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This paper proposes the optimal control methods for a class of chaotic systems via state feedback.
By converting the chaotic systems to the form of uncertain piecewise linear systems, we can obtain
the optimal controller minimizing the upper bound on cost function by virtue of the robust optimal
control method of piecewise linear systems, which is cast as an optimization problem under
constraints of bilinear matrix inequalities (BMIs). In addition, the lower bound on cost function
can be achieved by solving a semidefinite programming (SDP). Finally, numerical examples are
given to illustrate the results.

1. Introduction

As a very interesting nonlinear phenomenon, chaos has been widely applied in many areas,
such as secure communication, signal generator design, biology, economics, and many other
engineering systems, which has been researched thoroughly over the past two decades
[1]. Recently, chaos control of chaotic systems has become an active research topic [2]. In
general, there are several schemes to achieve the control of continuous time chaotic systems,
such as OGY method [3], parametric resonance method [4], adaptive feedback method
[5, 6], delay feedback method [7], backstepping design method [8], fractional controller
design method [9], sliding mode control method [10, 11], internal model approach [12],
impulsive control approach [13], as well as linear and nonlinear feedback control methods
[14–17]. However, most of the existing methods were used to achieve chaos control either
by employing the linearization scheme in the neighborhood of the objective point which is
difficult to accomplish the global analysis, or by applying the nonlinear feedback controller
which often limits practical applications. Based on the fuzzy control theory, Tanaka et al.
[18] studied the feedback control of chaotic systems. The result formulated in terms of linear
matrix inequalities (LMIs, [19]) was convenient to solve, but the controller design for the
associated fuzzy systemswas fulfilled by virtue of global quadratic Lyapunov function which
is conservative in the control synthesis.
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As pointed out in [20], piecewise linear systems, which can approximate general non-
linear systems to any degree of accuracy, can be analyzed based on piecewise quadratic
Lyapunov function technique that introduces more flexibility than the classical global quad-
ratic Lyapunov function technique. Thus, the piecewise linear systems provide a powerful
way of analysis and synthesis for nonlinear systems. Chaotic systems belong to complex non-
linear systems. In fact, it is significant to design a practicable piecewise linear feedback con-
troller to stabilize globally a chaotic system with a performance measure for the control syn-
thesis. We recently [21] proposed a new chaotic system and designed a piecewise linear feed-
back controller to stabilize globally the new system based on piecewise linear systems
method. So far, there have been very few results dealing with the optimal control for chaotic
systems. In this paper, we investigate the problem of designing piecewise linear feedback
controller to stabilize a class of chaotic systems, and meanwhile minimize a quadratic cost
function for the closed-loop systems. Particularly, in this paper, a class of chaotic systems
are converted to uncertain piecewise linear systems. Then, based on piecewise quadratic
Lyapunov function technique and Hamilton-Jacobi-Bellman (HJB) inequality method, the
optimal chaos control via piecewise linear state feedback controller is studied. It is shown that
the optimal controller minimizing the upper bound on cost function can be obtained by solv-
ing an optimization problem under constraints of bilinear matrix inequalities (BMIs). The
lower bound on cost function can be attained by solving a semidefinite programming (SDP).
If the upper and lower bounds obtained are sufficiently tight, it is concluded that the asso-
ciated solutions achieve or get close to optimality.

This paper is organized as follows. In Section 2, the optimal control problem of chaotic
systems is introduced. In Section 3, the optimal control for a class of chaotic systems via
piecewise linear state feedback controller is proposed. The upper bound and lower bound on
cost function are designed. Illustrative examples are given in Section 4, and the conclusion is
drawn in Section 5.

Throughout this paper, a real symmetric matrix P > 0 (≥0, ≤0) denotes P being a
positive definite (positive semidefinite, or negative semidefinite) matrix, and A > B means
A − B > 0. I denotes an identity matrix of appropriate dimension. The superscript “T” re-
presents the transpose of a matrix. Matrices, if their dimensions are not explicitly stated, are
assumed to have compatible dimensions for algebraic operations.

2. Problem Formulation

Consider the chaotic system of the form:

ẋ = Ax + F(x) + Bu, (2.1)

where A and B are constant matrices, x ∈ �n is the state vector, u ∈ �m (m ≤ n) is the control
input variable, and the nonlinear term F(x) ∈ �n is assumed to satisfy Lipschitz continuity
condition, uniform or local, and F(0) = 0.

Associated with this system is the cost function:

J =
∫∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt, (2.2)

where Q > 0, R > 0 are given weighting matrices.
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The goal of this paper is to design a state feedback law u(t) stabilizing the chaotic sys-
tem (2.1) and meanwhile minimizing the cost function (2.2).

It is known that the control law u(t) can be derived from the solution to the asso-
ciated HJB equation. However, generally speaking, the HJB equation corresponding to a gen-
eral nonlinear system is notoriously hard to solve. Many numerical methods have been de-
vised for the solution of optimal control problems but tended to suffer from combinatorial
explosion. Piecewise linear systems, which can approximate nonlinear systems to any degree
of accuracy, provide a powerful means of analysis for nonlinear systems. By virtue of HJB
inequalities rather than equations, the authors in [20, 22] have investigated the state feedback
optimal control of piecewise linear systems. It was shown that the upper bound on piecewise
quadratic cost function can be obtained by solving a nonconvex BMIs problem, and the lower
bound on cost function can be obtained by solving an SDP. Motivated by this, we first convert
the chaotic system (2.1) to the form of uncertain piecewise linear systems and then extend the
corresponding results of optimal control for the ordinary piecewise linear systems in [20] to
the case of uncertain piecewise linear systems. Thus, we can achieve the optimal control for
the original chaotic system.

