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One important and valuable topic in rough sets is attribute reduction of a decision system. The
existing attribute reductions are designed to just keep confidence of every certain rule as they
cannot identify key conditional attributes explicitly for special decision rules. In this paper, we
develop the concept of θ-local reduction in order to offer a minimal description for special θ-
possible decision rules. The approach of discernibility matrix is employed to investigate the
structure of a θ-local reduction and compute all θ-local reductions. An example of medical
diagnosis is employed to illustrate our idea of the θ-local reduction. Finally, numerical experiments
are performed to show that our method proposed in this paper is feasible and valid.

1. Introduction

The concept of rough sets was originally proposed by Pawlak [1] as a mathematical
approach to handle imprecision, vagueness, and uncertainty in data analysis. This theory
has been demonstrated to have its usefulness and versatility in successfully solving a
variety of problems [1]. The main application of rough set theory is attribute reduction
in databases. Given a decision system with conditional and decision attributes, attribute
reduction aims to find a subset of the original conditional attributes that contain the same
information as the original one. The concept of attribute reduction can be viewed as the
strongest and the most important result in rough set theory to distinguish itself from other
theories.

Along the line in [1], many research works have been concentrated on computing
attribute reduction and developing other types of attribute reduction under the framework
of rough sets [1–23]. For example, Skowron and Rauszer [12] employed the approach of
discernibility matrix to set up mathematical foundation for finding reducts. Wang [15–
17] characterized attribute reduction by information entropy. Possible rules and possible
reduct of all decision classes were proposed to deal with inconsistence in an inconsistent
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decision table [4, 6]. In [5], in order to provide an underlying classification of knowledge
reductions, five notions of knowledge reduction (possible reduct, approximation reduct,
generalized decision reduct, μ-decision reduct, and μ-reduct) were investigated and
compared in inconsistent systems. In fact, only two of them, possible reduct preserving
upper approximations and μ-decision reduct preserving membership to all decision classes
are essential because others are just equivalent to one of them, respectively. The notion
of dynamic reducts was described in [2] as subsets of all reducts derived from both
the original decision table and the majority of the randomly chosen decision subtables.
In [10], α-reduct and α-relative reduct were proposed to allow occurrence of additional
inconsistency that is controlled by means of the parameter α (α ∈ [0, 1]). In [19] notions of the
distribution reduct and maximum distribution reduction were proposed, and relationships
among the maximum distribution reduct, the distribution reduct, and the possible reduct
were discussed. In [3, 22], β-reduct was introduced to preserve the sum of objects in β-
lower approximations of all decision classes (β ∈ (0.5, 1.0]) based on variable precision
rough sets (VPRS). However, Zhou et al. [24] pointed out that the dependency function
may not be monotonic when computing β-reduct and decision rules derived by the β-
reduct may be in conflict with those derived from the original system. To overcome this
drawback, in [9] β-lower and β-upper distribution reducts were proposed to preserve β-lower
approximations and β-upper approximations of all decision classes, respectively. It is proved
that for some special thresholds, β-lower distribution reduct is equivalent to the maximum
distribution reduct, whereas β-upper distribution reduct is equivalent to the possible
reduct.

These attribute reductions share the following two arguments. First they are
developed in terms of all decision classes and cannot explicitly identify key conditional
attributes for particular decision classes, so these reductions can be viewed as global
reductions. However, in many practical problems people always pay more attention to
some special decision classes rather than other ones, and condition attributes and decision
rules with closed connection to these special decision classes always draw much attention.
For example, in decision-making of medical diagnosis, key condition attributes related to
the disease always draw much attention than other ones, and it is clearly meaningful to
identify such key attributes. Second, as it is well known, certain and possible rules can be
extracted from a decision system, and confidence of every certain rule is 1 while confidence
of every possible rule is less than 1. But most of the existing attribute reductions only offer
minimal conditional attributes to keep confidence of every certain rule invariant, and possible
rules with bigger confidence are ignored. However, in most practical problems, possible
rules with bigger confidence are always available and applied to decision making, so it
is clearly meaningful to identify key conditional attributes for possible rules with bigger
confidence.

