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We propose new iterative schemes for finding the common element of the set of common fixed
points of countable family of nonexpansive mappings, the set of solutions of the variational
inequality problem for relaxed cocoercive and Lipschitz continuous, the set of solutions of system
of variational inclusions problem, and the set of solutions of equilibrium problems in a real Hilbert
space by using the viscosity approximation method. We prove strong convergence theorem under
some parameters. The results in this paper unify and generalize some well-known results in the
literature.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping S of C into
itself is called nonexpansive if ||Sx — Sy|| < [|x — y|| for all x,y € C. We denote by F(S) the
set of fixed points of S; that is, F(S) = {x € C : Sx = x}. If C C H is nonempty, closed
and convex and let S : C — C be a nonexpansive mapping, then F(S) is closed and convex
and F(S) #0, when C is bounded; see, for example, [1, 2]. The metric projection, Pc, onto a
given nonempty, closed and convex subset C, satisfies the nonexpansive with F(Pc) = C. A
mapping B : C — C is called monotone if (Bx — By,x —y) > 0 for all x,y € C. A mapping
B : C — Cis called p-inverse-strongly monotone if there exists a constant f > 0 such that
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(Bx — By, x —y) > Bllx — y||? for all x,y € C. A mapping B : C — C is called relaxed
(¢, w)-cocoercive if there exists ¢, w > 0 such that

(Bx~By,x~y) > (-9)||Bx - By|* + wllx -y, vxyecC (1.1)

A mapping B : C — C is said to be ¢-Lipschitz continuous if there exists ¢ > 0 such
that

|Bx ~By|| <¢llx -y

, VYx,yeC. (1.2)

Let B: H — H be a single-valued nonlinear mapping and M : H — 2 a
multivalued mapping. The variational inclusion problem is to find X € H such that

0 € B(X) + M(X), (1.3)

where 0 is the zero vector in H. The set of solutions of problem (1.3) is denoted by I(B, M).
If M = 0gc, where C is a nonempty closed convex subset of H and dgc : H — [0, +o0] is the
indicator function of C; that is,

0, xeC,
= 14
ye(x) {+oo, x ¢ C, (14)

then, the variational inclusion problem (1.3) is equivalent to the variational inequality
problems denoted by VI(C, B) which is to find X € C such that

(Bx,y-X)>0, VyeC. (1.5)

In 2003, Takahashi and Toyoda [3] to find x* € F(S)NVI(C, B) introduced the following
iterative scheme:

xo € C chosen arbitrary, (1.6)
Xns1 = anXp + (1 = ay )SPc(xy = §nBxy,), Vn2>0, '

where B is a f-inverse-strongly monotone mapping, {a,} is a sequence in (0, 1), and {¢,} isa
sequence in (0,2p). They showed that if F(S) N VI(C, B) is nonempty, then the sequence {x,}
generated by (1.6) converges weakly to some x* € F(S) N VI(C, B).

In 2008, Zhang et al. [4] to find x* € F(S) N I(M, B). They introduced the following
new iterative scheme:

xo € C chosen arbitrary,

Yn = Jma(xn — ABxy), (1.7)
X1 = anX + (1 —an)Syn, Vn 20,

where Jap) = (I +AM )71 is the resolvent operator associated with M and a positive number
A, {a,} is a sequence in the interval [0, 1].
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Let F be a bifunction of CxC into R, where R is the set of real numbers. The equilibrium
problem for F : C x C — Ris to find X € C such that

F(Zy)>0, VyeC (1.8)

The set of solutions of (1.8) is denoted by EP(F). Many problems in applied sciences, such as
monotone inclusion problems, variational inequality problems, saddle point problems, Nash
equilibria in noncooperative games, as well as certain fixed-point problems reduce to finding
some element to EP(F) in Hilbert and Banach spaces (see [5-14]).

Given any r > 0. The operator T, : H — C defined by

Tr(x)={zeC:F(z,y)+%<y—z,z—x>20, VyeC}, (1.9)

is called the resolvent of F (see [5, 6]).
It is shown in [6] that, under suitable hypotheses on F (to be stated precisely in
Section 2), T, : H — C is single valued and firmly nonexpansive and satisfies

F(T,) =EP(F), Vr>O0. (1.10)

Using this result, for finding an element of F(S) N VI(C,B) N EP(F), Su et al. [15]
introduced the following iterative scheme by the viscosity approximation method in Hilbert
spaces:

xo € C chosen arbitrary,

1.11
Xn41 = Onf (xy) + (1 —a,)SPc(I - ¢,B)T,,x,, VYn2>0, ( )

where f : C — C is a contraction (i.e., ||f(x) = f(y)|| < ¢llx —y|,for all x,y € C and 0 <
¢ <1)and {a,} C (0,1), ¢ C (0,2B), and r, C (0, o0) satisfy some appropriate conditions.
Furthermore, they prove {x,} converges strongly to the same point x* € F(S) n VI(C, B) N
EP(F), where x* = Pr(s)avi(c,B)nep(F) f (X*).

In this paper, motivated and inspired by the above facts, we introduce a new iterative
scheme for finding a common element of the set of solutions of the variational inequalities
for p-Lipschitz continuous and relaxed (¢, w)-cocoercive mapping, the set of solutions to
the variational inclusion for family of a-inverse strongly monotone mappings, the set of
fixed points of a countable family of nonexpansive mappings, and the set of solutions of
an equilibrium problem in a real Hilbert space by using the viscosity approximation method.
Strong convergence results are derived under suitable conditions in a real Hilbert space.

2. Preliminaries

In this section, we will recall some basic notations and collect some conclusions that will be
used in the next section.

