (3.1)-(3.2). Then there exists
a constant C = C(ug, m, y1,Y2) > 0 such that

il << Joui]<c 6
Proof. Define a discrete energy function at time t; by

F) = Your[+ (1)), 63
Notice that

— ul - ul o U UL
(PG 1) =F()) - <Du5$”2,v% + ( PeAuR )

j+1 j
—j+1/2 ~r i\ Uy —Uy
- _ <D2uN —PNA<LI§V ,LI;V),—h >
(3.6)

Setting v = Dzﬁﬁm - PNA(le,Uf\]) € Sy in (3.1), we obtain

FEG+1) - F()

- —<m <U’§” 2) (Dﬁﬁ” g DPNA<U§J1,U{V)>, DN - DPyA(UY, u;,))

. 2
—ij+1/2
) <0,

<-mo| DUy "~ - DPyA(UY', Uy,

(3.7)
which implies
FG) < FO) = [P+ (i (uR) 1) @9
By (2.18), we have

f H(Uy)dx> % f () dx - K. (3.9)
0
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Then

ol 2 f (uh) - o < ol [+ [ (U ) = F()
< F0) = g [pus [+ (H(uR) ).

(3.10)

So we obtain

|pu || < 2K, + | DUy, || +2(H(U} ) 1) =y,

[y aes & (ks Sous o ((ua)n)) = co

(3.11)

where C; = Ci(ug,m,11,72) and C, = Ca(up, m,y1,)2) are positive constants. By Holder
inequality, we get

i Vae< ([ (1) 1/2<1/2 3.12
"= | (uh)'ax< ([ (uh)ax) <ci (312)
Therefore,

||u ||<(:1/4 (3.13)

By the embedding theorem, we obtain

||u “ <C (3.14)
where C = C(ug, m, 11, Y2) > 0 is a constant. O
Lemma 3.2. Assume that LIf\, eSN (j=12,..., ) is the solution of the full-discretization scheme

(3.1)-(3.2), then there is a constant C = C(ug, m, T, y1,y2) > 0 such that

||Du H <C, ”DZUf\I” <C (3.15)
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Proof. Setting v = 2D4U;1/2 € Sy in (3.1), we have

ul -ul —j+1/2
<¥ 20Uy

+ (D <m (ﬁ’;l/ 2) DUs"? - DPyA (i uk) >2D4ﬁ§§” 2)

pullt - paur i1 ; —j+1/2 —j+1/2 —j+1/2
= <—N h N,Dzux +D2u;\] + (m(UN >D4u]\] /2D4UN >

N (m’ <U§1/2> Dﬁxl/zD3ﬁE1/2, 2D4UZ1/2>
_ <m<ﬁ§§“ 2>D2PNA<U{Q1 +u)),20'uy 2)

- (m <U§J“ 2>DE§§” "DPvA(U} ul), 2D TN 2) - 0.
(3.16)

Therefore,

(s

—j+1/2 —j+1/2 _—j+1/2 —ij+1/2
=2<m’<uN )D3LIN DUy ', DUy >

2 ”DZLI{\]'F) . 2<m<ﬁj§1/2>D4ﬁ§1/2, D4U];/2>

¥ 2<m<ﬁ§\+,” 2>D2PNA<U];1,U§V>,D4E§“ 2) (3.17)
2 (T30 b A ), 0T
—H+ 41
By Nirenberg inequality (2.7), we have
[ourl, <c(lorun] ™ fusl ™« fui])
[out], <ot Jur ™« Jut])) 318)

[urll, <ol uk] ™ Jut])
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According to (3.14), we obtain

)l <c Jaa), <

)] e @< )], <
(3.19)

where C = C(ug, m, 11, y2) is a positive constant. By Young inequality, for any positive constant
e > 0, it follows that

|1] <2M, D3u]+1/2 ||Dl1]1\+,1/2 ]+1/2
C< ]+1/2 7/8 > —j+1/2
<C —j+1/2 15/8+C —j+1/2
2
2 j+1/2 j+1/2
<3 DUy || +C. +2 DUy +C£
2
+1/2
<e|puy | +c.

|| < 2m||D2A (U ul) | o't us'?

