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A new numerical method based on Bernstein polynomials expansion is proposed for solving one-
dimensional elliptic interface problems. Both Galerkin formulation and collocation formulation
are constructed to determine the expansion coefficients. In Galerkin formulation, the flux jump
condition can be imposed by the weak formulation naturally. In collocation formulation, the
results obtained by B-polynomials expansion are compared with that obtained by Lagrange basis
expansion. Numerical experiments show that B-polynomials expansion is superior to Lagrange

expansion in both condition number and accuracy. Both methods can yield high accuracy even
with small value of N.

1. Introduction

In this paper, we consider the following two-point boundary value problem:
(Pux), +u=f+v6(x-a)+ %(ﬁ* +p)wd' (x—a), x€Q=(ab), (1.1)
with boundary conditions
u(a) = u,, u(b) = uy, (1.2)

where a < a < b, 6(x) is the Dirac delta function and &' (x) is the dipole source term. The func-
tion B(x) is allowed to be discontinuous at x = a. For simplicity here we assume that f(x)
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is smooth function. Due to the presence of singular source, the solution u(x) possesses the
following jump relations [1]:

[ul =w,  [pud] =o, (1.3)
where the jump notation [-] is defined as

[u] = xlin;+u(x) - li_)m_u(x) =u"-u. (1.4)

This problem is referred to as the interface problem and is used in various applications of
physics, engineering, and biological sciences, see [2—4] and the references therein.

For interface problems, since sharp interfaces or local jumps exist within the solution
domain, any high-order method, such as the spectral method, suffers from the Gibbs
phenomenon [5]. Here we evoke items we care most for solving interface problems. In 1993,
the immersed interface method (IIM) was proposed for interface problems [1]. It is a two-
order finite difference method based on Cartesian grids by incorporating the jump relations
into difference schemes. The authors have constructed the IIM-based ADI finite difference
scheme for 2D nonlinear convection diffusion interface problems [6]. In [7], a high-order
method was developed for both discontinuous coefficients and singular source based on
finite element method. To enhance the accuracy, the modified Hermite polynomials are used
for the basic functions in each element. The matched interface and boundary method was
proposed in [8] for elliptic interface problems with discontinuous coefficients and singular
source. In [9], the coupling interface method was developed for elliptic interface problems.
Recently, Shin and Jung [5] developed the spectral collocation method for one-dimensional
interface problems (1.1) with w = 0, in which Lagrange basis functions are chosen as the trial
functions.

In this work, we also consider this problem and take Bernstein polynomials basis as the
trial functions. Bernstein polynomials are useful polynomials in computer-aided geometric
design because of their excellent properties [10]. Recently there are some works that used
Bernestein polynomials as basis for numerically solving differential equations [11, 12],
integral equations [13, 14], and so on, but none of them is about interface problems. Our
method is different from Shin and Jung’s in three aspects.

(i) The trial functions are chosen as Bernstein polynomials due to its nice properties.
These polynomials defined on an interval form a complete basis over the interval.
Each of these polynomials is positive and their sum is unity.

(ii) The Galerkin formulation is constructed for this problem. Since the Bernstein poly-
nomials are algebraic polynomials, the mass matrix and stiff matrices can be evalu-
ated efficiently.

(iii) The B-polynomial-based collocation formulation is given collocated with both
equidistant points and spectral points, respectively. Unlike Lagrange basis func-
tions, the B-polynomial differential matrix can be computed easily and the condi-
tion number of resulting linear system is smaller than that of Lagrange basis, which
is shown in the numerical examples.
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The rest of this paper is organized as follows. In Section 2, the Bernstein polynomials
on interval [a, b] and its derivatives are given. The Galerkin formulation and B-polynomial-
based collocation formulation are shown in Section 3. Two numerical examples are given and
analyzed in Section 4 before the conclusions are made in Section 5.