Let H be a real Hilbert space whose inner product and norm are denoted by (-, )
and | - ||, respectively. We denote strong convergence of {x,} to x € H by x, — x and



4 Journal of Applied Mathematics

weak convergence by x, — x. Let C be nonempty closed convex subset of H. Recall
that for all x € H there exists a unique nearest point in C to x denoted Pcx; that is,
llx = Pcx|| < ||x —yl|, for all y € C. The mapping Pc is nonexpansive; that is, ||Pcx — Pcy|| <
lx = yll, for all x,y € H. The mapping Pc is firmly nonexpansive; that is, ||Pcx — Pcy|* <
(Pcx — Pcy,x —y), for all x,y € H.Itis well known that

% € VI(C,B) & ¥ = Pc(¥ - ABX), VA>0. (2.1)

A set-valued mapping M : H — 2 is called monotone if, for all x,y € H, f € Mx and
g € My imply (x -y, f — g) > 0. A monotone mapping M : H — 2 is called maximal, if
its graph of any Graph (M) = {(x, f) € Hx H | f € M(x)} of M is not properly contained
in the graph of any other monotone mapping. It is well known that a monotone mapping M
is maximal if and only if for all (x, f) e Hx H,(x -y, f — g) >0, for all (y,g) € Graph (M)
(the graph of mapping M) implies that f € Mx.

Definition 2.1. Let M : H — 2H be a multivalued maximal monotone mapping; then the
set-valued mapping Jam, : H — H defined by

Jva(®) = I+ AM) (%), VXeH, (2.2)

is called the resolvent operator associated with M, where \ is any positive number and I is
the identity mapping.

Lemma 2.2 (see [16]). Let M : H — 2 be a maximal monotone mapping and let B: H — H
be a Lipschitz continuous mapping. Then the mapping M + B : H — 2H is a maximal monotone

mapping.
Lemma 2.3 (see [16, 17]).

(1) The resolvent operator |y , is single valued and nonexpansive for all A > 0; that is,

ITma () = Tama (w) || < lx-y|l, Vx,yeH VA>0. (2.3)

(2) The resolvent operator Jam,y is 1-inverse-strongly monotone; that is,

173 (%) = Tasa (D1 < (2= v, Tia (%) = Ima (y)),  ¥x,y € H. (2.4)

Lemma 2.4 (see [17]).
(1) Let X € H is a solution of problem (1.3) if and only if X = Jpm (I — AB) for all A > 0; that

is,

I(B,M) = F(Jm.(I - AB)), VA >0. (2.5)

(2) If A € [0,2P], then I(B, M) is a closed convex subset in H.



Journal of Applied Mathematics 5

Lemma 2.5 (see [18]). Each Hilbert space H satisfies Opial’s condition; that is, for any sequence
{xn} C H with x, — x, the inequality

lim infl|x, — x|| <lim inf[|x, ~ y (2.6)

holds for each y € H with y # x.

Lemma 2.6 (see [19]). Let {x,} and {z,} be bounded sequences in a Banach space E, and let {3, } be
a sequence in [0,1] with 0 < liminf, _, B, < limsup, B, < 1. Suppose xp11 = (1= Pu)zn + PnXn
forall integers n > 1 and limsup,, _, _ (I|zn+1 = Zall = [|Xns1 = x4l]) < 0. Then, lim,, _, ||z, — x4 = 0.

Lemma 2.7 (see [20]). Assume {a,} is a sequence of nonnegative real numbers such that

an1 <(1-bya,+6, n>0, (2.7)

where {by,} is a sequence in (0,1) and {6, } is a sequence in R such that
(1) 2521 bu = oo,
(2) limsup,, _, _6,/by <007 377 |64 < c0.

Then lim,, _, wa, = 0.

Lemma 2.8. Let H be a real Hilbert space. Then hold the following identities:

(@) llex + (1= Dyl = tlxl® + 1= Dlyl* - 11 = Dllx - yI, ¥t € [0,1], Vx,y € H,

(i) lx + yII* < [Ix[* +2(y, x +y), ¥x,y € H.
Lemma 2.9 (see [21]). Let C be a nonempty closed subset of a Banach space, and let {S,} be a
sequence of mappings of C into itself. Suppose that 37", sup{||Sy+1z — Sazl|| : z € C} < oo. Then,

foreach y € C, {Spy} converges strongly to some point of C. Moreover, let S be a mapping of C into
itself defined by

Sy = nlim Swy, YyeC. (2.8)

Then lim,, _, o, sup{||Sz - S,z|| : z€ C} =0.
For solving the equilibrium problem for a bifunction F : C x C — R, let us assume
that F satisfies the following conditions:
(A1) F(x,x) =0forall x € C;
(A2) F is monotone, thatis, F(x,y) + F(y,x) <0, YV x,y € C;
(A3) foreach x,y,z € C, limy)oF(tz+ (1 -t)x,y) < F(x,y);
(A4) for each x € C,y — F(x,y) is convex and lower semicontinuous.

Lemma 2.10 (see [5]). Let C be a nonempty closed convex subset of H, and let F be a bifunction of
C x C into R satisfying (A1)—(A4). Let r > 0 and x € H. Then, there exists z € C such that

F(Z,y)+%(y—z,z—x>20, Yy e C. (2.9)
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Lemma 2.11 (see [6]). Assume that F : C x C — R satisfies (A1)—(A4). For r > 0 and x € H,
define a mapping T, : H — C as follows:

T, (x) = {ZEC :F(z,y) + %(y—z,z—x) >0, VyEC}, (2.10)

forall x € H. Then, the following hold:

(i) T, is single valued;
(ii) T, is firmly nonexpansive; that is, for any x,y € H||T,x - T,y||* < (T,x - T,y, x - y);
(iii) F(T,) = EP(F);

)

(iv) EP(F) is closed and convex.

Lemma 2.12 (see [22]). Let H be a Hilbert space and M a maximal monotone on H. Then, the
following holds:

r—=S
”]M,rx - ]M,sx”2 < T(]M,rx - ]M,Sx/ ]M,rx - JC), Vsr>0, x€ H, (211)

where Jy, = (I + rM) ™! and Ims =T+ sM)™,

3. Main Results

In this section, we will use the viscosity approximation method to prove a strong convergence
theorem for finding a common element of the set of fixed points of a countable family of
nonexpansive mappings, the set of solutions of the variational inequality problem for relaxed
cocoercive and Lipschitz continuous mappings, the set of solutions of system of variational
inclusions, and the set of solutions of equilibrium problem in a real Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, and let B : C —
H be relaxed (¢, w)-cocoercive and p-Lipschitz continuous with w > ¢u?, for some ¢, w, p > 0. Let
G={Gr:k=1,2,3,...,N} beafinite family of p-inverse strongly monotone mappings from C into
H, and let F be a bifunction from C x C — R satisfying (A1)—(A4). Let f : C — C be a contraction
with coefficient ¢ (0 < ¢ < 1), and let {S,} be a sequence of nonexpansive mappings of C into itself
such that