< oMy Ay (DUL!) + 243, DU DU + A% (DUL )’

a2+ anpeul ||| o
<c(lour]+ ot <Dw;1>2 ]
< c(||prult| + [oruk | + [pul | [lpui|| + ok puk|.) [pas
e o]« o], + oo
<c((Jout| - forun] o « o o) [
<c(our'| o] o

e[ (o o ol ),
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—ij+1/2

DU 1)4 /+1/2
N

g (
(o )]
Dl

—j+1/2

oAt ul)],

i

;+1/2

< c(|pevA(ul u s

<c([lpra(uituy)|

—j+1/2||? 1112
C. ||D2u§; +

—j+1/2

DUy, + |[D*UN

||D2u{V||2 + 1) e

C el ),

< ¢|| DT pult? e

]+1/2

g<||D2u§1

(3.20)
where C, = C.(ug,m, y1,72) > 0 is a constant. Therefore,
DUl [) +2mo
%(”D%{Jﬂ ”Dzu;\I” > + 2< <u§1/z>D4U’+1/2 D4LIK;1/2> (321)

T ”DZLI{V”2+1>.

Setting € = myg/2, there is a positive constant C = C(ug, m, y1, y2) such that

pul”?

TG E

(o[

||132u§;1

? < <1+ 2Ch >||D2u;\]|| %h. (3.22)

Denoted by C=cC/ (1 - Ch), if h is sufficiently small such that Ch <1/2, we have

[oul | < (14 cm ool |+ S

< (1+Cn) |y |+ Su (1 cn)
=1 (3.23)

< explitCH <||D2u§’V ||2 + th)

< exPéT<||D2LI0N||2 + CT) =C,
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where C' = C'(up,m,T,y1,y2) > 0 is a positive constant. By the embedding theorem, the
estimate (3.15) holds. O

Next, we investigate the error estimates for the numerical solution Uf\, to the exact
solution u(t;). Our analysis is based on the error decomposition denoted by

u(t)-UN=n+e, o/ =u(t)-Pyu(ty), € =Pyu(t;)-U. (3.24)

The boundedness estimate of 7/ follows from the inequality (2.6), that is, for any 0 < j < A,
there is a positive constant C = C(ug, m, y1, y2) such that

||| < e~ (3.25)

Hence, it remains to obtain the approximate bounds of e/. If no confusion occurs, we denote
the average of the two instant errors e/ and e/*! by /%

i j+1 J 4+ pitl
Sj+1/2 _ el +elt —j+1/2 _ n+n (3.26)
e 2 7 71 2 .

For later use, we give some estimates in the next lemmas.

Lemma 3.3. Assume that the solution of (1.2)—(1.4) is such that uy € L*(Qr), then

2 12 ut—ul, 1 tj ) 2
j+1 < j . _ N N —=j+1/2 =~ 14 2 —j+1/2
e[ < e 2 <ut<w> R ) o [ e
(3.27)
Proof. Applying Taylor expansion about ¢;,1/2, we have
P hoj2 B2 g 1 (02 2
_ *1/2 j* j
w =2 - St gy ) (t—t)) umdt,
, (3.28)
. . h W2 1 (=
Wt = V2 2y IR T 2 (b — ) upmdt.
2 8 2 )y,

Then

[ 9 tiv1/2 )
J‘ (t]'+1 — i’) umdt + f (t - tj) umdt . (329)

t]'+1/2 i’/‘
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From Holder inequality it follows that

. .12 2 2

12wt -y 1 1 2 sz 2
ui+ /2 T < ﬁ <' f (t]-Jrl - t) uedt|| + I (t - tj) Uy dt
tj+1/2 t]'
(3.30)
h3 tis1 )
S — ||um|| dt
320 ),