Note that the nonlinear term F(x) in system (2.1) can be approximated by a piecewise
linear function as follows:

F(x) = Kix + ai + Δi(x), x ∈ Xi, i ∈ I, (2.3)

where Ki ∈ �n×n, ai ∈ �n are some given parameters, {Xi}i∈I
⊆ �n denotes a partition of the

state space of chaotic system, I is the index set, and Δi(x) is the approximation error, which
can be regarded as uncertainties in the system. Then, it is obvious that system (2.1) can be con-
verted to the uncertain piecewise linear system:

ẋ = (A +Ki)x + ai + Δi(x) + Bu, x ∈ Xi, i ∈ I. (2.4)

It is worth mentioning that system (2.1) can represent a large class of chaotic systems
such as Genesio-Tesi chaotic system [23], Coullet chaotic system [24], Chua’s Circuit system
[25], and the new chaotic systems presented in [21, 26]. A simple but typical case is the three-
dimensional chaotic system with the nonlinear term F(x) taking the following form:

F(x) =
[
0, 0, f(x1)

]T
, (2.5)

where f(x1) is the nonlinear term in the 3rd dimension of the system and can be approxi-
mated by a piecewise linear function as

f(x1) = kix1 + li + δi(x1), x ∈ Xi, i ∈ I, (2.6)

where ki, li ∈ � are some given parameters, δi(x1) is the approximation error. Then, system
(2.1) with the nonlinear term (2.5) can be converted to the form of the uncertain piecewise
linear system (2.4) as

ẋ = Aix + ai + Δi + Bu, x ∈ Xi, i ∈ I (2.7)
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with

Ai = A +

⎡
⎢⎢⎣
0 0 0

0 0 0

ki 0 0

⎤
⎥⎥⎦, ai =

⎡
⎢⎢⎣
0

0

li

⎤
⎥⎥⎦, Δi =

⎡
⎢⎢⎣

0

0

δi(x1)

⎤
⎥⎥⎦. (2.8)

3. State Feedback Optimal Control of Systems

Without loss of generality, consider the uncertain piecewise linear system of the form

ẋ(t) = (Ai + ΔAi)x(t) + (Bi + ΔBi)u(t) + ai + Δai (3.1)

for x(t) ∈ Xi, where {Xi}i∈I
⊆ �n denotes a partition of the state space into a number of

polyhedral cells, I is the index set of the cells, (Ai, Bi, ai) is the ith nominal local model of
the system, ai is the offset term. ΔAi, ΔBi, and Δai represent parametric perturbations in the
system state matrix, input matrix, and offset term of the ith nominal local model, respectively,
and are assumed to be of the following form:

[
ΔAi, ΔBi, Δai

]
= MiH

[
NAi, NBi , Nai

]
, (3.2)

where H ∈ �i×j is an uncertain matrix bounded by HTH ≤ I, and Mi, NAi , NBi , Nai are
known constant matrices of appropriate dimensions which specify how the elements of the
nominal matrices Ai, Bi, and ai are affected by the uncertain parameters inH.

Define I0 ⊆ I as the set of indices for cells that contain origin and I1 ⊆ I the set of
indices for cells that do not contain the origin. It is assumed that ai = Δai = 0 for all i ∈ I0.

For any given initial condition x(0) = x0, and input signals u, it is assumed that
system (3.1) has a unique solution, and there is no sliding mode. Note that with possible dis-
continuities in Aix across the boundaries of the partitions, the solution of system (3.1) may
be just continuous and piecewise C1. For a definition of the state trajectory of the system in
(3.1) refer to [20] for details.

For convenience, the following notations are introduced:

x =

[
x

1

]
, Ai =

[
Ai ai

0 0

]
, Bi =

[
Bi

0

]
, Mi =

[
Mi

0

]
, NAi =

[
NAi, Nai

]
,

ΔAi =

[
ΔAi Δai

0 0

]
= MiHNAi, ΔBi =

[
ΔBi

0

]
= MiHNBi ,

(3.3)

then system (3.1) can be expressed as

ẋ(t) =
(
Ai + ΔAi

)
x(t) +

(
Bi + ΔBi

)
u(t), i ∈ I. (3.4)
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Associated with this system is the following cost function:

J =
∫∞

0

(
xT (t)Qix(t) + uT (t)Riu(t)

)
dt, (3.5)

where i is defined so that x(t) ∈ Xi, and Qi > 0, Ri > 0 are given weighting matrices.
Note that if Qi, Ri in (3.5) are set to be the same, respectively, for every i ∈ I, the cost

function (3.5) will reduce to (2.2). In addition, the matrix Qi = diag{Qi, 0} ∈ �(n+1)×(n+1) is
introduced, which will be used in the sequel.