o N
Q:(F(Su)n (ﬂI(Gk,Mk)> N VI(C, B) NEP(F) #0. (3.1)

n=1 k=1
Let the sequences {x,} and {y,} be generated by

x1 = x € C chosen arbitrarily,
Yn = ]MNr)LN,n (I - )LN,nGn) sen ]Mz,)tzﬁ (I - )LZJIG2)]M1,)(1," (I - )‘1,nG1)Tr,, Xn, (32)
Xn+l = anf(xn) + ,ann + YnSnPC (yn - énByn)/ Yn>1,
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where {an}, {Pn), {yn} C(0,1) and {&,}, {rn} C (0, 00) satisfy the following conditions:
(C1) ap, +,8n +Yn =1,

(C2) limy oty =0, Xpoy aty = 00,

(C4) {¢,} C [a,b] for some a, bwith0 < a < b <2(w — ¢u?)/p* and limy, _, o |&ne1 — &n| = 0,
(C5 {J\k,n}szl C [c,d] € (0,2B) and lim,, _, | Ak i1 — Xicu| = 0, foreach k € {1,2,...,N},
(C6) liminf, _, 71, > 0and lim,, _, |71 — 7| = 0.
Suppose that Y"1 sup{||Sy+1z — Snzl|| : z € K} < oo for any bounded subset K of C. Let S be
a mapping of C into itself defined by Sy = lim, .S,y for all y € C and suppose that F(S) =

Myt F(Sn). Then, the sequences {x,} and {y,} converge strongly to the same point x* € Q, where
x* = Pof(x*).

Proof. First, we prove that the mapping Pof : H — C has a unique fixed point.
In fact, since f : C — C is a contraction with ¢ € [0,1) and Pof : H — Qs also a
contraction, we obtain

| Paf(x) = Paf W) < If )= fW)] <gllx-y], VYxyeC (3.3)

)

(C3) 0 < liminf, ., f, <limsup, ,_ p. <1,
)
)

Therefore, there exists a unique element x* € C such that x* = P f (x*), where

Q: ﬁF(sn) n <ﬁ1(ck, Mk)> NVI(C, B) NEP(F). (3.4)

n=1 k=1

Now, we prove that (I - ¢,B) is nonexpansive.
Indeed, for any x,y € C, since B : C — H is a p-Lipschitz continuous and relaxed
(¢, w)-cocoercive mappings with w > ¢p? and ¢, < 2(w — pu?)/u?, we obtain
I = &uB)x = (= &B)y||” = || (x = y) - &n (Bx - By) |

= lx = yII” - 284 (x ~ v, Bx - By) + & Bx - By’
< [lx - y|* - 28 {-|Bx - By|" + w||x - y||*} + ]| Bx - By’
<l =yll” + 28 l|x = y|I* = 2ncollx = yI* + Gl -y
= (1+ 280 ps® — 2800+ E42%) | - y ||

(e e
< (1- eI o

2
(3.5)

Setting

g _ %2[2((4} _24)/"2) —b] >0, (36)
U
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thus,

(I = &:B)x = (I = &:B)y|> < (1 =280 |x - y|I> < 1 = &0l x - v[>, (3.7)

which implies that

(I - &.B)x - (I-&B)y| < 1-&d|lx-vy| < |lx -yl (3.8)

Hence (I - ¢,B) is nonexpansive.
We divide the proof of Theorem 3.1 into five steps.

Step 1. We show that the sequence {x,} is bounded.
Now, let X € Q and if {T,,} is a sequence of mappings defined as in Lemma 2.11, then

n

X =Pc (X - A, BX) =T, X, and let u,, = T, x,. So, we have

l[tn = X[l = [Ty, 0 = Tr, X[ < [l = X[]- (3.9)

For k € {1,2,...,N} and for any positive integer number n, we define the operator Y& : C —
H as follows:

0
Y,x=x,

k (3.10)
Ynx = ]Mkr)‘k,n (I - -/\k,nGk) cee ]MZr)lZ,n (I - )LZ,HGZ)]MM)LM (I - Al,ncl)x ’

for all n, we get y, = YNu,. On the other hand, since Gx : C — H is f-inverse strongly
monotone and A, C [c,d] C (0,2f), then Ju, 1, (I = A»Gk) is nonexpansive. Thus Yk is
nonexpansive. From Lemma 2.4(1), we have ¥ = Y)Y X. It follows that

lyn = I = [0 = YNZ| < 100 - 7 < 10 - 7 (3.11)

Setting v, = Pc(yn — énByx) and I — ¢, B is a nonexpansive mapping, we obtain

lon = X|| = || Pc (Yn — énByn) — Po(X — ¢,BX)||
< || (yn = &nByn) — (X - £.B3)||
= || = &uB)yn — (I - &xB)X||
< \yn = X| < lloen = X|I-

(3.12)
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From (3.2) and (3.12), we deduce that
1%ne1 = X|| = ||t f (xn) + BuXn + YuSnvn — X||
< an”f(xn) - i" + ﬁn“xn - 97|| + Yn“vn - i”

< a| f(en) = fFE)|| + anl| f(3) = F[| + Pullxn — Xl + yullxn - X

< anploxn = X| + | £ (%) = X[| + (1 = )| — X
< (1= an (1= ¢))llxn = X + | £ () - X]|

= (1= a1 = )l = 3l + (1 - gy L EZN

(1-¢)
Hﬂ@—ﬂq.

Snmxhun—fw —

It follows from induction that

lloen = || < maX{ [l1 = %], w } Vn > 1.