Noticing that for any v € Sy, we have

A ut -ul . 1 _ i . .
<ui+l/2 - %,v = ufl/z - %,v + %(37” - e],v>. (3.31)

j+1/2

Taking v = 2e in (3.31), we obtain

2 2 , ultt-ul, 4 i
)e]ﬂ _ ”e;” +2h ui+1/2 _ YN N Git1/2 ) _op ui+1/2 u u ok
h At
L gqi
o e s (332)
-_— t h 7
1 tjv . 2
+ —h4J‘ ||uttt||2dt +h|[eV?||.
o )
]
Taking v = &*'/% in (2.2) and (3.1), respectively, we have

<_a”<gj/2>,zf+m> + (D72 - A7), D(m(w ) D)) =0, (333)

ult - j+1/2 i i j+1/2
<¥,El+“2> + <D2E§§ —PNA(uf;,ugv),D<m<ﬁ§; )DEJ+1/2>> = 0.

(3.34)
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Comparing (3.33) and (3.34), we have

1
u;‘+1/2_ u]+ U] —j+1/2
t h
j+l i
e PUN DU b, () g
2 (3.35)
( A(W7?) - yA(uy uy), ( (LI’IJ”2>DEJ'+“2>>
( wit/2 _ ]+1/2> D< <u§1/2> _m<uj+1/2>)DEj+l/2>'

Now we investigate the error estimates of the three items in the right-hand side of the
previous equation.

Lemma 3.4. Assume that u is the solution of (1.2)—(1.4) such that Duy € L*(Qr), then there exists
a positive constant C; = C1(m, uo, T, y1,y2) > 0 such that

27 7i+1 217/
_ <D2uf+1/2_ DUy +DUy ( (u;\’;”z D—;+1/2 >
2

(3.36)
. 2 112
< _@ “DZEFLl/Z” + Cl <N—4 + “e] “ + e]+1 f utt | dt>
2
Proof. By Taylor expansion and Hoélder inequality, we obtain
' ) h tiv1/2
= u]+1/2— §u£+1/2+J‘t. (t—tj)uttdt/

/ (3.37)

) ) h 1/2 tiv1
Wt = 12y 2 (tjs1 — t)updt.
2 l’]‘+1/2

Therefore,

Loio in /2 _ 1 sz fis
5 (W + )~ = 2 (t—t))updt+ [ (tja —)ugdt ). (338)

tj tjv1/2
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By Holder inequality, we have

2

D? <uj+1/2 _ %(uj + uj+1>)
tiv1/2 ti1
D? f (t—t))uydt +J (tjs1 — t)uydt
tj tiv1/2

)

AN

1 ]+1/z tiv1/2 tis1 ) [ ) > 2
<7 (t-t)) dtL (D) dt+L (L1 —t)’dt L (D)
j j+1/2 j+1/2
1 <h l‘]+1/2 >2 h3 i ( > > 2
= - — utt dt + — Uyt dt
4 24 2 tiv1/2
1 h j+1
< ZL —4f D Uyt | dt.
(3.39)
Direct computation gives
) 1 ) ) 2 h3 tis1 2
2 j+1/2 _ — j j+1 2
‘D <u 2<u +u >> <% D utt” dt. (3.40)

Then

j+l i
(o))
2< i+1/2 ul+1 + u] > ( <u;\'}-1/2>DE]+1/2>>
> s

A
< ( w4l ulst v ul, > ( <u§1/2>DEj+1/z>>
2

D? <uf+1/2 _ Wt ”j> ’ . HD<m<U§§“2>DEi+l/2> ‘
2
B <D2<ﬁj+1/2 +Ej+1/2> < <U§1/2>DE”1/2>)

<
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3 plia 2 .
(5] Irala] (oo )
kj
- <D2ﬁ7“/ 2,m<U§$” 2>D257“/2) - <D2ﬁf“/ 2, m’(LI”” Z)DU]+1/ 2DEJ‘”/Z)
_ <D2§j+1/2’m(ﬁ?\’}rl/Z)DzEﬂl/z) _ (ngjn/z’m, <u1+1/2>DuJ+1/2DEj+1/2>

S R |
=0, + 0, + 05

<U§1/2>Du’ 2 pgitl/

(3.41)