As noted in [20], to find a piecewise Lyapunov function that is continuous across re-
gion boundaries, the matrices Fi = [Fi, fi], i ∈ I with fi = 0 for i ∈ I0 should be constructed,
which are used to characterize the boundaries between the regions:

Fix = Fjx, x ∈ Xi ∩Xj, i, j ∈ I. (3.6)

Then, the piecewise Lyapunov function candidates that are continuous across the region
boundaries can be parameterized as

V (x) =

⎧⎨
⎩
xTPix, x ∈ Xi, i ∈ I0,

xTP ix, x ∈ Xi, i ∈ I1,
(3.7)

with Pi = FT
i SFi and Pi = F

T

i SFi, where S is a symmetric matrix which characterizes the free
parameters of the Lyapunov function candidates.

Note the form of Pi and the characteristics of the matrices Fi. The continuity of the
Lyapunov function V (x) across the partition boundaries is ensured from (3.6) and (3.7).

The S-procedure has been used in [20, 22] to reduce the conservatism of the stability
result. Specifically, the matrices Ei = [Ei, ei], i ∈ I with ei = 0 for i ∈ I0, such that

Eix ≥ 0, x ∈ Xi, i ∈ I, (3.8)

should be constructed to verify the positivity of a piecewise quadratic function of the form
(3.7) on a polyhedral partition. It should be noted that the above vector inequalities imply
that each entry of the vector is nonnegative.

A systematic procedure for constructing the matrices Ei, Fi for a given piecewise linear
system was suggested in [20].

Consider the following piecewise linear feedback control law:

u = −Lix − li := −Lix, x ∈ Xi, i ∈ I, (3.9)

with li = 0 for i ∈ I0.
In general, the control law of form (3.9) will bring more flexibility in stability ana-

lysis than that of the ordinary linear feedback form. However, this control law may be
discontinuous and give rise to sliding modes [20]. To avoid this case, we should construct
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the control law continuously across subspace boundaries and take the feedback gain matrix
Li as follows

Li = LTFi, i ∈ I, (3.10)

where L is a parameter matrix characterizing the free parameters of the state feedback
controller, and Fi is the matrix defined in (3.6). It should be pointed out that the gain matrix
Li should take the form of Li = LTFi for i ∈ I0.

Substituting the control law (3.9) into system (3.4), we can get the following closed-
loop system:

ẋ(t) = (Ai + ΔAi − (Bi + ΔBi)Li)x(t), for i ∈ I0,

ẋ(t) =
(
Ai + ΔAi −

(
Bi + ΔBi

)
Li

)
x(t), for i ∈ I1.

(3.11)

Our goal in this section is to find a parameter matrix L to stabilize system (3.11) and
meanwhile minimize the cost function (3.5). Before presenting the main results of this paper,
we introduce the following lemmas.

Lemma 3.1 (Johansson and Rantzer [22]). Consider symmetric matrices S, Ui, and Wi such that

Ui and Wi have nonnegative entries, while Pi = FT
i SFi, i ∈ I0 and Pi = F

T

i SFi, i ∈ I1, satisfy

AT
i Pi + PiAi + ET

i UiEi < 0,

ET
i WiEi < Pi,

(3.12)

for i ∈ I0, and

A
T

i P i + PiAi + E
T

i UiEi < 0,

E
T

i WiEi < Pi,
(3.13)

for i ∈ I1, then every continuous and piecewise C1 trajectory x(t) of system (3.4) with ΔAi = 0,
Δai = 0 and u = 0 for all t > 0 tends to zero exponentially.

Lemma 3.2 (Xie [27]). Given matrices G, M, and N of appropriate dimensions with G symmetric,
then G +MHN +NTHTMT < 0 for all matrices H satisfying HTH ≤ I, if and only if there exists
some ε > 0 such that

G + ε−1MMT + εNTN < 0. (3.14)

Motivated by the result in [20], we can get the upper bound on the cost function (3.5)
for uncertain piecewise linear systems based on the HJB inequality method. The result is
presented as follows.
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Theorem 3.3. Consider the closed-loop uncertain system (3.11) with x0 ∈ Xi0 . If there exist a set of
constants εi > 0 and symmetric matrices S, Ui, and Wi such that Ui and Wi have nonnegative en-

tries, while Pi = FT
i SFi, i ∈ I0, and Pi = F

T

i SFi, i ∈ I1, satisfy

⎡
⎢⎢⎢⎢⎢⎣

Φi εi(NAi −NBiLi)T PiMi LT
i

εi(NAi −NBiLi) −εiI 0 0

MT
i Pi 0 −εiI 0

Li 0 0 −R−1
i

⎤
⎥⎥⎥⎥⎥⎦

< 0,

ET
i WiEi < Pi

(3.15)

for i ∈ I0,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φi εi
(
NAi −NBiLi

)T
P iMi L

T

i

εi
(
NAi −NBiLi

)
−εiI 0 0

M
T

i Pi 0 −εiI 0

Li 0 0 −R−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0

E
T

i WiEi < Pi

(3.16)

for i ∈ I1, where

Φi := (Ai − BiLi)TPi + Pi(Ai − BiLi) + ET
i UiEi +Qi,

Φi :=
(
Ai − BiLi

)T
P i + Pi

(
Ai − BiLi

)
+ E

T

i UiEi +Qi,
(3.17)

then the closed-loop system is globally exponentially stable, and the cost function (3.5) satisfies

J ≤ inf
S,Ui,Wi,εi

xT0Pi0x0. (3.18)