Therefore, {x,} is bounded and hence so are {v,}, {y.}, {un}, {By,}, and {S,v,}.
Step 2. We claim that lim,, _, oo || X1 — x| = 0.
By the definition of T}, u, = Ty, x, and uy+1 = T, Xps1, We get
1
F(un,y) + r—(y —Up, Uy —X,) 20, VYyeH,
1
F(up,y) + r—(y = Ups1, U1 — Xni1) 20, Vy € H.

n+1

Taking v = u,41 in (3.15) and y = u, in (3.16), we have
1
F(up, tp) + r_<un+1 —Unp,Up — xn) >0,

and hence

F(un+1/ un) +

(Un — Ups1, Ups1 — Xpe1) 2 0.
Tn+l

So, from (A2) we have

Uy — X Upi1 — Xntl
<u1’l+1 — Uy, - > O/

n Tn+1

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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and hence

T'n
<un+1 —Up, Uy — Ups1 T Upsl — X — ; (Uns1 — xn+l)> > 0. (3.20)
n+1

Without loss of generality, let us assume that there exists a real number ¢ such that r,, > ¢ >0
for all n € N. Then, we have

T,
”un+l - unllz S <un+1 —Up, Xn+1 — Xp + <1 - - )(un+1 - xn+1)>
Tn+1

(3.21)

1-In
T

n+l

< [l — unn{ et = al] + it —xn+1||},

and hence

|rn+l - rn|||un+1 - xn+1”
nrl (3.22)

M,
< lxns1 = Xl + T|rn+l — T,

”un+1 - un” < ”xn+1 - xn” +

where M, = sup{|lu, — x,|| : n € N}.
Notice from Lemma 2.12 that

N N
Yn+1u"1+1 =Y, Un

1 =l = |
< | (et = At G 14 ) = (10 = Min G Yo ) |
+ ||]Mk/ )‘k,n+1 <un - )‘k,nGkqun> - ]Mk, /\k,n <un - .)Lk,nGkY’ncun>

GiYru,

< Nlunsr = tall + [Xe i1 = Aial (3.23)

|)‘k,n+1 - /\k,n

+ _—
)tk,n+1

< ||un+1 - un” + 2]\/I2|)Lk,n+1 - )tk,nl

IMes Mensa <un - )Lk,nGle;lun> - (un - )tk,nGkYﬁun>

My
<X — x| + T|rn+1 — 7| + 2Mo| A1 — Aicnl,

where M, is an appropriate constant such that

}, sup

n>1

M, :max{sup{“GkYﬁun IMier Mens
s Ak,

n>1

— k — _ k
k , & n , n
{ ”]M r)tkn+1 (un /\knGkY un) (un )tknGkY un)” }}

(3.24)
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Since I - ¢, B is nonexpansive mappings, we have the following estimates:

051 = Oall < || Pe(Yns1 = Eni1BYna1) = Pe(Yn — énBya) ||
< ” (yn+1 - §n+1Byn+1) - (yn - gnByn)”
= || (Y1 = &n1BYni1) = (Yn = dnc1 Byn) + (&n = 1) Bya|
< || (Wne1 = Ene1BYns1) = (Yn = Ene1 Byn) || + 160 — &naal|| Bya||
= ||(I = én1B) Y1 — (I = &1 B)y || + |&n — énsal|| By ||
< Yns1 = Yul + 1&n = &naal | Bya]|-

Substituting (3.23) into (3.25), we obtain
M,y
”vn+l - Un” < ”xn+1 - xn” + T|rn+l - rn| + 2M2|/\k,n+l - )Lk,n|
+ & = &natl|| By |-
Indeed, define x,,1 = (1 — ) zy + Pux, for all n € N. It follows that

Xn+l — ﬁnxn _ anf(xn) + Ynsnvn

S T R 1- By

Thus, we have

“n+1f(xn+1) + Yn+1sn+1vn+1 fxnf(xn) + YnSnvn
|zne1 — znll = 1— fun - 1-p
al’H— n
H L (f(xn+1) f(xn)) + 1- Y a (Sn+17)n+1 nvn)
Xp+1
+<1 P 1- ) G+ (1 Bt 1 —ﬁn>5 o
[2 6708 n+1
= 1 ﬁl ||f(xn+1) f(xn)” + Y - ||Sn+1vn+1 nvn”
a, a,
ke [ZH T1og, Il f (xen) = Snvn”
Pani1 Yn+1
< Xn+1 — Xn| + Su410n+1 — SpUy
< 5 s =l + 5 Syt = Sy
L] Ay
M 1- ﬁn+1 1 —ﬂn ”f(xn) - Snvn”.

Now, compute

1Sn410n41 = SnOn|| £ |Sne10ns1 = Sne1Onl| + [|Sne10n — Snv4l|
< ”Un+1 - Un” + ”Sn+1vn - Snvn”
My
< IXus1 = xnll + T|rn+1 =Tl +|én - §n+1|”Byn”

+ 2M2|)lk,n+1 - J\k,n| + ||Sn+1vn - Snvn”-

11

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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Combining (3.28) and (3.29), we have

[24 1 M
||Zn+1 - Zn” < 1(P i ||xn+l - xn” + Yn—+{”xn+1 - xn” + _1|rn+1 - rn| + |§n - §n+1|”Byn”
_ﬂn+1 1 _ﬂn+1 c
$2MalA i Al + | i1 — snvnn}
A+ ay
+ - x,) — S,
1_ﬂn+1 1_[5” ”f( n) n n”
M
< xna1 = Xl + 1 Jd {_1|rn+1 = Tul| + [én = §n+1|”Byn”
_ﬂm—l c
+2M2|)‘k,n+1 - )lk,nl} + Tart ||Sn+17]n - Snvn”
1 _ﬁn+1
Al ay
- Xn) — S,
1_ﬂn+1 1_ﬁn “f( ”) n ””
(3.30)
It follows that
1zn+1 = zall = 121 — 2|
M
> Yt {_1|rn+1 — Tl + & — ‘§n+1|”Byn” +2Mo A1 — )lk,nl}
1 _,ﬁn+1 c
Ynt+1 A+l 249
S -S - -S
1 Bt 1Sni10n = Snonll + 1-PBpi 1-Pn ”f(xn) nvn” (3.31)
M
< T2 4l = ol By + 2Mabn = il
1 _,Bn+1 c
Yn+1 A+l Ay
+ sup{||Sps1z - Suz||: z € {vp}} + | —— - —— Xn) — Sponl-
L supl ISz =S,z 2 € on)) + |72 - L5 ) - 5,00

