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The main result of this paper is to show that the three ancient bankruptcy situations from the 2000-
year-old Babylonian Talmud can be solved by using the average lexicographic value (Alexia) from
cooperative game theory.

1. Introduction

This paper is based on the results of Guiasu [1] who solves the three ancient problems,
namely, the bankruptcy problem, the contested garment problem, and the rights arbitration
problem, from the 2000-year-old Babylonian Talmud by using the Shapley value [2] from
cooperative game theory. We also refer to such games as a TU (transferable utility) game. The
main objective of Guiasu [1] is to show that the Shapley value can be used for justifying the
ancient solutions given to all these three problems viewed as cooperative n-person games.

Recently, Tijs et al. [3] introduce the average lexicographic (Alexia) value, a value
which averages the lexicographicmaxima of the core [4], for gameswith a nonempty core and
show that the Alexia value coincides with the Shapley value for the class of convex games.
Further, Curiel et al. [5] show that bankruptcy games are convex.

We notice that two solution concepts are dominant in game theory. One is the Nash
equilibrium set [6], and the other is the core. There are remarkable similarities if one looks
at the role of the Nash equilibrium set in noncooperative game theory and the role of the
core in cooperative game theory. Noncooperative games without Nash equilibria as well as
cooperative games with an empty core are not very attractive for a game theorist and also not
in practice.

In the sequel we show that the Alexia value can also be an alternative to the Shapley
value for the solution of these problems, and note that in general the most popular one-point
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solution concepts such as the Shapley value for general TU-games do not provide a core
element as a solution, but the Alexia value provides a core element as a solution for all games
with a nonempty core.

Bankruptcy situations and the problems from the Talmud have been intensively
studied in literature [7–10]. In this study we aim to give a uniform method by using the
Alexia value for solving these problems which is done by Guiasu [1] by using the Shapley
value.

We first consider the bankruptcy problem which is known as Talmudic problem of
three wives. In the story a man married with three women and promised them in their
marriage contract the sum of d1 = 100, d2 = 200, and d3 = 300 units of money after his
death. But, the estate E was less than 600 units. The division of the estate among the three
wives is as follows: for E = 100, the wives get 33(1/3), and 33(1/3), 33(1/3), for E = 200
the wives get 50, 75, and 75, and for E = 300 the wives get 50, 100, and 150, respectively
(cf. [11]).

The second story is called the contested garment problem. The two hold a garment
and one of them wants all and the other half of it. Then the division of the garment is three
quarters for the former one and one quarter for the latter one (cf. [7]).

Finally, we look at the right arbitration problem. The story is based on a father and his
four sons. The father Jacob willed different units of money from his estate to his four sons.
So after his death, the four sons produced different deeds, and all of them bear the same
date. The son Reuben produced a deed duly witnessed that Jacob willed to him the entire
estate on his death, the son Simeon produced a deed that his father willed to him half of the
estate, the son Levi produced a deed giving him one third, and the son Judah produced a
deed giving him one forth. Assuming that the estate is E = 120 the division between the sons
is 7(1/2), 10(5/6), 20(5/6), and 80(5/6), respectively (cf. [7]).

Following the steps of Guiasu [1], we show that the division of the estate for these
three ancient problems may be obtained by using the Alexia value if the bankruptcy problem
is viewed as being a cumulative game and the rights arbitration problem is viewed as being a
maximal game. In a cumulative TU game the members are not willing to reach a compromise
and share their claims. So the values of the characteristic function for the coalitions are
calculated additively. On the other hand in a maximal TU game the members of the coalition
are willing to reach a compromise and share their claims. For this reason the values of the
characteristic function for the proper coalitions are calculated by taking into account the
maximum claim.

The paper is organized as follows. In Section 2, we give some preliminaries from
cooperative game theory which are necessary in the following sections. The model and the
general solution is given in Section 3. Section 4 gives solutions to the three Talmudic problems
by using the Alexia value. Finally, we conclude in Section 5.