2. Bernstein Polynomials Basis

The general form of Bernstein polynomials of nth degree on interval [a, b] is defined as [12]

'.l> (x=a)b-—x"" @2.1)

Bi,n(x):<l b =0,1,...,m,

where the binomial coefficients are given by (%) = n!/i!(n —i)!, withn! =1 x 2 x ... xn for
n > 1and 0! = 1. These (n + 1) B-polynomials of degree n form a complete basis over the
interval [a, b]. It is easy to show that any given polynomial of degree n can be expressed in
terms of linear combination of the B-polynomials basis functions. The B-polynomials can be
generated by a recursive definition:

b-x X
- Bin-1(0) + 7= Bi-n-1(%). (2.2)

Bin(x) = b_a b4

The derivatives of the nth degree B-polynomials are combinations of B-polynomials of degree
n — 1, which can be formulated as

n
B, = m(Bi—l,n—l - Bin-1),

" 11(11 - 1)
in = W(Bi—z,n—z —2Bi_1 42+ Biyo), (2.3)
" 1’1(1’1—1)(1’1—2)

in = W (Bi—3n-3 = 3Bi2,n-3 + 3Bi_1,n-3 — Biu-3),

where we set B;, = 0if i <0 ori > n. In favor of these recursive relations, the differentiation
matrix of Bernstein basis can be evaluated conveniently, while the computation of differenti-
ation matrix of high-order Lagrange basis function may suffer from certain difficulties [15].

3. Numerical Methods

In this section, we give the numerical method for solving interface problem (1.1)—(1.3). It
includes Galerkin formulation and collocation formulation. Without loss of generality, we
assume that only one interface x = a exists in Q and f is piecewise constant in each
subdomain. The multiple interface can be handled analogously. Thus the entire domain is
divided by a into two parts Q; = (a,a) and Q, = (a, b).
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Suppose that the solutions in Q; and £, are u; and uy, respectively, then the problem
(1.1)-(1.3) can be regarded as the following two smooth problems:

(Buy) +ur = f, x €Qi, with uy(a) = u,,

(3.1)
(ﬁzu'z)' +up=f, x€Q,, with up(b) = up,
together with jump conditions (1.3), which make (3.1) closed.
In each subdomain Qy, k = 1,2, the solution uy (x) can be approximated by
N
uk(x) = ch,iBi,Nk (x)/ x € £2](/ k= 1/2/ (32)

i=0

where Ny is the degree of B-polynomials on each subdomain. According to the interpolation
property of B-polynomials at two endpoints, we can easily get C19 = 1, and Co N, = p.

3.1. Galerkin Formulations

The variational formulation of (3.1) reads

f ﬂlulvldx+f uwldx:f fvldx—ﬂlu'lvﬂg,
‘ (3.3)

b b
b
J Brusvsdx + f Uyvrdx = I foadx = pourvn |,
[24

a a

where v, € H!(Q) is arbitrary and satisfies certain boundary conditions.
Plugging (3.2) into (3.3) and replacing vy with B-polynomials basis produce

a a
(J ﬂle NlB]N dx + f Bi,NlBj,Nldx> Cl,i = f f(x)Bj,Nldx - ﬂlu/lB]',Nl |Z,
a a

a

Ny b
_ Z (J‘ ﬂzBl N2 m dex + J‘ Bi,NzBm,Nz dx> C2,i (34)
i=0

b

b

= J‘ f(x)Bm,dex - ﬂzulzBm,Nzsz
a

withj=0,1,...,N;, m=0,1,...,Na.
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Observing that C1 = u,, Con, = up and Bjn, (x), j = 1,2,..., Nk — 1, have zeros at the

endpoints, (3.4) can be reformulated as

'[51B1 N ]Nl + Bi,N1 Bj,N1>dx

Seuf

“J.

ZCZlJ‘ ( ﬂ 1N2 mN2+Bi,N2Bm,Nz>dx

(-
(

F(X)Bjn, + PruuaBy n, B, — taBon, ]N1>dx, i=1,...,Ny

b
- f (f BN, + BBy, n, By v, — WBoNo B )dx, m=1,...,
a

Let j = Ny in (3.5) and m = 0 in (3.6), we get

'
ﬁlBl NlBNl,Nl + Bi,N1 BNl,N1>dx

Seuf

“J.