This together with conditions (C1)-(C6) and lim, o, sup{||Sy+1z — Spzl| : z € {v,}} =0
implies that

lim sup(||zus1 = za|| = |Xn — x4]]) <0. (3.32)

Hence, by Lemma 2.6, we obtain ||z, — x,|| — 0asn — oo. It then follows that
nli_)rrgo”xnﬂ - Xl = ,}l_rﬂo(l - ﬁn)“zn = x| = 0. (3.33)
By (3.26), we also have

i [[oy — ] = 0. (3.34)
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Step 3. We claim that lim,, _, o ||Sv, — v,|| = 0.
Since {Gk : k =1,2,3,..., N} is f-inverse strongly monotone mappings, by the choice
of {Ax,} forgivenx € Qand k € {0,1,2,..., N — 1}, we also have
2
[ =]
2
= ”]MM,AW (I = Mes1,0Gre1) Yottn = Tt (I = Mis1,nGrs1) X ”
_l2
< ” (I = Mes1,nGrs) Yt = (I = Ajes1,nGrsn )X ”
K Kk ~ - |I7
= | (Yhatn = AeernGreor Vi) = (& = MG 9|
2
= || (Yﬁun - £> = Mes1n <Gk+1Y5un - Gk+1§> ||

<

2 2
k =~ k = k =~ 2 k =~
it = & = 21 (Yottn = %, G Yoty = Gian® ) + 23, || Gion Y - G 7|

2 2
k ~ k ~
Yy - & - 201 G Yty = Gra X

k =~ 2
G Yty = Gra X[ + 42,

2
~112 ~
< ”un - x” - 2Ak+1,nﬂ Gk“Y’,ﬁun - Gk+1x”

k = 2
Gt Yhttn = Gra & + 42,

2
< ot = B + Moo (Aot = 26) || Gren Yiten = G %)
(3.35)

Form (3.13), we have

%ne1 = FI < et || £ (en) = F||* + Bullacn = I + yaullon — %I
< an| £ (en) = E||* + Bullocn = ZI” + ullya - %||*

2
N =
Y, u, - x”

=ty | f (xn) = Z[)* + Bullacn — ZI” + v

2
Yk+ly, - x”

< au| f (o) = & + Ballocn = XU + ¥
< || f (xn) = F||7 + Ballxn - FI?

2
+ Yn{ ”xn - i||2 + )Lk+1,n ()Lk+1,n - 2,6) ”Gngﬁun - Gk+1f|| }

2
< | f Gon) = F[I” + v = FIP + yudicon (Ao = 28) | Gren Yt = Gien |
(3.36)

It follows that

2
Yn)‘k-#l,n (Zﬁ - )‘k+1,n) Gk+1Yﬁun - Gk+1i||

< e (2P - d) || G Yt - Gk+1§c”2 (3.37)

~ ~ ~12
< ||xn - xn+1||(||xn - x“ + ||xn+1 - x“) + an”f(xn) - x” .
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By condition (C2), (3.33), and liminf, _, .}, > 0, we obtain

lim ||Gi1 Yhuy, — G X

n— oo

=0. (3.38)
From Lemma 2.3(2) and as I — Ax11,,Gi+1 is nonexpansive, we have

2
Yk, - x“

2
k ~
= | I ieonn = As1,0Gre1) Yt = It deon (I = k1,2 Gre1) X ”

< (1= M1 nGronn) Yt = (I = A1 oG ), Yo, — %)

2
Yktly, - xn

! 2
- 5{ ” (I = Ms1,nGrs1) Yooy — (I - )tk+1,nGk+1)x|| +

—”(I = Mer1,nGra1) Yoty = (I = Mis1 nGrs1) X — (Yﬁ”un _ g) ”2}
< 1{
-2
< 1{
-2

2 2
Yflun—xn + Y’,ﬁ*lun—x” —|

<Yﬁun - Ysﬂun) = Aestn <Gk+1Yﬁun - Gk+15€V> ||2}

2 2 2
Yeu, - x“ + ([ Yk, - x” —[Y*u, — Y4y,

2

~Mein Grs1Yhtty = GratX|| + 2\ ka1 <Y,’§un Yo, G Yty — G X > },

(3.39)
which yields that
2
Yktly, - in
2 2
< |Ivku, - i” YR, = Y|+ 20 || Yo = Y ||| Gt Yot — Grean %

) (3.40)

~2 ~

< luy = X||I” - “Y’n‘un Y U+ 201 [ Yo 1 = YR 00, || Gt Yoty — i X

2
~12 k k+1 k k+1 k =~
<t = &I = || ke, = Y|+ 200 Y1t = Y01 ||| Gieir Yt = G 3

Substituting (3.40) into (3.36), we obtain

2
Yhly, - x”

%1 = ZI* < || f (en) = || + Balltn = ZIP + ¥

2 ~ ~ 2
< o | f (xn) = %] +ﬁn||xn—x||2+rn{||xn—x||2— You, - Y5 u,

k k+1 k =
+2)‘k+1,n Ynun_Yn+ Un||||Grs1 Y ttn—Gis1 X

}

2
k k+1
You, =Y, uy,

< aty || f (en) = F||* + llacn = X =

k K+l k ~
Yiuy — Y5y |[||Grr1 Yoty — G X

+ 2~/\k+1,nYn
(3.41)
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It follows that

2 ~ ~ ~112
< Nloen = Xusa | (|20 = Xl + 20001 = XI|) + @ || £ () = X

Yn Y,’jun - Yﬁ”un
(3.42)
+ 2)Lk+1,nYn Yﬁun - Yln<+1un 'Gk+1Ylncun - Gk+13~5”~
By condition (C2), (3.33), (3.38), and lim inf,, _, .y, > 0, we obtain
lim |[YXu, — Y5y, || = 0. (3.43)
For X € Q, we obtain
[0n = ZI* = || Pc(yn — &aByn) — Pc(X — &:B%) ||’
< || (Yn = &uByn) — (% - &,BY)||?
~ ~ 2
= || (¥n = X) = &:(Byn - BX) ||
< |lyn = Z||* - 284 (yn - %, Bya - BX) + 22| Byn - BX|)*
< |lya - x| —2én{—¢||Byn - BX||* + w||ya - fllz} +&||By, - BX|® (3.44)
< |lyn = F||* + 280 || Byn - BE||* - 26u00||yn - %||* + &2|| By — BE|®
~ ~ 2¢,w - ~
< |lya - %||* + 2849| Byn - BX||* - ‘iz ||By, - BE||* + &2|| By, - B||?
- 28w -
<l — X + <2§n¢ +& - i2 ) |By, — BX||”.
On the other hand, we have
|21 — i“2 = ”anf(xn) + PnXn + YnSnUn — 52”2
< au|| f (xn) = &) + Ballxn — I + ¥ullSwon — FII?
< atu| f(tn) = Z||* + Bullocn = FI* + yullow - %
< atu| f (xn) = || + Pulloca - %I
- 28w -
w{nxn T (zgnqs ve- iz )||Byn . Bx||2} (3.45)
= atu| f(xn) = Z||* + Bullocn = FI” + yallocn - %I