2. Preliminaries

A cooperative game in coalitional form is an ordered pair 〈N,v〉, where N = {1, 2, . . . , n} is
the set of players, and v : 2N → R is a map, assigning to each coalition S ∈ 2N a real number,
such that v(∅) = 0. We identify a game 〈N,v〉with its characteristic function v and denote by
GN the set of cooperative games with player set N. In this paper we assume that v ∈ GN is
monotonic, that is, v(S) ≥ 0 and v(S1) ≤ v(S2) if S1 ≤ S2.
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A map λ : 2N \ {∅} → R+ is called a balanced map if
∑

S∈2N\{∅} λ(S)e
S = eN . Here, eS

is the characteristic vector for coaliton Swith

eSi :=

{
1, if i ∈ S

0, if i ∈ N \ S. (2.1)

An n-person game 〈N,v〉 is called a balanced game if for each balanced map λ : 2N \ {∅} →
R+ we have

∑
S∈2N\{∅} λ(S)v(S) ≤ v(N).

The core of a game 〈N,v〉 is the set

C(v) =

{
x ∈ R

N |
∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S) ∀ S ∈ 2N \ {∅}
}
. (2.2)

A game is called balanced if its core is nonempty [12, 13].
An order (permutation) σ is a bijective function σ : N → N = {1, 2, . . . , n}, where

σ(k) denotes the player at position k ∈ {1, 2, . . . , n} in the order (permutation) σ. The set of
all orders (permutations) of N is denoted with Π(N).

The set Pσ(i) = {r ∈ N | σ−1(r) < σ−1(i)} consists of all predecessors of i with respect
to the order (permutation) σ.

Let v ∈ GN and σ ∈ Π(N). The marginal contribution vector with respect to σ and v is
denoted by mσ(v) ∈ R

n. This vector has the value mσ
i (v) = v(Pσ(i) ∪ {i}) − v(Pσ(i)) for each

i ∈ N in it’s ith coordinate.
The Shapley value φ(v) of a game v ∈ GN is the average of the marginal vectors of the

game, that is, φ(v) = (1/n!)
∑

σ∈Π(N) m
σ(v).

For a balanced game 〈N,v〉 and an order σ ∈ Π(N), the lexinal λσ(v) ∈ R
N is defined

as the lexicographic maximum on C(v)with respect to σ, that is,

λσσ(k)(v) = max
{
xσ(k) | x ∈ C(v), xσ(1) = λσσ(l)(v) ∀ l ∈ {1, 2, . . . , k − 1}

}
, (2.3)

for all k ∈ {1, 2, . . . , n}.
The lexinal is recursively defined such that every player gets the maximum he can

obtain inside the core under the restriction that the players before him in the corresponding
order obtain their restricted maxima.

For a balanced game 〈N,v〉, the Alexia value α(v) is defined as the average over the
lexinals as follows:

α(v) =
1
n!

∑
σ∈Π(N)

λσ(v). (2.4)

A game v ∈ GN is called convex if and only if v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T) for
each S, T ∈ 2N .

The following example demonstrates the definitions above.

Example 2.1 (See [14]). Let v ∈ GN be a two-person-balanced game. Then, v(1, 2) ≥ v(1)+v(2)
and C(v) = conv{v(N) − v(2), v(2)}.
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3. The Model and the Solution

A bankruptcy situation with set of claimantsN is a pair (E, d), where E ≥ 0 is the estate to be
divided, and d ∈ R

N
+ is the vector of claims such that

∑
i∈N di ≥ E. We assume without loss of

generality that d1 < d2 < · · · < dn.
If the values (v({1}), . . . , v({n})) of v are given, then for each subset of players

{i1, i2, . . . , ik} the characteristic function v of the corresponding cooperative cumulative game
is defined by

v({i1, i2, . . . , ik}) = min{v({i1}) + v({i2}) + · · · + v({ik}), E}, (3.1)

for all k = 2, 3, . . . , n.
If the values (v({1}), . . . , v({n})) of v are given, then for each subset of players

{i1, i2, . . . , ik} the characteristic function v of the corresponding cooperative maximal game
is defined by

v({i1, i2, . . . , ik}) = min{max{v({i1}), v({i2}), . . . , v({ik})}, E}, (3.2)

for each k = 2, 3, . . . , n.
To each bankruptcy situation (E, d) one can associate a bankruptcy game v defined by

v({i}) = min{di, E} for each i = 1, 2, . . . , nwhich can be considered as an arbitrary cumulative
or maximal TU game.