By Cauchy inequality, it follows that

. W3 [t ) )2 172 s
|0l < —f Duydty - m<ll >D2‘f+/
%),
h3 tis1
12
% ),
W tje1
< Mps —
ey

i+1/2
DU

1/2
2 1/2 1/2 ;
Dzutt“ dt} ” (uﬁ ! >Du§ "2pgit12

1/2
[ar} e

{ K3 ftj+1
o 96 tj

2 . 2 . 2
|D2utt” dt + s||Dze]+1/2|| + s”De]+1/2||

+ M

) 1/2
Dzutt” dt} ||DE’*1/2||

tj1
< h3 Cls f
tj

i

) 2 . 2 .
< Cue [ ||t el e+ el |
£

Ej+1/2 ”

2 . 2 . 2
|D2u”” dt+2£||Dze]+1/2|| +£| e]+1/2|| ,

tj1
< h3 Cls f
tj

o w2 oo e
o0

j1/2)|?

2 DUN " £||DEj+1/2||2
2

1

IN

M? . 2 ¢ . 2
0 2_j+1/2 2—j+1/2
D ” +‘“D € “

2¢ “ L 2 2¢

IN

. 2 £ . 2 £ .
A L Bl

Z/+1/2 ”

- 2 —j+1/22 | € =j+1/2)2
< Coe[D2 2|+ e DZ A+ S
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+1/2 i i
< —mf| 0% 2 DTN e o
|| ~7it1/2 2
. 2 ¢ . 2 1 N . 2
S Lt e L R e
£

. 2 . 2 . 2
< —m0||Dze]+1/2| +£||Dze]+1/2| +C35”e]+1/2|| .

(3.42)
Then we obtain
<o + [od] +od < (e - mo [ | e | : | D (3.43)
e e

where Ci,, Cy,, and Cs, are positive constants. Choosing € = m/8, and terms of the properties
of the projection operator Py, we complete the proof of the estimate (3.36). O

Lemma 3.5. Assume that u is the solution of (1.2)—(1.4) such that uy € L*>(Qr) and u; € L*(Qr).
Then for any positive constant € > 0, there exists a constant C, = Co(m, uo, T, y1,72) > 0, such that

<A(uf”/2)—PNA”(u§G1,U5§), < <u]§m>sz+l/2>>
2
| +C2{ e
+h3<f |2t +
ti

< 72| pre il ||ef||2 +NS (3.44)

tis1
f ||ut||2dt> }
tj

]+1/2

Proof. Firstly, we consider
A<uj+1/2> _A'(ujﬂ’uj) - (uj+1/2>3 ¥ [(u”l) (u]”) + it <u1> < >
- <u;'+1/2> _ %

. 1, .
- <u]+1/2 - E(u”l + u7>> 2 Y2P1 + Yle P{v,

2
< ;+1 ]+1u; +

(3.45)
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Direct computation gives

tiv1/2

i tin A3 (hin ) 12
3] = 5 (= t; ) uydt +I (b - Ougdt|| < ( == [ Juelar )
tiv1/2 96 tj

o= )= sy o) - ) )]

< %H [Zufﬂ/2 - <u7+1 + uj>] [2”j+1/2 + (”jﬂ * ui)] “

+ 1” <uj+1/2 _ uj+1> <uj+1/2 n uj+1> n (uj+1/2 _ uj) (uj+1/2 + uj) ”
1 12 _ (i1 /2 (4 4
i O e ()
6 [°)
—At tjs1 . .
i =t J (tj1 = t)updt <u1+1/2 + u1+1>
6 2 tj+1/2
N tiv1/2 . .
+ <7u{+1/2 - I (t - t]-)uttdt> <u]+1/2 + u]>
t.

ti1 1]/2 /2
< CAt3/2< t ||utt||2dt> + < ) (2| dt> ’

j
- )) Sy )
< lz [Zuj”/z - <u7+1 + uf>] . [4<uf”/2>2 + 2<u7‘+1 + uf)uf”/2 + <uj+1 + uf>2] H