Proof. By Schur complement [19], the first inequality of (3.15) is equivalent to

Φi + LT
i RiLi + ε−1i PiMiM

T
i Pi + εi(NAi −NBiLi)T (NAi −NBiLi) < 0. (3.19)

Note the definitions of (3.3) and (3.17). By virtue of Lemma 3.2, inequality (3.19) is equivalent
to

(Ai + ΔAi − (Bi + ΔBi)Li)TPi+Pi(Ai + ΔAi − (Bi + ΔBi)Li) + ET
i UiEi +Qi + LT

i RiLi < 0.
(3.20)
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Along a similar proof technique as used above, it can also be shown that the first inequality
of (3.16) is equivalent to

(
Ai + ΔAi −

(
Bi + ΔBi

)
Li

)T
P i+Pi

(
Ai + ΔAi −

(
Bi + ΔBi

)
Li

)
+ E

T

i UiEi +Qi + L
T

i RiLi < 0,

(3.21)

where Qi = diag{Qi, 0}. Note that Qi > 0 and Ri > 0. By Lemma 3.1, it is obviously shown
from inequalities (3.20), (3.21), and the second inequalities of (3.15) and (3.16) that the closed-
loop system (3.11) is stable.

In addition, it can be seen from inequalities (3.20) and (3.21) that

(
Ai + ΔAi −

(
Bi + ΔBi

)
Li

)T
P i + Pi

(
Ai + ΔAi −

(
Bi + ΔBi

)
Li

)

+ E
T

i UiEi +Qi + L
T

i RiLi ≤ 0, i ∈ I.

(3.22)

Multiplying from left and right by xT and x, respectively, and removing the nonnegative term

xTE
T

i UiEix render

d
dt

(
xTP ix

)
+ xTQix + uTRiu ≥ 0. (3.23)

Integration from 0 to ∞, and noticing the global stability of closed-loop system (3.11), gives
the result of (3.18). The proof is thus completed.

It is shown that the matrix inequalities (3.15) and (3.16) are BMIs due to the bilinear
forms of PiBiLi and εiLi when both the Lyapunov matrix Pi and the feedback gain matrix
Li become the variables to be determined. Our interest is to find a parameter matrix L to
minimize the upper bound xT0Pi0x0 on the cost function (3.5) for the state feedback closed-
loop system (3.11). Then, the optimization problem can be formulated as

min
L,S,Ui,Wi,εi

xT0Pi0x0

s.t.

⎧⎨
⎩
Li ∈ L

(3.15)-(3.16),

(3.24)

where i ∈ I, and L is the set of admissible values for the state feedback gain matrix Li, bound-
ed by practical design constraints.

Remark 3.4. It should be noted that the optimization problem (3.24) is a nonconvex op-
timization problem with the BMIs constraints of (3.15) and (3.16). For BMIs problem, we
[28] recently have already designed a mixed algorithm combining genetic algorithm (GA)
and interior point method to solve it. Here, we can use the mixed algorithm proposed in [28]
to obtain the optimal controller parameter matrix L and the corresponding objective xT0Pi0x0.
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In general, one can set the parameter matrix L to be the decision variables searched by GA.
For a given chromosome corresponding to L, the nonconvex problem (3.24) reduces to an
SDP involving LMIs which can be solved efficiently by Matlab LMI toolbox.

Remark 3.5. It should be pointed out that when solving the BMIs problemwhich is anNP hard
problem in essence, the mixed algorithm combining GA with the interior point method may
suffer from long computational time, especially for high-dimensional systems. Therefore, the
optimal control problem can only be solved offline. In addition, the approximation error
introduced by the linearization procedure for the chaotic system in Section 2 may adversely
impact the stability analysis of the closed-loop system. To overcome this negative impact, one
can divide the state space into a more sophisticated partition, but this will also increase the
computational burden. Thus, one should seek a balance between the solution accuracy and
the computational burden. On the other hand, for the chaotic systems there exists at least a
bounded attractor. Due to the boundedness of the chaotic attractor, a relatively fine partition
can be achieved to reduce the approximation error in the piecewise linearization procedure,
which leads to a controller with a good performance.

To tell if the solutions obtained above are close to optimality or not, we must set up a
lower bound on cost function (3.5). The result is presented as follows.

Theorem 3.6. If there exist a set of constants εi > 0 and symmetric matrices S and Ui such that Ui

have nonnegative entries, while Pi = FT
i SFi, i ∈ I0 and Pi = F

T

i SFi, i ∈ I1 satisfy

⎡
⎢⎢⎢⎣

Ψi PiBi − εiN
T
Ai
NBi PiMi

BT
i Pi − εiN

T
Bi
NAi Ri − εiN

T
Bi
NBi 0

MT
i Pi 0 εiI

⎤
⎥⎥⎥⎦ > 0, (3.25)

for i ∈ I0,

⎡
⎢⎢⎢⎢⎣

Ψi P iBi − εiN
T

Ai
NBi P iMi

B
T

i P i − εiN
T
Bi
NAi Ri − εiN

T
Bi
NBi 0

M
T

i Pi 0 εiI

⎤
⎥⎥⎥⎥⎦ > 0, (3.26)

for i ∈ I1, where

Ψi := AT
i Pi + PiAi +Qi − ET

i UiEi − εiN
T
Ai
NAi ,

Ψi := A
T

i P i + PiAi +Qi − E
T

i UiEi − εiN
T

Ai
NAi ,

(3.27)

then for every trajectory x(t) of the uncertain system (3.4) with x(∞) = 0, x(0) = x0 ∈ Xi0 , the cost
function (3.5) satisfies