To improve these two arguments in the meantime, the definition of θ-local reduction
is presented in this paper. First we give the concept of θ-reduction (θ ∈ (0.5, 1.0]) to keep
the confidence of those possible rules, and then we further consider θ-local reduction to offer
a minimal description and extract possible decision rules with bigger confidence for special
decision classes. Approach of discernibility matrix is employed to characterize the structure
of θ-local reduction. It is proven that the core of θ-reduction can be expressed as the union of
the cores of θ-local reductions, and the discernibility matrix of θ-reduction can be obtained by
composing discernibility matrices of θ-local reductions. An example of medical diagnosis is
employed to illustrate our idea of θ-local reduction, and we also perform several experiments
to demonstrate the effectiveness of the idea in this paper.
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The rest of this paper is structured as follows. In the next section we give some basic
notions related to rough sets. In Section 3 we define θ-local reduction, and approach of
discernibilitymatrix is employed to find θ-local reduction. In Section 4, we perform numerical
experiments to demonstrate that our method proposed in this paper is feasible to process
massive data. We then conclude the paper in Section 5.

2. Basic Notions Related to Rough Sets

An information system is a pair (U,A), where U = {x1, x2, . . . , xn} is a nonempty, finite set
called the universe of discourse, andA = {a1, a2, . . . , am} is a nonempty, finite set of attributes.
With every subset of attributes B ⊆ A, we associate a binary relation IND(B), called a B-
indiscernibility relation, and defined as IND(B) = {(x, y) ∈ U×U : a(x) = a(y) for alla ∈ B},
then IND(B) is an equivalence relation and IND(B) = ∩a∈BIND({a}). By [x]B, we denote
the equivalence class of IND(B), including x. For X ⊆ U, sets {x ∈ X : [x]B ⊆ X} and
{x ∈ X : [x]B ∩ X/=φ} are called B-lower and B-upper approximations of X in A and
denoted as BX and BX, respectively. If BX = BX, we say X is definable, otherwise it is
indefinable.

A decision table (DT) (sometimes called a decision system) is an information system
(U,A∪D), whereA∩D = φ,U/IND(D) = {D1, D2, . . . , Dr}.A is a set of conditional attributes,
while D is the decision attribute.

SupposeA = {a1, a2, . . . am}, then we have [x]A = ∩m
i=1[x]IND({ai}). If |Dl∩[x]A|/=φ, then

for x ∈ Dl ∩ [x]A we can derive decision rule as (a1, a1(x)) ∧ (a2, a2(x)) ∧ · · · ∧ (am, am(x)) →
(D,D(x)). This rule can be denoted in terms of sets as [x]A → Dl and its confidence is
computed as conf([x]A → Dl) = |Dl ∩ [x]A|/|[x]A|. Following we always call the decision
rule of which confidence is not less than θ as θ-possible decision rule.

3. θ-Local Reduction of Decision Systems

In this section, we first introduce the definition of θ-reduction as a global one to consider
every θ-possible decision rule, and we then develop θ-local reduction as improvement of θ-
reduction to address special θ-possible decision rules. Approach of discernibility matrix is
employed to find θ-local reduction, and differences between θ-local reduction and β-reduct
are explained.

Let A∗ = (U,A ∪ D) be a decision system, U/IND(A) = {M1, . . . ,ML}, U/IND(D) =
{D1, . . . , Dr}, and Dθ

A(x) = {Dl : conf([x]A → Dl) ≥ θ, l ∈ {1, . . . , r}}, x ∈ U, θ ∈ (0.5, 1.0].
If for any l ∈ {1, . . . , r}, conf([x]A → Dl) < θ, then Dθ

A(x) = ∅. Obviously, Dθ
A(x) only

includes a single element unlessDθ
A(x) = ∅. For two θ-possible decision rules [x]A → Dl and

[y]A → Dl, if B ⊆ A satisfying [x]B = [y]B = [x]A ∪ [y]A, then clearly the rule [x]B → Dl is
also a θ-possible decision rule, which implies Dθ

B(x) = Dθ
A(x), thus we have the definition of

θ-reduction.

Definition 3.1. B ⊆ A is a θ-reduction of DT if and only if B is a minimal set such thatDθ
B(x) =

Dθ
A(x) for for allx ∈ U.