Z CzlJ‘ < ﬂzBlN BON2 + B1N2B0N2>d

(-
(

-1,

N, - 1.

' _
f x)BNl Ny +ﬂ1u“ ONlBNl N; u“BO/NlBN1,N1>dx_ﬁ1uxl

b
= f (f(x)B(),NZ + ﬂzubBE\Iz/NzBé/Nz - ubBNZ,NZBO,M)dx + ﬂzu;.
a

Adding (3.7) and (3.8) together, combined with jump condition [Pu,]
yields

Zchf (~F1B, B, + Bons By )lx

+ Z_ C2,if < ﬂsz N, ONz + Bi,NzBO,N2>dx

a
= f <f(x)BN1,N1 + ﬂluaB('),Nl B;\I‘]er — uaBolNlBNhM)dx

a

Another jump condition [u] = w implies

_Cl,N1 + Cz/o =w.

= Pouy — Pruy

b
+ I <f(x)Bo,N2 + ﬁzubB;\lz,NzB(,),Nz - ubBNZINZBO,M)dx + 0.

(3.5)

(3.6)

(3.7)

(3.8)

o,

(3.9)

(3.10)
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Equations (3.5), (3.6), (3.9), and (3.10) form a linear system with N; + N, equations and
N7 + N, unknowns:

Ci1,Ci2,-- -, Cini, C20,Cot,y -, Conyt (3.11)

3.2. Bernstein Collocation Methods

Substitution of (3.2) into (3.1) produces residuals
Nk Nk
R = D CiifBin, + D ChiBin, - f, k=1,2. (3.12)
i=0 i=0

In each interval [a, a] and [a, b], define the collocation points:

Xp={xila=x10<x11 < <x,N-1 <XIN, = A},
(3.13)
Xz = {eri | ax=Xy0<X21<-:<X2N,-1 <X2N, = b}

Here the points in Xy can be equidistant points, Legendre-Gauss-Lobatto (L-G-L) points, or
Chebyshev-Gauss-Lobatto (C-G-L) points.
Note that C1p and C, n, in (3.2) are known. Collocation of (3.12) at points X yields

Ny
>.Cui (ﬂl Bl n, (x1,7) + Bin, (xl,j)>
i=1

= f (1) = ua(P1Bi n, (x1) + Bowi (1)), j =10, N1 =1,

(3.14)
Nx-1
pNey (ﬂzBZNZ (x2,m) + BiN, (x2,m)>
i=0
= f(x2m) —up <ﬂzB§'\;2,N2(x2,m) + BNy, N, (xz,m)>, m=1,...,Np-1.
From (3.2) we can easily get
Nk
Uj(x) = > CriBjn, (%), x€Q k=1,2. (3.15)
i=0

Jump condition [u] = w and [pu,] = v imply

-Cin, +Cop=w,

Ny Np-1 (3.16)
=) Crif1Bin, (@) + D, CoifoBi \, (@) = v + fruaBy (@) — foup By, , ().
i1 i=0



Journal of Applied Mathematics 7

Table 1: Convergence analysis of Example 4.1 by Galerkin formulation.

f1 =100, f, = 10 f1 = 10, f, = 100

Cond llu - Ul l[u = Ull, Cond llu - Ull, [l — Ullp,
4 2.8902¢+002  8.0336e-006 3.1656e—005  1.2005e +002  6.0268¢ —007  4.4909¢ — 006
6 19948 +003  1.2627¢—008  7.1402¢—008  5.0076e +002  2.3531le-010  2.6075e — 009
8  2.6058¢+004 1.1896e—011  87994e-011  65562e+003  5.5614e—014  8.1463¢ - 013
10 3.6110e+005 8.9538¢-014  7.2848¢—-013  9.0944e+004  1.2798e-014  2.0911e - 013
12 5.168% +006  5.7748¢ —014  52493¢—013  1.3025¢+006  55197e-015  8.2017e - 014

Equations (3.14) and (3.16) produce the linear systems of N; + N, equations with N; + N»
unknowns

Ci1,Cio -, Cin, C20,Cos -, Conyt (3.17)

4. Numerical Experiments

In this section, we give two examples to verify the accuracy of proposed numerical method.
The first example is the one in which v #0 and w = 0, while in the second example both w and
v are not zeros. We compare our results (B-polynomials-based) with that of Shin and Jung’s
(Lagrange-polynomials-based) [5]. In all cases, we take N1 = N, = N and the resulting linear
systems are almost block diagonal and solved by BiCGStab algorithm.