J ≥ sup
S,Ui,εi

xT0Pi0x0. (3.28)
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Proof. Wewill first show the conditions for the cost function (3.5) satisfying the lower bound
(3.28) can be guaranteed by

[
(Ai + ΔAi)TPi + Pi(Ai + ΔAi) +Qi − ET

i UiEi Pi(Bi + ΔBi)

(Bi + ΔBi)TPi Ri

]
> 0, (3.29)

for i ∈ I0, and

⎡
⎢⎣

(
Ai + ΔAi

)T
P i + Pi

(
Ai + ΔAi

)
+Qi − E

T

i UiEi P i

(
Bi + ΔBi

)
(
Bi + ΔBi

)T
P i Ri

⎤
⎥⎦ > 0, (3.30)

for i ∈ I1.
Actually, for i ∈ I, we can get from (3.29) and (3.30) that

⎡
⎢⎣

(
Ai + ΔAi

)T
P i + Pi

(
Ai + ΔAi

)
+Qi − E

T

i UiEi P i

(
Bi + ΔBi

)
(
Bi + ΔBi

)T
P i Ri

⎤
⎥⎦ ≥ 0. (3.31)

Multiplying from left and right by [xT ,uT ] and [xT ,uT ]
T
, respectively, and removing the

nonnegative term xTE
T

i UiEix yield

0 ≤ 2xTP i

((
Ai + ΔAi

)
x +

(
Bi + ΔBi

)
u
)
+ xTQix + uTRiu

=
d
dt

(
xTP ix

)
+ xTQix + uTRiu.

(3.32)

Integration from 0 to ∞, and noticing x(∞) = 0, gives the result of (3.28).
Next, we will show that inequality (3.29) is equivalent to (3.25). For simplifying the

presentation, denote

G :=

[
AT

i Pi + PiAi +Qi − ET
i UiEi PiBi

BT
i Pi Ri

]
. (3.33)

Note the uncertain form (3.2). Then, inequality (3.29) can be written as

G +

[
PiMi

0

]
H
[
NAi, NBi

]
+
[
NAi, NBi

]T
HT

[
PiMi

0

]T

> 0. (3.34)

By Lemma 3.2, inequality (3.34) is equivalent to the existence of some εi > 0 such that

G − ε−1i

[
PiMi

0

][
PiMi

0

]T

− εi
[
NAi, NBi

]T[
NAi, NBi

]
> 0, (3.35)
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that is,

⎡
⎣A

T
i Pi + PiAi +Qi − ET

i UiEi − εiN
T
Ai
NAi − ε−1i PiMiM

T
i Pi PiBi − εiN

T
Ai
NBi

BT
i Pi − εiN

T
Bi
NAi Ri − εiN

T
Bi
NBi

⎤
⎦ > 0, (3.36)

which, by Schur complement, is equivalent to inequality (3.25). By similar techniques, it can
also be shown that inequality (3.30) is equivalent to inequality (3.26). The proof is complete.

Remark 3.7. It is shown that inequalities (3.25) and (3.26) are LMIs about the variables Pi, Pi,
and εi. So the problem of maximizing the lower bound (3.28) can be cast as an SDPwith LMIs
constraints of (3.25) and (3.26), and solved numerically effectively.

Remark 3.8. In the above analysis, it is assumed that the initial condition x0 is given or known
in advance. Note that the bounds in (3.18) and (3.28) depend on the initial state x0. To remove
this dependence on the initial state, we can use the techniques developed in [28] and extend
the corresponding results to the case where the initial condition x0 is a random variable sub-
jected to uniform distribution on a certain bounded regionX0. For further details, please refer
to [28].

The global quadratic Lyapunov function technique is often applied in the control
synthesis of dynamical systems [26]. In the following, by virtue of the global quadratic
Lyapunov function technique and linear feedback control law, we present an optimal
guaranteed cost control method for the chaotic system (2.1) associated with the cost function
(2.2), which with the comparisons in the simulation results will show advantages of the
obtained results in Theorems 3.3 and 3.6.

Consider the following linear feedback control law:

u = −L̃x. (3.37)

Substituting the control law (3.37) into system (2.1), we can get the following closed-loop sys-
tem:

ẋ(t) =
(
A − BL̃

)
x(t) + F(x). (3.38)

Additionally, note the boundedness of the chaotic attractor and the Lipschitz con-
tinuity condition for the nonlinear term F(x). There exist some matrix Γ ≥ 0 and a bounded
set Ωwhich bounds the chaotic attractor, such that

FT (x)F(x) ≤ xTΓ2x, ∀x ∈ Ω. (3.39)

The upper bound on the cost function (2.2) for the chaotic system (2.1) by applying
linear feedback control law (3.37) is presented as follows.
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Theorem 3.9. Consider system (2.1) with the initial condition x0 ∈ Ω. If there exist positive con-
stants α, β, positive definite matrix Y , and any matrix Z with appropriate dimensions such that

⎡
⎢⎢⎢⎢⎢⎣

AY + YAT − BZ − ZTBT + αI YΓ Y ZT

ΓY −αI 0 0

Y 0 −Q−1 0

Z 0 0 −R−1

⎤
⎥⎥⎥⎥⎥⎦

< 0,

[−β xT0
x0 −Y

]
< 0,

(3.40)

then the closed-loop system (3.38) is globally exponentially stable, and the cost function (2.2) satisfies

J < β. (3.41)

Furthermore, the corresponding control law can be obtained as u = −ZY−1x.