Rule [x]B → Dl can be seemed as the reduced rule of the rule [x]A → Dl. A
θ-reduction B is a set of conditional attributes that keeps confidence of every reduced
rule of a θ-possible decision rule still not less than θ, since for any object xi satisfying
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conf([xi]A → Dl) ≥ θ, (l ∈ {1, . . . , r}), conf([xi]B → Dl) ≥ θ always holds. When θ = 1,
a θ-reduction is a classical attribute reduction which preserves lower approximations of all
decision classes, namely, preserves confidences of all certain rules.

θ-reduction is defined by considering all θ-possible decision rules; thus, it can be
considered as a global one for the whole system. In many practical problems people always
pay more attention to special θ-possible decision rules related to special decision classes, so
we improve the θ-reduction to the θ-local reduction as following to capture key condition
attributes for special decision rules.

Let D(U,A) = {X ⊆ U : AX = AX}, that is, D(U,A) is the family of all definable
sets related to A. X is the set satisfying the following conditions: (1) X is a definable set,
that is, X ∈ D(U,A); (2) every [x]A ⊆ X can derive a decision rule [x]A → Dl such that
conf([x]A → Dl) ≥ θ. We denote the family of all theseX satisfying the above two conditions
as Qθ(U,A ∪ D). Clearly Qθ(U,A ∪ D) is a σ-algebra, and every element in Qθ(U,A ∪ D) is
the union of several elements in {[x]A : conf([x]A → Dl) ≥ θ}, ∃l ∈ {1, . . . , r}.

Definition 3.2. Suppose A∗ = (U,A ∪D) is a decision system, X = {X1, . . . , XN} such that X ⊆
Qθ(U,A∪D). If X ⊆ Qθ(U, (A−{a})∪D), a ∈ A, then a is θ-dispensable inA for X, otherwise a
is θ-indispensable in A for X. The collection of all the θ-indispensable elements in A is called
the θ-local core of A∗ for X and denoted as CoreθX(A ∪D). We say that B ⊆ A is independent
in A∗ for X if every attribute in B is θ-indispensable in B for X. A set B ⊆ A is called a θ-local
reduction in A∗ for X if B is independent in A∗ for X and satisfying X ⊆ Qθ(U,B ∪D), that is,
B is the minimal subset of A keeping X ⊆ Qθ(U,B ∪D).

If B is a θ-local reduction for X, then for everyXi ∈ X and x ∈ Xi, conf([x]A → Dl) ≥ θ
implies conf([x]B → Dl) ≥ θ, that is, a θ-local reduction in A∗ for X keeps confidences
of reduced rules of all θ-possible decision rules determined by elements in X not less than
θ. Furthermore, for every x ∈ Xi we have Dθ

A(x) = Dθ
B(x), and ∪{Dθ

A(x) : x ∈ Xi ∈ X}
is just a group of decision classes, thus a θ-local reduction in A∗ for X aims to select key
condition attributes for this group of decision classes rather than for all the decision classes.
Let X = {X1

A,X
2
A, . . . , X

r
A} such that Xl

A = ∪{[x]A : conf([x]A → Dl) ≥ θ}, l = 1, . . . , r. If
B is a θ-local reduction for X, then X ⊆ Qθ(U,B ∪ D), that is, Xl

A = Xl
B ∈ Qθ(U,B ∪ D) for

l = 1, . . . , r, thusDθ
B(x) = Dθ

A(x) for every x ∈ U and B is a θ-reduction. This statement implies
a θ-reduction is a special case of a θ-local reduction. The θ-reduction considers all θ-possible
decision rules and decision classes, while θ-local reduction are developed in terms of special
θ-possible decision rules and decision classes. Specially, for x ∈ U satisfying conf([x]A →
Dl) ≥ θ, if X = {[x]A}, then a θ-local reduction for X only considers one decision class
Dl.

Remark 3.3. In [3, 22] β-reduct was developed to keep β-dependency function. It seems to
have closed connection to θ-reduction in this paper. However, they are two different concepts.
First, β-reduct is proposed in the framework of VPRS, while θ-reduction are developed
within the framework of classical rough set and does not need new rough set model. Second,
β-reduct was introduced to preserve the sum of objects in β-lower approximations of all
decision classes, and θ-reduction aims to keep θ-lower approximation of every decision
class. Third, β-reduct cannot keep confidence of reduced rules of some β-possible rules
not less than β as pointed in [24], but a θ-reduction can avoid this drawback by keeping
confidence of every θ-possible decision rule not less than θ. At last, in VPRS possible rules
with bigger confidence are due to noise, when noise is ignored, these rules are believed as
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Table 1: A decision table.