Then the Alexia value for each player is αi(v) = E/n for each i = 1, 2, . . . , n.
Accordingly for a cumulative game

v({i}) = min{di, E} = E for each i = 1, 2, . . . , n,

v({i1, i2, . . . , ik}) = min{v({i1}) + v({i2}) + · · · + v({ik}), E} = E,
(3.3)

for each k = 2, 3, . . . , n.
On the other hand for a maximal game

v({i}) = min{di, E} = E for each i = 1, 2, . . . , n,

v({i1, i2, . . . , ik}) = min{max{v({i1}), v({i2}), . . . , v({ik})}, E} = E,
(3.4)

for each k = 2, 3, . . . , n.
Then the Alexia value is also αi(v) = E/n for each i = 1, 2, . . . , n.

Remark 3.1. As it is stated more detailed in Guiasu [1] the division of the estate in the
bankruptcy problem can be interpreted as the judge looking at the game as a cumulative
game with the wives that does not want to compromise and share parts of their claims.
The division of the estate in the rights arbitration problem can be interpreted as the judge
looking at the game as a maximal game supposing that the four brothers want to reach a
compromise and share parts of their claims when they form a coalition. Conversely in the
contested garment problem since there are no proper coalitions in the total setN = {1, 2}, the
two claims d1, d2, and the estate E completely determine the game.
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Remark 3.2. Guiasu [1] show that the three bankruptcy situations from the Talmud can be
modeled by using the cumulative or maximal TU games, and their solution can be found by
using the Shapley value. Further, Tijs et al. [3] show that if a game is convex, then φ(v) =
α(v), and Curiel et al. [5] states that bankruptcy games are convex. In view of these results
we conclude that the solution of the three TU games that we have constructed can also be
calculated by using the Alexia value.

Before closing this section, we note that we also have to consider the generalized
situation d1 < d2 < · · · < dm−1 < E ≤ dm < · · · < dn. Then the game is constructed as
follows:

v(∅) = 0, v({i}) = di, for each i = 1, 2, . . . , m − 1,

v({i}) = dm−1 +
(E − dm−1)
(n −m + 1)

, for each i = m, . . . , n.
(3.5)

As an interpretation the claim of the first m − 1 players whose claims are less than the estate
E can claim di, but the other n−m+ 1 players whose claims are more than the estate E cannot
claimmore than dm−1 plus the excess of the remaining estate E−dm−1 equally divided between
them.

4. Solution of the Bankruptcy Situations from the Talmud

We first consider the solution of the Talmudic problem with three wives. In this situation the
estate will be divided between the three wives so N = {1, 2, 3}. We assume that the game to
be constructed is cumulative. We give solutions according to the following cases.

(i) For n = 3,m = 1 we have the situation E ≤ d1 < d2 < d3. The game is constructed as
follows: v(∅) = 0, v(S) = d1 otherwise, and the solution is α(v) = (1/3)(E, E, E).
So for E = 100, d1 = 100, d2 = 200, and d3 = 300, the solution is α(v) =
(33(1/3), 33(1/3), 33(1/3)).

(ii) For n = 3, m = 2 we have the situation d1 < E ≤ d2 < d3. Then the game is
constructed as follows:

v(∅) = 0, v({1}) = d1, v({2}) = d1 +
(E − d1)

2
, v(S) = E otherwise, (4.1)

and α(v) = (1/12)(2(E + d1), 5E − d1, 5E − d1). So for E = 200, d1 = 100, d2 = 200,
and d3 = 300, the solution is α(v) = (50, 75, 75).