Proof. Denote P = Y−1 > 0. Construct the Lyapunov function candidate as

V (x) = xTPx. (3.42)

By virtue of the fact thatMTN+NTM ≤ α−1MTM+αNTN, for all α > 0, and matrices
M and N with appropriate dimensions, calculating the time derivative of V (x) along the
trajectory of the closed-loop system (3.38) and noticing (3.39) yield

dV (x)
dt

= xT
((

A − BL̃
)T

P + P
(
A − BL̃

))
x + FT (x)Px + xTPF(x)

≤ xT
((

A − BL̃
)T

P + P
(
A − BL̃

)
+ αP 2

)
x + α−1FT (x)F(x)

≤ xT
((

A − BL̃
)T

P + P
(
A − BL̃

)
+ αP 2 + α−1Γ2

)
x.

(3.43)

On the other hand, by Schur complement, the first inequality of (3.40) is equivalent to

AY + YAT − BZ − ZTBT + αI + α−1YΓ2Y + YQY + ZTRZ < 0. (3.44)

Noticing YP = I, L̃ = ZP , pre- and postmultiplying both sides of (3.44) by P implies

(
A − BL̃

)T
P + P

(
A − BL̃

)
+ αP 2 + α−1Γ2 +Q + L̃TRL̃ < 0. (3.45)



Journal of Applied Mathematics 13

Thus, it follows from (3.43) and (3.45) that

dV (x)
dt

+ xTQx + xT L̃TRL̃x < 0. (3.46)

Note that Q > 0 and R > 0. It is obvious that dV (x)/dt < 0 which guarantees the global
stability of closed-loop system (3.38), that is, x(∞) = 0.

Integration both sides of (3.46) from 0 to ∞, and noticing V (x(∞)) = 0, renders

J < V (x0) = x0Y−1x0, (3.47)

with which combining the second inequality of (3.40) shows the result of (3.41). The proof is
complete.

Remark 3.10. It is shown that the inequalities in (3.40) are LMIs in the variables Y , Z, α,
β. So the problem of minimizing the upper bound (3.41) can be cast as an SDP with LMIs
constraints of (3.40) and can be solved numerically effectively. On the other hand, it should
be pointed out that the control synthesis methods based on the global quadratic Lyapunov
function (3.42) and linear feedback control law (3.37) are conservative in practice compared
with those in Theorems 3.3 and 3.6, which will be shown in illustrative examples.

4. Illustrative Examples

In this section, we will give two examples to illustrate the effectiveness of the proposed
methods.

4.1. Genesio—Tesi Chaotic System

Consider the Genesio—Tesi chaotic system presented in [23], and the controlled system is
described as follows:

⎡
⎢⎢⎣
ẋ1

ẋ2

ẋ3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0

0 0 1

−p1 −p2 −p3

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0

0

x2
1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
1

1

1

⎤
⎥⎥⎦u, (4.1)

where p1 = 6, p2 = 2.92, p3 = 1.2.
Denote that cT = [1, 0, 0] and xT = [x1, x2, x3]. Note the boundedness of the chaotic

attractor shown in [23]. The state space can be confined to X := {x | −6 ≤ cTx ≤ 6} by simu-
lation. The partition of state space is set to be

X1 =
{
x | cTx ∈ [−1, 1)}, X2 =

{
x | cTx ∈ [1, 3)

}
, X3 =

{
x | cTx ∈ [3, 6]

}
,

X4 =
{
x | cTx ∈ [−3,−1)}, X5 =

{
x | cTx ∈ [−6,−3)}. (4.2)
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Then, the nonlinear term x2
1 can be described as

x2
1 = kix1 + li + δi(x1), x ∈ Xi, i = 1, 2, 3, 4, 5, (4.3)

where δi denotes the approximation error. Taking k1 = 0, k2 = −k4 = 4.5, k3 = −k5 = 9, l1 = 0,
l2 = l4 = −4.5, l3 = l5 = −18, one can obtain that

|δ1(x1)| ≤ |x1|, |δ2(x1)| ≤ 1, |δ3(x1)| ≤ 2.25,

|δ4(x1)| ≤ 1, |δ5(x1)| ≤ 2.25.
(4.4)

Note the expressions (4.3) and (4.4). System (4.1) can be converted to the piecewise
linear system (3.1)with