U c1 c2 c3 c4 c5 c6 d

x1 1 1 1 1 1 1 M
x2 1 0 1 0 1 1 M
x3 0 0 1 1 0 0 M
x4 1 1 1 0 0 1 F
x5 1 0 1 0 1 1 F
x6 0 0 0 1 1 0 F
x7 1 0 1 0 1 1 F

certain ones. However, if these kinds of possible rules are not due to noise but roughness,
risk will be ignored when they are applied to practical problems as certain ones. Thus, β-
reduct does not have the formulism to distinguish noise and roughness. Since θ-reduction
still considers all possible rules as possible ones, it can handle either noise or uncertainty
at the meantime. Since a θ-reduction is a special case of a θ-local reduction, thus it is
obvious that a β-reduct and a θ-local reduction are certainly different. Furthermore, a θ-local
reduction is proposed to capture key attributes for special decision classes, and a β-reduct
cannot do this work since it has to consider all decision classes at the meantime. Following
we first give an example to indicate that β-reduct and the θ-local reduction are really
different.

Example 3.4. An inconsistent decision table is given as Table 1.
Let β = θ = 0.6, {{c4}, {c1, c3}, {c3, c6}, {c2, c5}} be the set of all 0.6-reducts, while

{{c3, c4}, {c1, c4, c5}, {c2, c4, c5}, {c4, c5, c6}, {c2, c3, c5}, {c1, c2, c5}, {c2, c5, c6}} is the set of all
0.6-local reduction for X = {X1 = {x1, x3}, X2 = {x4, x5, x6, x7}}. Obviously, every 0.6-reduct
is not a 0.6-local reduction, and every 0.6-local reduction is not a 0.6-reduct.

Following we study the properties of the θ-local reduction. The set of all θ-local
reductions in A∗ for X is denoted by Redθ

X(A ∪D), and we have the following theorem.

Theorem 3.5. CoreθX(A ∪D) = ∩RedθX(A ∪D).

Proof. (1) For any a ∈ CoreθX(A∪D),X/⊂Qθ(U, (A−{a})∪D) holds. Suppose a /∈ ∩Redθ
X(A∪D),

then there exists a θ-local reduction B for X s.t. B ⊆ A − {a}, such that X ⊆ Qθ(U,B ∪ D) ⊆
Qθ(U, (A− {a})∪D) ⊆ Qθ(U,A∪D), we get contradiction, hence a ∈ ∩Redθ

X(A∪D), namely
CoreθX(A ∪D) ⊆ ∩Redθ

X(A ∪D).

(2) For any a ∈ ∩Redθ
X(A∪D), suppose a /∈ CoreθX(A∪D), thenX ⊆ Qθ(U, (A−{a})∪D),

therefore there exists a θ-local reduction B for X s.t. B ⊆ A − {a}, then a /∈ B, thus a /∈
∩ Redθ

X(A ∪ D), we get contradiction, hence a ∈ CoreθX(A ∪ D), namely, ∩Redθ
X(A ∪ D) ⊆

CoreθX(A ∪D). From (1), (2), we can prove Theorem 3.5.
According to Theorem 3.5 θ-local core can be employed as the basis of finding all θ-

local reductions for X since it is included in all θ-local reductions for X.
If elements in X = {X1, . . . , XN} have nonempty overlaps, then there exists a X′

satisfying elements in X′ have empty overlaps and Redθ
X(A ∪ D) = Redθ

X′(A ∪ D). We only
prove this statement when X = {X1, X2}.
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Theorem 3.6. Suppose X = {X1, X2}, X1 ∩ X2 /=φ, and X′ = {X1 ∩ X2, X1 − X2, X2 − X1}, then
RedθX(A ∪D) = RedθX′(A ∪D).

Proof. For any B ⊆ A, X ⊂ Qθ(U,B ∪D) ⇔ X′ ⊂ Qθ(U,B ∪D), thus we finish the proof.

Following we always assume elements in X = {X1, . . . , XN} have empty overlaps. We
have the following theorem for the θ-local core.