2¢,w ~
(2 + - 22 By~ B

~ ~ 28w ~
< ) =3I + = 31+ 3 (20 + 5 - 257 ) 1By - BE
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It follows that

2aw ~||2
(%% - 02 - 209 )y, - B

28w ~
< <il_2 -&- 2§n¢>Yn||Byn - Bx||* (3.46)
< ot = XIP = %ne1 = FIP + || f (o) = 7|

< 1t = Xt (160 = I + e = E) + e[ f ) - ]I
It now follows from the last inequality, conditions (C2), (3.33), and liminf, _, ), > 0 that
Jim ||By, - BX|| = 0. (3.47)
Since Pc is firmly nonexpansive, we have

00 = %2 = [|Pe (4 — &uByn) - Pe( - 4B
= ”Pc(I - énB)]/n - PC(I - gnB)EHZ
< (I~ &uB)Yn ~ (I - &uB)%, vy — X)

= %{ 11 = @uB)yn — (I - &uB)E| + 0w — &I

= &uB)yn — (I - &uB)E — (0, - D)’} (3.48)
< 2 { = FI + o = ZI2 = [| (9~ 00) ~ &0 (Bya ~ BI) I}
< Il - EIP + o 217 - o -l

~&311Bya ~ B + 28y 00 By~ BT},
which yields that

o = 71 < [y = ZII” = |y = 0all” + 26llya = vall [ Bys ~ BE|

~12 2 B (3.49)
< loen = X|I° = ”yn_vn” +2§n||yn—vn||||Byn—Bx||.

Substituting (3.49) into (3.45), we obtain
261 = ZII* < | f (n) = F| + Bullxn = FIP + yullon — X2

< || f (xn) = F||* + Bullxn - FI?

4y 100 = 1P = [[yn = 0all” + 22y — 0| [ By - BZ|}
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= || £ (o) = Z|1* + Bullocn = I + yallx = £1* = ullyn - va|”
+ 2Yuén|yn = oull|| By - BX||
< a"”f(x") - i”2 + ”xn - i”2 - Yn”]/n - Unllz + 2Yn§n”]/n - Un" ”By" - B')NC”

(3.50)
It follows that
2 ~ ~ ~112
Yally =2l < e s = 1+ s = 5D + aall f o) =5
+ 2fndnl|yn — vn ||| Bya — BX]|.
By condition (C2), (3.33), (3.47), and lim inf,, _, .y, > 0, we obtain
lim [|y, - on | =0. (352)

On the other hand, in the light of Lemma 2.11(ii) T,, is firmly nonexpansive; so we have

~112 ~2
[t = X|I° = Ty, %0 - T, X||

ST xn = Ty, X, X = X) = (Up — X, X — X) (3.53)
= 2 (e = 517 + I = 71 = o~ ),
which implies that
et = FI* < e = Z* = llan = . (3.54)
Form (3.45), we have

%1 = ZI < | £ n) = Z|* + Bullocn = ZI? + Yullow - %2
< anl| £ Gen) = E I + Bullen = ZI + yallyn - #|°

< || £ (20n) = Z||* + Bullxn — ZI* + yulluen — X

5 5 5 (3.55)
< an | £ Gea) = X[ + Bl = ZI + i { v = I = 100 = 0all”}
= || f () = || + Balltn — X1 + Yl = FIP = yullxn — el
< || f (en) = F|7 + 1120 = ZI = Yll ot — sl
Tt follows that
Yol = 1nll® < 16 = Xt [ (1% = Z| + [1Xns1 = ) + || f () = |- (3.56)

By condition (C2), (3.33), and liminf, _, ..}, > 0, we obtain

Jim [l = wn[| = 0. (3.57)
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Observe that
X1 — Xn = 0 (f(X0) = Xn) + Yn(SnOn — Xn). (3.58)
By condition (C2) and (3.33), we have

1im v, = 21= 10 (st = Xall = | f (en) = 2a]]) = 0. (3.59)

Since

1Svn = unll < |STn = xull + {120 — uall, (3.60)

from (3.57) and (3.59), we have

lim [|S,vy — uy| = 0. (3.61)

Form (3.55), we have

X1 — %17
< || f en) = F|| + 130 = ZI = Yallotw = ttul®
< | £ ) = Z[7 + 10 = FIP = Vil (= ) + (= 0) ||
< | f (o) = Z|1* + llen - %I - Yn{ 1260 = vl + 20120 = Yl 1y = 2l + [l - unllz}
= || f () = Z[|* + l2cu = ZI? = yull 20 = Yl = 2l 20 = Yl 1y = ]l = Yrllyn = e ®

< | F (o) = Z| + 1120 = I = Yol 200 — wa]|*

(3.62)
It follows that
Yalln = yall® < 6 = Xm0 = 1 + e = FI) + ]| Goa) - %1 (3.63)
By condition (C2), (3.33), and liminf, _, ..y, > 0, we obtain
Tim [|2c, = yn| = 0. (3.64)
Since
4 = Y| < Nlttn = 20l + || 260 = v, (3.65)
from (3.57) and (3.64), we have
lim ||u, - ya|| =0. (3.66)

n— oo
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Furthermore, by the triangular inequality we also have
1Sn0n = Onll < |1Snvn — tall + ||ttn = Y| + ||y — 0n]|- (3.67)
From (3.52), (3.61), and (3.66), we have

lim ||,y — val| = 0. (3.68)