Example 4.1. Consider the interface problem given in [5]

(Pux) +u=1+v6(x—-a), xé€(ab),
4.1)
u(a) =u(b) =0,
with the following exact solution:
x x
(@ cos<—> +C, sin<—> +1, x€(a,a),
1 1
u(x) = VA VA (4.2)

Cs cos<\/iﬁ>2> +Cy sin<\/iﬁ>2> +1, x€(ab),

where a =0,b =5, a =5/3, and v = 10. The jump conditions read [u] =0, [fu,] = v. C;s can
be determined by the boundary and jump conditions.

Both Galerkin formulation and collocation method are used to solve this problem
numerically. The condition number (Cond) of the resulting linear system is given in each
computation. Table 1 gives the convergence analysis of Galerkin formulation with different
coefficients f; and f,, in which the L, and H; norms are shown. It can be seen that the error
reduces rapidly as the order of the B-polynomials increases.

The convergence analysis of collocation formulation is shown in Tables 2-5, in which
the B-polynomials basis and Lagrange basis are compared. In each table, we use two types
of collocation points to compare the results. It shows that the results of spectral collocation
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Table 2: Convergence analysis of Example 4.1 by Bernstein collocation method (f; = 100, 5, = 10).

Equidistant collocation points

L-G-L collocation points

Cond [l = Ul llu = Ul Cond flu - Ul llu = Ullg,
4 8.0697e+002  3.2739e -005  7.2959e¢ —005  9.7943e + 002  9.3669¢ — 006  3.5591e — 005
6 1.7192¢ + 003 1.0254e — 007  2.8205e — 007  2.6631le +003  1.8687¢—-008  7.6800e — 008
8  3.5459¢+003  2.7004e - 010  6.8954e¢—-010 5.9340e +003  2.7678e¢ —011  9.5494e — 011
10 2.0224e+004  6.0013¢ — 013  1.1492¢ - 012  1.1258¢ + 004  2.5097¢ — 014  7.5211e — 014
12 1.2993¢ + 005  8.5704e — 013  3.2062¢ — 012  2.0852¢ + 004  1.4182¢ -015  3.3308¢ — 015

Table 3: Convergence analysis of Example 4.1 by Lagrange collocation method (f; = 100, , = 10).

N Equidistant collocation points L-G-L collocation points

Cond flue = U]l llu = Ul Cond flu - Ul llu = Ullg,
4  33057e+003  5.2000e —005  7.2298¢ —005  3.9362¢ + 003  1.4511e —-005  2.8433¢ — 005
6 1.5322¢ + 004  1.9556e — 007  2.7515e—-007  1.5295e¢+004  3.1861e — 008  5.9502¢ — 008
8 83734e+004  4.5539¢-010  6.4269¢—-010  4.6202¢ + 004  3.9798e — 011 7.198%¢ - 011
10 4.6854e+005  6.4179¢ -013  9.4096e — 013  1.1468e + 005  1.8912¢ — 014  4.8567¢ — 014
12 4.0396e + 006  8.1907¢ — 014  1.8001e — 013  2.4580e + 005  2.2058¢ — 014  3.3532¢ — 014

points (L-G-L or C-G-L points) are more accurate than the equidistant collocation points.
Comparing Table 2 with Table 3, we can conclude that the condition number of linear systems
derived from B-polynomials is much smaller than that derived from Lagrange polynomials.
And the error from the former is smaller than the latter. Similar analysis can be got by com-
paring Table 4 with Table 5.