Theorem 3.7. X = {X1, . . . , XN} and Dθ
A(x) = {Dl : l ≤ r} for any x ∈ Xi (i = 1, . . . ,N),

Xi ∩Xj = φ, then we have CoreθX(A ∪D) = ∪N
i=1Core

θ
{Xi}(A ∪D).

Proof. For any a ∈ CoreθX(A∪D) ⇔ there exists Xi satisfying Xi /∈ Qθ(U, (A−{a})∪D) ⇔ a ∈
Coreθ{Xi}(A ∪D) ⇔ a ∈ ∪N

i=1Core
θ
{Xi}(A ∪D).

When X = {X1
A, . . . , X

r
A}, Xl

A = ∪{[x]A : conf([x]A → Dl) ≥ θ}, l = 1, . . . , r, a θ-local
reduction for X is a θ-reduction. Thus, we get the core of θ-reduction can be expressed as the
union of the cores of θ-local reductions for {Xl

A}(l = 1, . . . , r). From Theorem 3.7 we can imply
elements in the θ-local core for X are indispensable for certain group of decision classes. If we
pay more attention to a special group of decision classes, then the θ-local reduction may offer
less conditional attributes only being indispensable for them. This is the objective of θ-local
reductions. Following we study the computing of θ-local reductions.

Definition 3.8. Let (U,A ∪ D) be a DT, U/IND(A) = {M1, . . . ,ML}, X = {X1, . . . , XN}, and
X ⊆ Qθ(U,A ∪D). Denoted by ak(Mi) as the value of samples in Mi in terms of ak. Define

Cij =

{{
ak ∈ A : ak(Mi)/=ak

(
Mj

)}
,
(
Mi ∪Mj

)
/⊂Xh,

(
Mi ∪Mj

) ∩Xh /=ϕ, ∃h ∈ {1, . . . ,N}
φ, otherwise

(3.1)

thenMθ
X(U,A ∪D) = (Cij)L×L is called the θ-local discernibility matrix for X.

From the definition of θ-local discernibility matrix for X we can easily get Mθ
X(U,A ∪

D) = ∪N
i=1M

θ
{Xi}(U,A∪D), namely,Mθ

X(U,A∪D) can be expressed as the union ofMθ
{Xi}(U,A∪

D). If X = {X1
A, . . . , X

r
A}, and Xl

A = ∪{[x]A : conf([x]A → Dl) ≥ θ}, l = 1, . . . , r, then the
discernibility matrix for X can be obtained by composing discernibility matrices for {Xl

A}(l =
1, . . . , r).

Theorem 3.9. Mθ
X(U,A ∪D) = (Cij)L×L satisfies the following properties.

(1) It is a symmetric matrix, that is, Cij = Cji, for all i, j ≤ L.

(2) Cij = φ ifMi ∪Mj ⊆ Xh orMi ∪Mj ⊆ (U −Xh) holds, specially Cii = φ, for all i, j ≤ L.

The proofs of following two theorems are straightforward.

Theorem 3.10. CoreθX(A ∪D) = {a ∈ A : Cij = {a}, i, j ≤ L}.

Theorem 3.11. B ⊆ A includes a θ-local reduction for X if and only if B ∩ Cij /=φ for Cij /=φ.
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Table 2: The original decision table of patients’ symptoms.

U

A

Body Temperature Dry cough Headache Influenza conf([xi]A → Dl)
a b c d

1 1 1 1 1 1

2 1 1 0 1 1

3 2 1 0 0 1

4 2 0 1 1 2/3

5 2 0 1 1 2/3

6 2 0 1 0 1/3

7 2 1 1 1 1

8 3 0 1 1 1/2

9 3 0 1 0 1/2

10 3 1 1 0 1
Note: in the table, body temperature a: 1 means high, 2means slightly higher, and 3means normal; for dry cough b, headache
c, influenza d: 1 means yes and 0 means no.

By Theorem 3.10 the θ-local core is the set of single element of the θ-local discernibility
matrix, thus, we can get CoreθX(A ∪D) from the θ-local discernibility matrix directly.