. . . 2 L L \2
% <u]+1/2 _ u“l) <(u]+1/2> S B S VoA <u]+1> )
i+1/2 _ +1/2\2 L i 2, (4 2
+<u]+ / —u7> (u“ / ) +ulu*Y (u]

tis1 2
< CAt3/2{ < ||utt||2dt> o e < [l dt> }
t; t;

]+1/2

+

(3.46)

Then

<A<u7+1/z> B PNA<U];1,U§V>, ( <u§1/2>DEj+l/2>>
< <u§1/2)DEj+1/2>

el rat S |
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( (ug\?/z)DEm/z) 2
D<m<u] 1/2>D_,+1/2> ?

wlae)-peaGe)|

= RO Rt RS
e CCATO R Ciol I

(o5
*gell ) - A ) e At ) - AU u

(3.47)

Direct computation yields

o (7o)

o) -rone o) zonc
)& ) < i i)

4Gy A u) [ < (il Il ) (e o+ on).

[+ e

2
B

< (M3 + M) |22

(3.48)

€j+1

where
Gl - Y2<<u1+1+u7”>2+(u§'§1+u{\]>2+<uf“+ufv>2>+%(u’§1+uf+1+u§v)—%,
Gl - §(<uf+uf )+ (uuufﬂ)%(uﬂuug)z) D (s v Ul - 2
(3.49)

Applying Lemma 2.3 and Theorem 3.7, we obtain that ||G1l|| < C(ug, m, T, 71, y2) and |Gz || <
C(uo,m, T, y1,Y2). Taking € = mo/4(Mj + M?) in (3.47), we have

(A(w*7?) - PyA(uy', ul), D(m/*12De %) )

o
|+C2

m . . 2 112 .
< T0||D2€]+1/2 |+ ”61” +N-8

3 tj+1 5
oy f Pt o™ [ Pt )
tj

where C; = Co(ug, m, T, y1,y2) > 0 is a constant. O

(3.50)

]+1/2
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Lemma 3.6. Assume that u is the solution of (1.2)—(1.4). Then there exists a positive constant C =
C(uo, m,y1,y2) > 0 such that

<D2uj+1/2 _ A<u7*1/2>,D<m (agl/Z) _ m<uj+1/2>>DEj+l/2>

2 2 tin

e ons o [t
tj

||D3uj+1/2 _ DA<uj+1/2> ” < ||D3uj+1/2
[ee]

(3.51)

m s s
< ™0 || D2 72

Proof. By (2.9), we have

ey
[oe]

[ee]

o o5

R
[oe] ee)

| <c

In the other hand,

Hm<ﬁ;1/2> 3 m<uj+1/2>

2 . 2
< M? (ﬁxl/z - uf”/Z)

. . 2
- 1
—j+1/2  w +u”
<ClUu

2

N 2

2
|+

j j+1
W+ j+1/2
5 U

(3.53)

< cllgi2

—j+1/2
Ui

2 h3 tje1
— dt.
[+ 5 [
]
By Young inequality, we obtain

<D2uj+1/2 _ A(uj”/z), D<m <U;1/2> _ m(uj+1/2>>DEj+1/2>

- —<D3uf+1/2 _ DA(uf“/Z),m(ﬁ];” 2) —m(1172) DEJ+1/2)
m<U§1/ 2) ~m(1+72)
[ cm(@ ) ()|
| () ~m( )
|2+Cg< |2 FNS 4R J‘:+l||utt||dt>.

Choosing ¢ = myg/4 in the previous inequality leads to (3.51). O

< ||D3u;'+1/2 _ DA<uj+1/z> ” ||DEj+1/2
(o]

< g”DEjJrl/Z (3'54)

2

< EHngﬁl/z E;+1/2

|+Cg

< gHDZE]+1/2 Zi+1/2

Finally, we obtain the main theorem of this paper.
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Theorem 3.7. Assume that u(x,t) is the solution of (1.2)—(1.4) and satisfies that

D*u e L*(Qr), wu € L*(Qr),

(3.55)
D*uy € L*(Qr), um € L*(Qr).