(iii) For n = 3, m = 3 we have the situation d1 < d2 < E ≤ d3. Then the game is
constructed as follows: v(∅) = 0, v({1}) = d1, v({2}) = d2,

v({1, 2}) = min{d1 + d2, E} =

{
d1 + d2, d1 + d2 < E

E, d1 + d2 ≥ E,
(4.2)

v(S) = E otherwise.
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For d1+d2 < E the solution is α(v) = (d1/2, d2/2, E−((d1+d2)/2)), and for d1+d2 ≥ E,
α(v) = (1/6)(E + 2d1 − d2, E − 2d2 − d1, 4E − d1 − d2). So for E = 300, d1 = 100, d2 = 200, and
d3 = 300, the solution is α(v) = (50, 100, 150).

Next we consider the solution of the congested garment problem. In this situation
N = {1, 2} and d1 < E = d2, that is, n = m = 2. We have a two-person game, so the game
is same if we take either maximal or cumulative. Then the game is constructed as follows:
v(∅) = 0, v({1}) = d1, v({2}) = E, and v(N) = E. The Alexia value α(v) is (d1/2, E − (d1/2)).
So for E = 1, d1 = 1/2, d2 = 1, the solution is α(v) = (1/4, 3/4).

Finally, we look at the solution of the rights arbitration problem. Here the estate will
be divided between the four sons, so N = {1, 2, 3, 4}. The claims of the sons can be written
as d1 < d2 < d3 < E = d4, that is, n = m = 4. We assume that the game is maximal. Then the
game is constructed as follows: v(∅) = 0, v({1}) = d1, v({2}) = d2, v({3}) = d3, v({4}) = d4,
v({1, 2}) = d2, v({1, 3}) = v({2, 3}) = v({1, 2, 3}) = d3, v(S) = E, otherwise.

The solution is α(v) = (1/12)(3d1, 4d2 − d1, 6d3 − d1 − 2d2, 12d4 − d1 − 2d2 − 6d3). So for
E = 120, d1 = 30, d2 = 40, d3 = 60, d4 = 120, α(v) = (7(1/2), 10(5/6), 20(5/6), 80(5/6)).

In the sequel we show that the three ancient problems from Babylonian Talmud can
be solved by using the Alexia value from cooperative game theory. The calculations for
the Talmudic problems above are done by using the Alexia value, and it is seen that they
are equal to the Shapley value. We also notice that each situation is modeled by using
bankruptcy games. We know that each bankruptcy game is convex (see Curiel et al. [5]),
and for each convex game the Shapley value and the Alexia value are equal (see Tijs et
al. [3]). Finally, we notice that the iterative solutions of the three ancient problems by
using the Alexia value are straightforward by following the procedure given by Guiasu
[1].

5. Concluding Remarks

In this paper we give an alternative solution, the Alexia value from cooperative game theory,
to solve the three ancient bankruptcy situations from the 2000-year-old Babylonian Talmud.
Our intuition and results are based on Guiasu [1]who used the Shapley value for the solution
of these problems. Since each situation is modeled by using bankruptcy games, we used the
result of Curiel et al. [5] that each bankruptcy game is convex and the result of Tijs et al. [3]
that for each convex game the Shapley value and the Alexia value are equal.

Notice that the Alexia value is an interesting alternative to the Shapley value because
the Alexia value provides a core element as a solution for all games with a nonempty core.
Moreover it can be seen as a run-to-the-core rule for games with a nonempty core. To be more
precise every lexinal player is running to the core according to a certain order where every
player takes the maximum he can obtain within the subset of the core that remains after the
players before him have made their respective choices. Further, the Alexia value combines
two often applied arguments with respect to choosing an allocation: using orderings of the
players, and at the same time respecting the fairness criterion of the core. Hence, the Alexia
value combines the attractive properties of the Shapley value.
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