Example 4.2. In this example, the solution u has nonzero jump across a. The following inter-
face problem is considered

(Pux) +u=1+v6(x—-a)+ %([51 +p)wb (x —a), xe€(ab),

(4.3)
u(a) =u(b) =0.
The jump conditions are [u] = w, [fu,] = v. The exact solution is
x x
C cos<—> +C, sin<—> +1, x€(aa),
1 1
u(x) = Vi VA (4.4)

Cs cos<\/iﬁ>2> + Cy sin<\/iﬁ>2> +1, x€(ab),

wherea =0,b =5 a =5/3, w = 10, v = 10, and C;s can be determined by boundary and
jump conditions.

The similar convergence analysis results can be obtained compared with Example 4.1.
Since the nonzero jump w just affects the right-hand side of the resulting linear systems,
the condition numbers in Tables 6, 7, 8, 9, and 10 are unchanged compared with that in
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Table 4: Convergence analysis of Example 4.1 by Bernstein collocation method (f; = 10, p, = 100).
N Equidistant collocation points C-G-L collocation points
Cond lu - Ul = U, Cond - Ul = U,
4  24186e+002  1.3416e-005  1.8145¢-005  2.7609¢ +002  3.7065¢ — 006  6.8234e — 006
6  4.6720e+002  1.4350e-008  1.9575e-008  6.8378¢+002  1.5692¢ —009  3.5133e — 009
8  8.0785e+002 9.1093e —012  1.2390e —011  1.4516e +003  4.1601e — 013  1.0452¢ — 012
10 1.8803e +003  1.1076e —014  1.3953e —014  2.6872e +003  1.3912e -015  1.9211e - 015
12 9.7253e + 003  2.9255e - 014  3.5622e - 014  4.4882e + 003 1.5746e — 015  2.4994e - 015
Table 5: Convergence analysis of Example 4.1 by Lagrange collocation method (f; = 10, , = 100).
N Equidistant collocation points C-G-L collocation points
Cond = U, = Ul Cond lu— U]l = Ul
4 9.8076e+002  1.3416e-005  1.8145¢-005  1.1152e +003  3.7065¢ — 006  6.8234e — 006
6  4.1388¢+003  1.4350e-008  1.9575e-008  4.6618¢+003  1.5692e —009  3.5133e — 009
8  2.0589¢+004  9.1456e — 012  1.2443e —011  1.4939¢ + 004  3.9966e — 013  1.0327¢ — 012
10 1.2877e + 005 1.4536e — 014  2.5636e — 014  3.8643e + 004  1.8444e-014  2.2488e - 014
12 1.4925e +006 ~ 2.5445e - 013  3.2439e-013  8.5365e + 004  1.5287¢ -014  2.1577e - 014
Table 6: Convergence analysis of Example 4.2 by Galerkin formulation.
N B1 =100, f> = 10 p1 =10, > =100
Cond e = U, = Ul Cond - U], = Ull,
4 2.8902e+002 3.5634e—-004 1.3781e—-003  1.2005¢+002  1.4132¢-005  1.0699% — 004
6 19948 +003  5.6809¢-007  3.1820e-006  5.0076e+002  5.6321e —009  6.2488e — 008
8  2.6058¢+004 5.3895¢-010  3.9608e -009  6.5562e¢ +003  1.3353e—012  1.9540e - 011
10  3.6110e +005  3.4189% -013  3.0718e - 012  9.0944e + 004  4.3556e — 014  3.5483e - 013
12 51689%e +006  7.9344e-014  7.1592e - 013 1.3025e + 006  2.6693e — 014  4.7276e - 013
Table 7: Convergence analysis of Example 4.2 by Bernstein collocation method (f; = 100, f, = 10).
N Equidistant collocation points L-G-L collocation points
Cond = U, = Ul Cond lu Ul = Ul
4  8.0697e+002  1.4582e-003  2.8374e-003  9.7943e +002  5.7278e —004  1.4832e - 003
6  1.7192e +003  7.2538¢ - 006  1.3324e-005  2.6631le +003  1.4192¢e-006  3.5539e — 006
8  3.5459¢ +003  1.9942¢ -008  3.4812¢-008  59340e+003  1.9544e-009  4.5723e - 009
10 2.0224e + 004  3.4252e -011 5.7468e — 011 1.1258e + 004  1.6657e —012  3.6562¢ — 012
12 1.2993e+005  7.4279e—-012  1.0651e—-011  2.0852¢ +004  1.1997¢-014  2.0057e - 014
Table 8: Convergence analysis of Example 4.2 by Lagrange collocation method (f; = 100, , = 10).
N Equidistant collocation points L-G-L collocation points
Cond e = U, = Ul Cond =]l = Ully,
4  33057e+003  1.4582¢—-003  2.8374e¢-003  3.9362e +003  57278¢-004  1.4832e - 003
6  1.5322¢+004 7.2538¢-006  1.3324¢—-005  1.5295e¢ +004  1.4192¢-006  3.5539e — 006
8  83734e+004  1.9942¢-008  3.4812¢-008  4.6202¢ + 004  1.9544e-009  4.5723e — 009
10 4.6854e +005  3.4418e - 011 5.7661e — 011 1.1468e + 005  2.1240e — 012 3.9355e - 012
12 4.0396e + 006 1.5353e - 013  5.0360e — 013  2.4580e + 005  2.7272e — 013  4.6544e — 013
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Table 9: Convergence analysis of Example 4.2 by Bernstein collocation method (f; = 10, p, = 100).