Applying Lemma 2.9 and (3.68), we have

1Svn = vnll < |Svn = Sponll + |Snvn — V4l

(3.69)
<sup{||Sz = Snzll : z € {va}} + [|Spvn — vl — 0.
Step 4. We claim that limsup, _, _ (f(x*) = x*,x, —x*) <0.
Indeed, we choose a subsequence {v,,} of {v,} such that
limsup(f(x*) — x*, Sv, — x*) = lim (f (x*) - x*, Sv,, — x*). (3.70)

n— oo

Without loss of generality, let {v,,} — z € C. From ||Sv,,—v,|| — 0, we obtain Sv,, — z. Then,
(3.70) reduces to

lim sup(f(x*) — x*,Sv, — x*) = (f(x*) = x*, 2z — x*). (3.71)

n—oo

In order to show (f(x*) — x*,z — x*) <0, it suffices to show that

zeQ: ﬁp(sn) n <(]\ﬂ1(ck, Mk)> NVI(C, B) NEP(F). (3.72)

n=1 k=1

Firstly, we will show z € F(S) = ;21 F(Sy).
Assume z ¢ F(S). By Opial’s theorem (Lemma 2.5) and ||Sv,, — v,|| — 0, we have
liminf||v,, - z|| < liminf||v,, — Sz||
= lim inf||v,, — Sv,, + Sv,, — Sz||
e (3.73)

= liminf||Sv,, — Sz||

< liminf||o,, - z||.
1— 00

This is a contradiction. Thus, we obtain z € F(S).
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Next, we will show that z € VI(C, B).
Let

B N ;
Tw, = { w1+ Ncwi, w; €C; (3.74)

0/ w1 é C.
Since B is relaxed (¢, w)-cocoercive, y-Lipschitz continuous with w > ¢u?, we obtain
(Bx By, x~y) > (-¢)||Bx =Byl + wllx ~y|" 2 (- ) |x ~y|* 20, (375)

which yields that B is monotone. Then T is maximal monotone (see [23]). Let (w1, w) € G(T).
Since w, — Bw; € N¢(w,) and v, € C, we have (w; — v, w, — Bwi) > 0. On the other hand,
from v, = Pc(yn — énByn), we have

(w1 =0y, vy — (Yn — &aByn)) > 0; (3.76)

that is,
<w1 — Uy, % + Byn> > 0. (3.77)

Therefore, we obtain

(w1 = vy, w2) > (w1 — Uy, Bwy)

Uy — .
> (w1 — Uy, Bw1) - <w1 ~ Uy, nlg Yn, + Byni>
n;

i

= (w1 = vy, Bwi - Boy,) + (w1 = Uy, Buy, — Byn,) (3.78)

Up; — Yn;
- <w1 — Up,, — -
&ni

On, — .
> (w1 — Uy, Buy,) — (w1 — vy, ; + Byn,
M

Noting that ||v,, — ys,|| — 0and B is relaxed (¢, w)-cocoercive and (3.78), we obtain

(w1 —z,wy) > 0. (3.79)

Since T is maximal monotone, we have z € T~10, and hence z € VI(C, B).
Now, we will show that z € ﬂkN:1 I(Gk, My).
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For this purpose, let k € {1,2,3,..., N} and Gk is p-inverse strongly monotone, G is
an 1/p-Lipschitz continuous monotone mapping. From Lemma 2.2, we know that M + Gi

is maximal monotone. Let (v, g) € G(Mj + Gy); thatis, g — Gxv € Mi(v). On the other hand,
since Yy tn, = Iy, (Yo 'ttn, = Aicn, G Y5, 1ty,), we have

Y5t = N G Yty € (1 A Mi) (Yo 4, ); (3.80)

that is,

1
)Lk,n,-

(Y,’;;lun,. - Yk u, - )Lk,mckY,’;;luni) € Mi <Yﬁiuni>. (3.81)

By virtue of the maximal monotonicity of M + G, we have

1

kni

<v ~Yhun, g~ Gio - (Y0 = Y 0, — )Lk,ninY,’;;lum)> >0, (3.82)

and so

<v - Y’,jiuni, g> > <v - Yﬁiuni, Gro + <Y,’§lf1un,. - Y’nciuni - )Lk,ninY’,ji*luni>>

kn;

= <U = YE n,, Grv — Gk Yty + G Y 1y, — G Yy,

+)lk1,ni <Y§:1”nz~ - Y’,‘liuni>> (3.83)

>0+ <v - Yﬁiuni, GkYﬁiuni - GkY’,;i_luni>

(Yﬁi‘luni - Yfliuni> >

1
+ <v - Yﬁiuni,
X,

i

From ||Y,’§un - Y’;*lunH — 0, we also obtain that Y,’:iuni —zand {Gr: k=1,2,3,..., N} are
Lipschitz continuous; we have

lim <v - Yﬁiuni,g> =(v-2z2g)>0. (3.84)

n—oo

Since My + G is maximal monotone, we have 0 € (My + Gi)(z); that s, z € ﬂkN:1 I(Gk, My).
Finally, we will show that z € EP(F).
Since u, = T;, x,, we have

F(un,y) + rl(y —Up, Uy —Xxn) 20, VyeC. (3.85)
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If follows from (A2) that

%(y —Up, Uy — Xn) 2 —F(ttn,y) 2 F(y,un), (3.86)

and hence

<y — Uy, unir_ Xn > > F(y, un,). (3.87)

ni

Since (U, — Xn,)/1n, — 0and u,, — z, it follows by (A4) that F(y,z) < 0 forall y € H. For ¢
withO<t<landy € H,lety; =ty + (1 -t)z. Sincey € H and z € H, we have y; € H, and
hence F(y;, z) <0. So, from (Al) and (A4) we have

0=F(y1,yi) <tF(yny) + (1 -HF (yi, 2) <tF(yry), (3.88)

and hence F(y;, y) > 0. From (A3), we have F(z,y) > 0 for all y € H and hence z € EP(F).
Therefore, it follows that z € Q.
Since x* = Pof(x*), we have

limsup(f(x*) — x*,x, — x*) = limsup(f (x*) — x*, Sv, — x*)

= ili_)m (f(x*) = x*, Sv,, — x*) (3.89)
=(f(x*) - x*,z—x*) <0.