A1 =

⎡
⎢⎢⎣

0 1 0

0 0 1

−6 −2.92 −1.2

⎤
⎥⎥⎦, A2 =

⎡
⎢⎢⎣

0 1 0

0 0 1

−1.5 −2.92 −1.2

⎤
⎥⎥⎦, A3 =

⎡
⎢⎢⎣
0 1 0

0 0 1

3 −2.92 −1.2

⎤
⎥⎥⎦,

A4 =

⎡
⎢⎢⎣

0 1 0

0 0 1

−10.5 −2.92 −1.2

⎤
⎥⎥⎦, A5 =

⎡
⎢⎢⎣

0 1 0

0 0 1

−15 −2.92 −1.2

⎤
⎥⎥⎦, Bi =

⎡
⎢⎢⎣
1

1

1

⎤
⎥⎥⎦,

a1 = 0, a2 = a4 =
[
0 0 −4.5]T , a3 = a5 =

[
0 0 −18]T ,

ΔA1 = M1HNA1 , ΔA2 = ΔA3 = ΔA4 = ΔA5 = 0, ΔBi = 0,

Δa1 = 0, Δa2 = M2HNa2 , Δa3 = M3HNa3 ,

Δa4 = M4HNa4 , Δa5 = M5HNa5 ,

Mi =

⎡
⎢⎢⎣
0

0

2

⎤
⎥⎥⎦, NA1 =

⎡
⎢⎢⎣

0 0 0

0 0 0

0.5 0 0

⎤
⎥⎥⎦,

Na2 = Na4 =

⎡
⎢⎢⎣

0

0

0.5

⎤
⎥⎥⎦, Na3 = Na5 =

⎡
⎢⎢⎣

0

0

1.125

⎤
⎥⎥⎦,

(4.5)

where i = 1, . . . , 5, and H is an uncertain matrix bounded byHTH ≤ I.
It is worthwhile tomention that the nominal autonomous piecewise linear system (3.1)

with parameters (4.5), that is, u ≡ 0, ΔAi = 0, Δai = 0, can exhibit chaotic dynamics, and the
strange attractor is depicted in Figure 1. It is shown from Figure 1 that the system (3.1) with
parameters (4.5) evolves to a single-scroll chaotic attractor, which is similar to the Genesio-
Tesi chaotic attractor. Thus, it is indicated that the piecewise linear system approximating a
chaotic system can preserve the complex dynamic behaviors of the original system.
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Figure 1: Phase portraits of the nominal autonomous system (3.1)with parameters (4.5).

Consider the cost function (2.2)withQ = diag{1, 1, 1}, R = 1, and the initial value x0 =
[−1.8,−1, 1]T of system (4.1). The matrices Ei and Fi can be constructed by virtue of the meth-
od proposed in [20]. Assume that the feedback gain matrix Li is bounded by ‖Li‖∞ < 12,
where ‖Li‖∞ denotes the largest absolute value among all the entries of vector Li. Then, ap-
plying the mixed algorithm provided in [28], we solve the BMIs problem (3.24) based on
Theorem 3.3 with the code written in MATLAB 7.0 and get the optimal upper bound on J ,
denoted as J

∗
, and the corresponding optimal parameter matrix L∗ as follows:

J
∗
= 17.7528,

L∗ =
[−3.3088, −0.3345, 2.7111, 1.2363, −0.0548]T . (4.6)

According to the expression of (3.10), we can get the following state feedback gain matrices:

L1 =
[
2.7111, 1.2363, −0.0548],

L2 =
[
2.3765, 1.2363, −0.0548, 0.3345

]
,

L3 =
[
6.0198, 1.2363, −0.0548, −10.5954],

L4 =
[
6.0198, 1.2363, −0.0548, 3.3088

]
,

L5 =
[
2.3765, 1.2363, −0.0548, −7.6212],

(4.7)

with which the optimal control u taking the form of piecewise linear feedback control law
(3.9) can be obtained.

Actually, the cost function (2.2) for the closed-loop system (4.1) with above controller
gain matrices is computed as J = 13.1623. The numerical simulation of system (4.1) with the
piecewise linear state feedback control is shown in Figure 2.

In addition, according to Theorem 3.6, the maximal lower bound on J , denoted as J∗,
can be obtained by solving the corresponding SDP with the LMI toolbox in MATLAB 7.0 as
follows:

J∗ = 10.2047. (4.8)
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Figure 2: Time response of system (4.1)with the piecewise linear state feedback.

On the other hand, note that −6 ≤ cTx ≤ 6. The matrix Γ in (3.39) can be obtained as
Γ = diag{6, 0, 0}. According to Theorem 3.9, we solve the corresponding SDP, and obtain the
optimal gain matrix L̃∗ in (3.37) and upper bound β∗ as follows:

L̃∗ = ZY−1 =
[
14.1843, 1.1514, −0.3980], β∗ = 53.0699, (4.9)

which shows a fact that the optimal control methods based on the global quadratic Lyapunov
function are conservative compared with those in Theorem 3.3.

4.2. A New Chaotic System

Consider the new chaotic system presented in [26], and the controlled system is described as
follows:

⎡
⎢⎢⎣
ẋ1

ẋ2

ẋ3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0

0 0 1

−p1 −p1 −p1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0

0

p2 tanh(x1)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0.5

1

1

⎤
⎥⎥⎦u, (4.10)

where p1 = 0.5, p2 = 5, and the hyperbolic function tanh(x) = (exp(x) − exp(−x))/(exp(x) +
exp(−x)). The strange attractor of the autonomous system (4.10) with u ≡ 0 is shown in
Figure 3, which is a double-scroll chaotic attractor.
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Figure 3: Phase portraits of the autonomous system (4.10).

Note the boundedness of the chaotic attractor shown in Figure 3. The state space can
be confined to X := {x | −23.3 ≤ cTx ≤ 23.3} by simulation. The partition of state space is set
to be

X1 =
{
x | cTx ∈ [−23.3, −1.18)}, X2 =

{
x | cTx ∈ [−1.18, 1.18)

}
,

X3 =
{
x | cTx ∈ [1.18, 23.3]

}
.