Definition 3.12. Let (U,A ∪ D) be a DT. A Boolean function is denoted by fθ
X(U,A ∪ D) =

∧(∨Cij), Cij /=φ, then fθ
X(U,A ∪ D) is referred to the θ-local discernibility function for

X.
Let gθ

X(U,A ∪ D) be the reduced disjunctive form of fθ
X(U,A ∪ D) by applying the

distribution and absorption laws as many times as possible. Then there exist t andAi ⊆ A for
i = 1, . . . , t such that gθ

X(U,A ∪D) = (∧A1) ∨ · · · ∨ (∧At), thus, we have the following theorem.

Theorem 3.13. RedθX(A ∪D) = {A1, . . . , At}.

The proof of Theorem 3.13 is similar to the one for traditional rough sets in [12].
Following we employ an example to illustrate the idea of θ-local reduction in this

paper.

Example 3.14. When one suffers from a disease, certain symptoms can be observed. The
doctor observes patients’ symptoms and signs to implement diagnosis. In the following
decision table (as Table 2 shown), ten patients’ symptoms were observed and recorded. We
would like to know which symptom is closely related to the influenza

U/IND(A) = {{x1}, {x2}, {x3}, {x4, x5, x6}, {x7}, {x8, x9}, {x10}},

U/IND(D) = {D1 = {x1, x2, x4, x5, x7, x8}, D2 = {x3, x6, x9, x10}}.
(3.2)
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Let θ = 0.6 and X = {X1 = {x1, x2, x4, x5, x6, x7}, X2 = {x3, x10}}, then D0.6
A (x) = {D1}

for any x ∈ X1 and D0.6
A (x) = {D2} for any x ∈ X2. Thus, θ-local discernibility matrices for

{X1}, {X2} and X are as follows respectively:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
φ φ

{a, c} {a} φ
φ φ {b, c} φ
φ φ {c} φ φ

{a, b} {a, b, c} φ {a} {a, b} φ
{a} {a, c} φ {a, b} {a} φ φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
φ φ

{a, c} {a} φ
φ φ {b, c} φ
φ φ {c} φ φ
φ φ {a, b, c} φ φ φ
{a} {a, c} φ {a, b} {a} {b} φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
φ φ

{a, c} {a} φ
φ φ {b, c} φ
φ φ {c} φ φ

{a, b} {a, b, c} {a, b, c} {a} {a, b} φ
{a} {a, c} φ {a, b} {a} {b} φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.3)

Clearly every Cij in Mθ
X(U,A ∪ D) is the union of the corresponding elements in

M0.6
{X1}(U,A ∪ D) and M0.6

{X2}(U,A ∪ D). Because of X = {X1, X2} = {X1
A,X

2
A}, Xl

A = ∪{[x]A :
conf([x]A → Dl) ≥ 0.6, l = 1, 2.}, a θ-local reduction for X is a θ-reduction, in other
words, the discernibility matrix of θ-reduction can be obtained by composing discernibility
matrices of θ-local reductions. We can easily get the corresponding θ-local reduction for {X1}
is Red0.6

{X1}(A ∪ D) = {{a, c}} and Core0.6{X1}(A ∪ D) = {a, c}. Similarly, Red0.6
{X2}(A ∪ D) =

{{a, b, c}}Core0.6{X2}(A∪D) = {a, b, c} and Red0.6
X (A∪D) = {{a, b, c}}, Core0.6X (A∪D) = {a, b, c}.

If we pay much more attention to influenza than others, that is, we concentrate on
the decision class with the value 1. Then the 0.6-local reduction {a, c} can be employed by
doctor to judge whether a patient is with influenza. However, {a, b, c} is a 0.6-reduction and
cannot explicitly identify key conditional attributes for particular decision class. On the other
hand, a θ-local reduction keeps confidence of important θ-possible decision rules extracted
from special decision classes not less than θ. For instance, we have the following 0.6-possible
decision rules and their reduced ones related to D1.

The original 0.6-possible decision rules related to D1 are as follows:

(i) (a, 1) ∧ (b, 1) ∧ (c, 1) → (d, 1), conf(i) = 1.

(ii) (a, 1) ∧ (b, 1) ∧ (c, 0) → (d, 1), conf(ii) = 1.
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(iii) (a, 2) ∧ (b, 0) ∧ (c, 1) → (d, 1), conf(iii) = 2/3.

(iv) (a, 2) ∧ (b, 1) ∧ (c, 1) → (d, 1), conf(iv) = 1.