On the other hand, we have

lim sup(f(x*) — x*, xp1 — x*) < limsup(f (x*) = X*, X1 — X

n—oo n—oo 3.90
+limsup(f(x*) - x*, x, — x*). (3.90)

n— oo
Since ||xy41 — x4|| — 0asn — oo and (3.91), we have

lim sup(f(x*) — x*, X1 — x*) <0. (3.91)

n—oo
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Step 5. We claim that lim,, _, o, ||x, — x*|| = 0.
Indeed, from (3.2) and (3.12), we obtain

|2¢n+1 — x*”2 = <anf(xn) + ﬁnxn + YnSnUn — X*, X1 — x*>
= a0 (f(xn) = X", Xpa1 = XY + (%0 = X, Xpa1 = X°) + ¥ (Spn — X*, X1 — x*)
1 * * 1 * *
< 5Bl = %I + s = 2 17) + 570 (o = 1P + e = °I)
+ o (f(Xn) = F(X), Xne1 = XY + @ (f(x") = X", X1 — X*)
1 * * 1 * 2 *
(1= at) (Il = 21+ lemen = 1) + S ([ £ Gen) = £+ e = 1)
an(f(x*) = x*, Xpi1 — x*)

< —
-2

+

1 . 1 . 1 .
< 5[ an(1-92) | len = 1P+ S0 = @)l = 21 + Sl - 2

+

2
an(f(x*) = x*, Xpe1 — X*),
(3.92)

which implies that

ll%ns1 — |1 < [1 - ay, <1 - q;2>] [l — x*|1* + 20, (f (x*) = X*, X1 — X*)

(3.93)
= (1-by)|xp — x*||* + 65,

where b, = a,(1 - qu) and 6, = 2a,(f(x*) — x*, x441 — x*). It is easy to see that b, — 0,
D1 bn = 00, and limsup,, | 6,/b, < 0. Applying Lemma 2.7 to (3.93), we conclude that

xXn — x* = Pof(x"). (3.94)

Consequently, also {y,} converges strongly to x*. The proof is now complete. O

As in [21, Theorem 4.1], we can generate a sequence {S,} of nonexpansive mappings
satisfying condition Y7 sup{||S,+1z — Suz|| : z € K} < oo for any bounded subset K of
C by using convex combination of general sequence {Tx} of nonexpansive mappings with a
common fixed point.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H, and let B : C —
H be relaxed (¢, w)-cocoercive and p-Lipschitz continuous with w > ¢u?, for some ¢, w, p > 0. Let
G={Gk:k=1,2,3,..., N} beafinite family of p-inverse strongly monotone mappings from C into
H, and let F be a bifunction from C x C — R satisfying (A1)—(A4). Let f : C — C be a contraction
with coefficient (0 < ¢s < 1), and let {6X} be a family of nonnegative numbers with indices n,k € N
with k < n such that

Q: P<ﬁF(Tk)> n <ﬁI(Gk,Mk)> NVI(C, B) NEP(F) #0. (3.95)

k=1 k=1
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Let the sequences {x,} and {y,} be generated by

x1 = x € C chosen arbitrarily,
Yn = ]MN,)LN,n (I - ')LN,YIGTL) U ]Mz,)tz,n (I - -)‘Z,HGZ)]ML)»L,, (I - )Ll,nGI)Trnxn/

n (3.96)
Xn+l = anf(xn) + ﬁnxn + YnZdI:TkPC(]/n - gnByn)r Vn > 1/
k=1
where {an}, {Pn}, {yn} C(0,1) and {&,}, {rn} C (0, 00) satisfy the following conditions:

C) an+Pn+yn=1
(C2) limy— o, =0, Xy axy = 0,
(C3) 0 < liminf, ., f, <limsup, ,_ p, <1,
(C4) {4} C [a,b] for some a,bwith0 < a <b < 2(w — ¢u?)/p? and limy, _, oo|&n1 — &n| = 0,
(C5) {/\k,n}szl C [e,d] € (0,2p) and limn_ka,nH —Agn| =0, foreach k € {1,2,...,N},
(C6) lim inf,,_morn > 0and limy, , oo |tye1 — 1u| =

)

(C7) 3%_, 6k, for all n € N, lim,, _, .6k > 0, for all keNand 35_ 3 |65 . - 6K < .

n+l

Then, the sequences {x,} and {y,} converge strongly to the same point x* € Q, where x* = Pg f (x*).
In Theorem 3.1, taking N =1 and S, = S, then we have the following corollary.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H, and let B : C —
H be relaxed (¢, w)-cocoercive and p-Lipschitz continuous with w > ¢u?, for some ¢,w,pu > 0.
Let G be an p-inverse strongly monotone mappings from C into H, and let F be a bifunction from
C x C — Rsatisfying (A1)-(A4). Let f : C — C be a contraction with coefficient ¢ (0 < ¢ < 1),
and let S be a nonexpansive mappings of C into itself such that

Q: F(S)nI(G, M) N VI(C, B) N\EP(F) #0. (3.97)

Let the sequences {x,} and {y,} be generated by

x1 = x € C chosen arbitrarily,
1
F(un,y) + r—(y— Un, Uy —Xn) >0, VyeC,

Yn = ]M,)Ln (I - )‘nG)unl
Xn+1 = anf(-xn) + ,Bn-xn + YnSPC(yn - gnByn)/ Vn > 1/

(3.98)

where {an}, {Pn) {yn) C (0,1) and {&,}, {rn} C (0, 00) satisfy the following conditions:
(C1) ap +pn tYn = 1,
(C2) limy a0, =0, X572y axy = 0,
(C3) 0 < liminf, , f, < limsup, ,_ p. <1,
(C4) {¢.} C [a,b] for some a,bwith0 < a<b < 2(w - ¢u?)/p? and lim, _, |&ni1 — &n| =0,
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(C5) {An} C [e,d] C (0,2p) and limy, oo Ans1 = An| = 0,

(C6) liminf, _, 1, > 0 and lim,, _, o, |7p41 — 7| = 0.
Then, the sequences {x,} and {y,} converge strongly to the same point x* € Q, where x* = Pq f (x*).
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