Equidistant collocation points

C-G-L collocation points

Cond llu - Uil l[u = Ull, Cond llu - Ull, [l — Ullp,
4 24186e+002  17618¢-004  2.8143e-004  2.7609¢ +002  4.9906e —005  1.3489¢ — 004
6 4.6720e+002  2.6676e—007  3.8509¢ —007  6.8378¢+002  2.918le-008  7.8955¢ — 008
8  8.0785¢+002 20042010 2.7687e—-010  1.4516e+003  9.1270e - 012  2.4596e — 011
10 1.8803e+003  14215¢-013  1.8609¢ —013  2.6872¢+003  8.3967¢-015  1.7718e - 014
12 9.7253e+003  6.1320e —014  8.4108¢—014  4.4882¢+003  6.8128¢—015  1.5746e — 014

Table 10: Convergence analysis of Example 4.2 by Lagrange collocation method (f; = 10, , = 100).

Equidistant collocation points

C-G-L collocation points

N cond e = UL, I = U, Cond e - UL, [

4 9.8076e + 002 1.7618e — 004 2.8143e — 004 1.1152¢ + 003 4.9906e — 005 1.3489¢ - 004
6 4.1388e + 003 2.6676e — 007 3.8509¢e — 007 4.6618e + 003 2.9181e — 008 7.8955¢ — 008
8 2.0589%¢ + 004 2.0054e - 010 2.7699¢ — 010 1.4939¢ + 004 9.1229¢ - 012 2.4579e - 011
10 1.2877e + 005 2.4447e — 013 4.5634e — 013 3.8643¢ + 004 7.1025e - 014 9.6688¢e — 014
12 1.4925e + 006 3.0489%¢ - 012 4.3164e — 012 8.5365e + 004 8.5589¢ — 013 1.2211e - 012

Tables 1-5, while the error in Tables 6-10 is much larger than that in Tables 1-5. The regularity
of the solution can affect the accuracy of the numerical algorithm enormously.

5. Conclusions

In this paper, a new numerical method based on B-polynomials expansion is proposed for
solving one-dimensional interface problems. We give two methods to evaluate the expansion
coefficients, the Galerkin formulation, and the collocation formulation. Both methods can
yield highly accurate results with small number of B-polynomials. In collocation method, the
Lagrange polynomials are used to compare with B-polynomials. It is shown by numerical
examples that B-polynomials are superior to Lagrange polynomials in both condition
number and accuracy, especially when collocated with equidistant points. In theoretical
aspect, since the B-polynomials basis is equivalent to power basis or Lagrange basis under
certain invertible transformations, theoretical analysis of the proposed method may be done
similarly, which is a part of our future research plan. The method can be extended to problems
with multiple interfaces easily.
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