LI;V €SN (j=1,2,...,A) is the solution of the full-discretization (3.1) and (3.2). If h is sufficiently
small, there exists a positive constant C such that, forany j =0,1,2,..., A,

||ej+1

= ||Prtyn) - Uy’

< c(z\r2 + ||e0|| + Bh2>, (3.56)

t.
where B = [ (I|D?ugt||* + |usel® + [l || + maxossj {lar™ 2115 ) - [Pt

Proof. By (3.27), (3.36), (3.44), and (3.51), we have

4 tia

*30),
. pulit + DU . .
+2h{—<D2u”1/2 -—N N > N,D<m<ll§1/2>DE]+l/2>
+ (A(uj”/z) - A(leluf\f),l)(m <axl/z>DEj+1/2)>
(3.57)
+<D2u;'+1/2 _ A<uj+1/2>’ D<m (U;\*]‘l/z) _ m<uj+1/2>>DEj+1/2) }
2 12
j
“[le1)

2 i+1/2||2
(R T s W

. 2 112 . 2
eI < [l |

|t + b

ilI? 4 i1
< ”e]” +hCi( N~ +'e]+

f1

+ C2h4f

tj

where C; = Ci(m,up, T,y1,12) > 0 and C; = Ca(m,up,T,y1,y2) > 0 are constants. For
sufficiently small h such that C1h < 1/2, denoting C = 2(C; + C;), we obtain

ej+1

’ < <1+6h>||ej||2+é<hN_4+h4Bj>, (3.58)

where

A 2 172112
/2
B = [ (D] sl Dl [ | . (3.59)
t4

]
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By the Gronwall inequality of the discrete form, we obtain

| | < (1 + (~3h>j+1 ||e°||2 + C’zj: <1 + C’h>l<htN’4 + h4Bl>
1=0
< exp{é(j+1)h}{||eon2 +C’§j:(hN-4+h4Bl)} (3.60)
<

expl2+ Do e (s we ) |

1=0

Direct computation gives

j tis1 2 2
B < j (||D2uu|| + a2+ ] + max_{ ) } : ||ut||2)dt. (3.61)
=0 0 0<I<j =]
Then we complete the conclusion (3.56). O

Furthermore, we get the following theorem.
Theorem 3.8. Assume u is the solution of (1.2)—(1.4) and satisfies that
D'ue L*(Qr), wu €L*(Qr),

(3.62)
D*uy € L*(Qr), wm € L*(Qr).

LI{V € Sy (j = 1,2,...,A) is the solution of the full-discretization scheme (3.1)-(3.2), and U°
satisfies ||e°] = ||[Pnu’ — U°|| < CN7 If h is sufficiently small, there exists a constant C =
C(uo,m,T,y1,Y2) > 0 such that

”u(x, ) - u{V” < C(N’Z + h2>, i=1,2,...,A (3.63)

4. Numerical Experiments

In this section, we apply the spectral method described in (3.1) and (3.2) to carry out
numerical computations to illustrate theoretical estimations in the previous section. Consider
(2.2) with settings:

m(s) = my + s, A(s) =s° -5, (4.1)



Journal of Applied Mathematics 31

1074

O = N W e 01 O X

(a)

Figure 1: The development of the solution of the full-discrete scheme when initial value is uy(x) =
x5(1 - x)° (a) and ug(x) = x°(1 - x)%e* (b).

where my > 0 is a constant. The full-discretization spectral method of (2.2) and (2.3) reads:
find U;V = Zﬁo ajcoslrx (j=1,2,...,A) such that

ull -ul pult! + paul YRR
N N N N J+1 4]
<—h o) —5—- PNA<LIN ,uN),

27 7i+1 217/
D<m<D ull 2+D UN>D0>> o, 4.2)

<U?V,v> — (ug,v) =0.