The reduced rules are as follows:

(α1) (a, 1) ∧ (c, 1) → (d, 1), conf(α1) = 1.

(α2) (a, 1) ∧ (c, 0) → (d, 1), conf(α2) = 1.

(α3) (a, 2) ∧ (c, 1) → (d, 1), conf(α3) = 3/4.

From the above we know that a θ-local reduction keeps confidence of 0.6-possible
decision rules for decision class D1. Thus, a θ-local reduction could explicitly identify key
conditional attributes for particular decision classes and keeps confidence of θ-possible
decision rules in terms of these decision classes not less than θ. Therefore, θ-local reduction
can be selected as an effective method to deal with massive data.

4. Algorithm to Find One θ-Local Reduction and
Numerical Experiments

In this section, we develop an algorithm to find a θ-local reduction. Then we perform
numerical experiments for massive data sets to demonstrate that we can reduce the number
of condition attributes and keep classification accuracies of raw data with θ-local reduction,
which initially implies that the method proposed in this paper is feasible to process massive
data.

4.1. Algorithm to Find One θ-Local Reduction

In the subsection, we develop an algorithm (Heuristic) to find one θ-local reduction by the
approach of discernibility matrix proposed in Section 3.

Algorithm 4.1. To find one θ-local reduction for Xl
A of a certain decision class the following

should be carried out:

Input: U,A,D, θ,Xl
A.

Output: One θ-local reduction Redθ
Xl

A

(A ∪D).

Initialize: Redθ
Xl

A

(A ∪D) = ∅.
Step 1: Compute Cij by Definition 3.8.

Step 2: Compute Coreθ
Xl

A

(A ∪ D) = {a :Cij = {a}}; and delete those Cij with

nonempty overlap with Coreθ
Xl

A

(A ∪D).

Step 3: Let Redθ
Xl

A

(A ∪D) = Coreθ
Xl

A

(A ∪D).

Step 4: Add the element awhose frequency of occurrence is maximum in allCij into
Redθ

Xl
A

(A ∪D); and delete those Cij with nonempty overlap with Redθ
Xl

A

(A ∪D).

Step 5: If there still exist some Cij /= ∅, go to Step 4; otherwise, go to Step 6.
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Table 3: Data sets description.

Datasets Sample Data type Condition attributes Decision classes
Breast Tissue 106 Real number 9 4
Credit Approval 653 Mix number 15 2
Ionosphere 351 Real number 34 2
Spect 267 Symbolic number 22 2
Wdbc 569 Real number 31 2
Wine 178 Real number 13 3

Step 6: If Redθ
Xl

A

(A ∪ D) is not independent, delete the redundant elements in

Redθ
Xl

A

(A ∪D).

Step 7: Output Redθ
Xl

A

(A ∪D).

The computational complexity of this algorithm isO(|U|2 × |A|). Here |U| is the size of
universe, |A| is the number of condition attributes.

4.2. Numerical Experiments

In this subsection, we perform experiments to demonstrate that with θ-local reduction and θ-
reduction, condition attributes of a massive data set can be reducedwith a satisfied parameter
θ. We also employ support vector machine (SVM) as a classifier to compare the classification
accuracies of reduced and raw data sets. The experiments are set up as follows.

4.2.1. Experimental Setup

Dataset

Six datasets from University of California, Irvine (UCI) Machine Learning Repository [25]
are used (see Table 3).

Classifier

SVM in SVM-KM MATLAB Toolbox is employed as the classifier.

Dataset Split

In the process of classification, 10-fold cross-validation is applied on the six datasets.

Dataset Discretization

The fuzzy C-mean method proposed in [26] is used to discretize real valued condition
attributes.
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Table 4: The comparisons on selected attributes between θ-local reduction and θ-reduction.