(4.11)

Then, the nonlinear term tanh(x1) can be described as

tanh(x1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1x1 + l1 + δ1(x1), x ∈ X1,

k2x1 + l2 + δ2(x1), x ∈ X2,

k3x1 + l3 + δ3(x1), x ∈ X3,

(4.12)

where δi denotes the approximation error. Taking k1 = 0, k2 = 0.85, k3 = 0, l1 = −1, l2 = 0,
l3 = 1, one can obtain that

|δ1(x1)| ≤ 0.17, |δ2(x1)| ≤ 0.15|x1|, |δ3(x1)| ≤ 0.17. (4.13)

Note the expressions (4.12) and (4.13). System (4.10) can be converted to the piecewise
linear system (3.1)with

A1 = A3 =

⎡
⎢⎢⎣

0 1 0

0 0 1

−p1 −p1 −p1

⎤
⎥⎥⎦, A2 =

⎡
⎢⎢⎣

0 1 0

0 0 1

−p1 + 0.85p2 −p1 −p1

⎤
⎥⎥⎦,

B1 = B2 = B3 =

⎡
⎢⎢⎣
0.5

1

1

⎤
⎥⎥⎦, a1 = −a3 =

⎡
⎢⎢⎣

0

0

−p2

⎤
⎥⎥⎦, a2 = 0,
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ΔA1 = ΔA3 = 0, ΔA2 = M2HNA2 , ΔB1 = ΔB2 = ΔB3 = 0,

Δa1 = M1HNa1 , Δa2 = 0, Δa3 = M3HNa3 ,

M1 = M2 = M3 =

⎡
⎢⎢⎣
0

0

1

⎤
⎥⎥⎦, NA2 =

⎡
⎢⎢⎣

0 0 0

0 0 0

0.15p2 0 0

⎤
⎥⎥⎦, Na1 = Na3 =

⎡
⎢⎢⎣

0

0

0.17p2

⎤
⎥⎥⎦.

(4.14)

Consider the cost function (2.2) with Q = diag{0.8, 0.8, 0.8}, R = 1.2, and the system initial
value x0 = [1.4, 1,−0.6]T . Assume that the feedback gain matrix Li is bounded by ‖Li‖∞ < 8.
Then, similarly to the above subsection, we get the maximal lower bound J∗, the optimal up-

per bound J
∗
, and the corresponding optimal parameter matrix L∗ as follows:

J∗ = 5.5117, J
∗
= 9.7024,

L∗ =
[−4.3655, 1.2292, 2.3555, 1.3460, 1.4357

]T
.

(4.15)

According to the expression of (3.10), we can get the following state feedback gain matrices:

L1 =
[
6.7210, 1.3460, 1.4357, 5.1513

]
, L2 =

[
2.3555, 1.3460, 1.4357

]
,

L3 =
[
3.5847, 1.3460, 1.4357, −1.4505], (4.16)

with which the optimal control u taking the form of (3.9) is obtained.
Additionally, the cost function (2.2) for the closed-loop system (4.10) with above con-

troller gain matrices is computed as J = 7.8725. The numerical simulation of system (4.10)
with piecewise linear state feedback control is shown in Figure 4.

Furthermore, note that tanh2(x1) ≤ x2
1. The matrix Γ in (3.39) can be obtained as Γ =

diag{p2, 0, 0}. According to Theorem 3.9, we solve the corresponding SDP, and obtain the
optimal gain matrix L̃∗ in (3.37) and upper bound β∗ as follows:

L̃∗ = ZY−1 =
[
19.2415, 2.5432, −0.2071], β∗ = 98.965, (4.17)

which is significantly greater than the optimal upper bound J
∗
obtained from Theorem 3.3.

It is obviously shown from the above examples that the optimal upper bounds J
∗
ob-

tained above get close to the corresponding lower bounds J∗, respectively. This implies that
we have achieved or got close to the optimal control for the chaotic systems. Additionally,
it should be pointed out that the newly reported chaotic system (4.10) is topologically not
equivalent to the Genesio-Tesi chaotic system (4.1). However, by virtue of the optimal control
methods proposed in this paper, both the different chaotic systems (4.1) and (4.10) can be
optimally stabilized. The examples show the effectiveness of the proposed results.
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Figure 4: The control law and time response of the controlled system (4.10).

5. Conclusion

In this paper, we first convert a class of chaotic systems to the form of uncertain piecewise
linear systems then investigate the optimal control for the chaotic systems where the piece-
wise linear state feedback optimal controller can be obtained by solving an optimization pro-
blem with BMIs constraints. The performance of the controller can be evaluated by the upper
and lower bounds on the cost function. The optimal chaos synchronization for this class of
chaotic systems will be studied in the near future.
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[15] A. Uçar, K. E. Lonngren, and E. W. Bai, “Synchronization of the unified chaotic systems via active
control,” Chaos, Solitons and Fractals, vol. 27, no. 5, pp. 1292–1297, 2006.

[16] Q. Jia, “Chaos control and synchronization of the Newton-Leipnik chaotic system,” Chaos, Solitons
and Fractals, vol. 35, no. 4, pp. 814–824, 2008.

[17] G. M. Mahmoud, T. Bountis, G. M. AbdEl-Latif, and E. E. Mahmoud, “Chaos synchronization of two
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