In our computations we fix N = 32 and choose five different time-step sizes hy (k =
1,2,...,5). Let A be the integer with hxAx = T. Since we have no exact solution of (2.2) and
(2.3), we take N = 32 and hg = 0.15625 x 10~* to compute an approximating solution le] with
hoA¢ = T and regard this as an exact solution. we also choose five different time-step sizes
hi (k=1,2,...,5) with hAx = T to obtain five approximating solutions ng (k=1,2,...,5)
and compute the error estimation. Define an error function:

" ) 1/2
err(T, hy) = <’[ <ng - Uﬁ) dx> . (4.3)
0

This function characterizes the estimations with respect to time-step size.

4.1. Example 1

Take my = 1 and T = 0.1. We also take two different initial functions uj(x) = x°(1 - x)° and
uy = x°(1- x)°e* to carry out numerical computations. Figure 1 shows the development of
the solutions for time ¢ from ¢ = 0 to t = 0.1 with fixed step-size hy = 0.15625 x 10~*.
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Figure 2: The development of the solution of the full-discrete scheme with initial value u(x) = x3(1 - x)°
(a) and up(x) = x°(1 - x)°e* (b).

0.6

04 02 0

(a)

- 0.1

(b)

- 0.1

Figure 3: The development of the solution of the full-discrete scheme with initial value uo(x) = x5(1 - x)°
(a) and up(x) = x°(1 - x)°e* (b).

Table 1: The error and the convergence order.

hi err1(0.1, hy) Order; erry (0.1, hy) Order,
0.1 x 1072 0.2441 x 10°° — 0.2114 x 107° —

0.5x 1073 0.6332 x 1077 1.9466 0.5414 x 1077 1.9651
0.25x 1073 0.1186 x 1077 2.4159 0.1115 x 1077 2.2799
0.125 x 1073 0.1938 x 1078 2.6142 0.1901 x 1078 2.5515
0.625 x 107 0.2504 x 1070 2.9518 0.2483 x 107 2.9368

Table 2: The error and the convergence order.

hy erry (0.1, hy) Order; erry (0.1, hy) Order,
0.1 x1072 0.4748 x 1078 — 0.8864 x 1078 —

0.5%x 1073 0.8348 x 107° 2.5077 0.1577 x 1078 2.4907
0.25 x 1073 0.1370 x 107° 2.6069 0.2440 x 107° 2.6922
0.125 x 103 0.2694 x 10710 2.3467 0.4457 x 10710 2.4525
0.625 x 10~ 0.6398 x 10711 2.0741 0.1059 x 10710 2.0736
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Table 3: The error and the convergence order.

hy erry (0.1, hg) Ordery err(0.1, ) Order,
0.1x1072 0.1150 x 1075 — 0.5224 x 107 —

0.5%x 1073 0.2872 x 10°° 2.0013 0.1304 x 1075 2.0019
0.25 x 1073 0.7158 x 1077 2.0043 0.3250 x 107° 2.0044
0.125 x 1073 0.1769 x 1077 2.0170 0.8031 x 107 2.0171
0.625 x 107 0.4211 x 1078 2.0704 0.1912 x 1077 2.0704

We also choose five different time-step sizes hy to carry out numerical computations
and apply the error function in (4.3) to illustrate the estimation and convergence order in
time variable ¢, see Table 1.

4.2, Example 2

Take mg = 0.05 and T = 0.1. We also take two different initial functions ué(x) =x5(1-x)° and
uj = x°(1 - x)°e* to carry out numerical computations. Figure 2 shows the development of
the solutions for time ¢ from ¢ = 0 to ¢ = 0.1 with fixed step-sizes hy = 0.15625 x 107%.

We also choose five different time-step sizes hy to carry out numerical computations
and apply the error function in (4.3) to illustrate the estimation and convergence order in
time variable ¢, see Table 2.

4.3. Example 3

Take my = 0.005 and T = 0.1. We also take two different initial functions u(l)(x) =x°(1-x)°

and u3 = x°(1 - x)°e* to carry out numerical computations. Figure 3 shows the development
of the solutions for time ¢ from ¢ = 0 to ¢ = 0.1 with fixed step-sizes hy = 0.15625 x 107%.

We also choose five different time-step sizes hy to carry out numerical computations
and apply the error function in (4.3) to illustrate the estimation and convergence order in
time variable ¢, see Table 3.
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