Class 1 Class 2 Class3 Class 4 Parameter

Breast tissue 0.6667

θ-local reduction 1, 6 1, 2, 3 4, 9 4, 6, 7, 9
θ-reduction 1, 6, 2, 3, 7, 8, 9 1, 2, 3, 6, 7, 8, 9 4, 9, 2, 3, 6, 7 4, 6, 7, 9, 2, 3

Wdbc 0.8333

θ-local reduction
1, 2, 4, 6, 7, 9, 11, 12,
14, 15, 22, 25, 27, 28,

29

1, 2, 7, 9, 10, 11, 12,
15, 19, 22, 23, 25, 27,

28, 29

θ-reduction
1, 2, 4, 6, 7, 9, 11, 12,
14, 15, 22, 25, 27, 28,

29

1, 2, 7, 9, 10, 11, 12,
15, 19, 22, 23, 25, 27,

28, 29, 30
Spect 0.8636

θ-local reduction
1, 2, 3, 4, 5, 9, 11, 12,
13, 14, 15, 17, 18, 20,

21, 22

1, 2, 4, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17,

18, 20, 22

θ-reduction
1, 2, 3, 4, 5, 7, 8, 9,
11, 12, 13, 14, 15, 17,

18, 20, 21, 22

1, 2, 4, 5, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16,
17, 18, 20, 21, 22

Indices

They are (1) the number of selected attributes in the reduct, (2) classification accuracy of the
reduct.

Parameter Specification

From confidences of all decision rules, we randomly choose a confidence which is greater
than 0.5 as our experimental parameter on a specific dataset.

Accuracy

The accuracy in this paper is calculated by A/B, while A is the number of samples classified
correctly in a certain decision class, and B is the number of samples in this decision class.

First Table 4 shows the detailed comparison of condition attributes in θ-local reduction
and θ-reduction. Clearly θ-local reductions are different to θ-reductions. Inmost cases, θ-local
reduction is subset of a certain θ-reduction. That is to say, the number of condition attributes
in the θ-local reduction is often smaller than the one in the θ-reduction.

Next, Table 5 shows that though the average accuracy on θ-local reduction (i.e.,
0.79466) is a little lower than average accuracy on raw data (i.e., 0.8147333), and much higher
than average accuracy on θ-reduction (i.e., 0.75170666). This fact reveals that compared with
θ-reduction and raw data, θ-local reduction can keep classification accuracy within a small
perturbation. It is also easy to see from Table 5 that the number of attributes in the θ-local
reduction (10.33333) is obviously less than the one in θ-reduction (12.066666) and far less
than the one of raw data (20.66666). In particular for the dataset “BreastTissue,” the number
of attributes in the θ-local reduction is far less than the one in the θ-reduction and raw data
set on every decision class.
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Table 5: Comparison between θ-local reduction and θ-reduction.

Accuracy
Raw data

Number of selected attributes Raw
data Parameterθ-local-

reduction θ-reduction θ-local-
reduction θ-reduction

Breast tissue 0.6415 9 0.6667
Class 1 0.6132 0.6151 2 6
Class 2 0.6208 0.6038 3 6
Class 3 0.5717 0.6528 2 6
Class 4 0.6472 0.6038 4 6

Wine 0.9640 13 0.75
Class 1 0.9685 0.9719 8 9
Class 2 0.9730 0.9652 9 10
Class 3 0.9337 0.9663 8 9

Credit approval 0.8071 15 0.8125
Class 1 0.8224 0.7994 14 15
Class 2 0.8009 0.7995 13 14

Ionosphere 0.8889 34 0.8750
Class 1 0.9090 0.9089 14 15
Class 2 0.8917 0.9032 16 17

Spect 0.6590 22 0.8636
Class 1 0.6932 0.6511 15 17
Class 2 0.6170 0.6510 17 18

Wdbc 0.9279 31 0.8333
Class 1 0.9297 0.9122 15 17
Class 2 0.9279 0.9225 15 16

Average 0.79466 0.75170666 0.8147333 10.33333 12.066666 20.66666

These results initially imply that idea of θ-local reduction is effective to deal with
some massive data. However, we select different parameter θ for different data set, and how
to select a suitable parameter for certain data set is a complex problem. We omit detailed
discussion on this topic in this paper.

5. Conclusion

Attribute reduction is a key topic in rough set theory. And the existing methods of attribute
reduction ignore possible rules and cannot capture key condition attribute for special decision
classes. In this paper, we develop the concept of θ-local reduction, by which possible rules
with larger confidence are considered and key conditional attributes related to some special
decision classes can be selected. Approach of discernibility matrix is employed to find θ-local
reductions. Experiments are performed to demonstrate the effectiveness of the idea of θ-local
reduction in this paper.
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