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We introduce the concept of generalised interval-valued fuzzy soft set and its operations and study
some of their properties. We give applications of this theory in solving a decision making problem.
We also introduce a similarity measure of two generalised interval-valued fuzzy soft sets and
discuss its application in amedical diagnosis problem: fuzzy set; soft set; fuzzy soft set; generalised
fuzzy soft set; generalised interval-valued fuzzy soft set; interval-valued fuzzy set; interval-valued
fuzzy soft set.

1. Introduction

Molodtsov [1] initiated the theory of soft set as a new mathematical tool for dealing with
uncertainties which traditional mathematical tools cannot handle. He has shown several
applications of this theory in solving many practical problems in economics, engineering,
social science, medical science, and so forth. Presently, work on the soft set theory is progress-
ing rapidly. Maji et al. [2, 3], Roy and Maji [4] have further studied the theory of soft set and
used this theory to solve some decision making problems. Maji et al. [5] have also introduced
the concept of fuzzy soft set, a more general concept, which is a combination of fuzzy set and
soft set and studied its properties. Zou and Xiao [6] introduced soft set and fuzzy soft set into
the incomplete environment, respectively. Alkhazaleh et al. [7] introduced the concept of soft
multiset as a generalisation of soft set. They also defined the concepts of fuzzy parameterized
interval-valued fuzzy soft set [8] and possibility fuzzy soft set [9] and gave their applications
in decisionmaking andmedical diagnosis. Alkhazaleh and Salleh [10] introduced the concept
of a soft expert set, where the user can know the opinion of all experts in one model without
any operations. Even after any operation, the user can know the opinion of all experts. In
2011, Salleh [11] gave a brief survey from soft set to intuitionistic fuzzy soft set. Majumdar
and Samanta [12] introduced and studied generalised fuzzy soft set where the degree is
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attached with the parameterization of fuzzy sets while defining a fuzzy soft set. Yang et al.
[13] presented the concept of interval-valued fuzzy soft set by combining the interval-valued
fuzzy set [14, 15] and soft set models. In this paper, we generalise the concept of fuzzy
soft set as introduced by Maji et al. [5] to generalised interval-valued fuzzy soft set. In our
generalisation of fuzzy soft set, a degree is attached with the parameterization of fuzzy
sets while defining an interval-valued fuzzy soft set. Also, we give some applications of
generalised interval-valued fuzzy soft set in decisionmaking problem andmedical diagnosis.

2. Preliminary

In this section, we recall some definitions and properties regarding fuzzy soft set and
generalised fuzzy soft set required in this paper.

Definition 2.1 (see [15]). An interval-valued fuzzy set ˜X on a universe U is a mapping such
that

˜X : U −→ Int([0, 1]), (2.1)

where Int([0, 1]) stands for the set of all closed subintervals of [0, 1], the set of all interval-
valued fuzzy sets on U is denoted by ˜P(U).

Suppose that ˜X ∈ ˜P(U), for all x ∈ U, μx(x) = [μ−
x(x), μ

+
x(x)] is called the degree of

membership of an element x to X. μ−
x(x) and μ+

x(x) are referred to as the lower and upper
degrees of membership of x to X where 0 � μ−

x(x) � μ+
x(x) � 1.

Definition 2.2 (see [14]). The subset, complement, intersection, and union of the interval-
valued fuzzy sets are defined as follows. Let ˜X, ˜Y ∈ ˜P(U), then

(a) the complement of ˜X is denoted by ˜Xc where

μ
˜Xc(x) = 1 − μ

˜X(x) =
[

1 − μ+
˜X
(x), 1 − μ−

˜X
(x)

]

, (2.2)

(b) the intersection of ˜X and ˜Y is denoted by ˜X ∩ ˜Y where

μ
˜X∩ ˜Y (x) = inf

[

μ
˜X(x), μ ˜Y (x)

]

=
[

inf
(

μ−
˜X
(x), μ−

˜Y
(x)

)

, inf
(

μ+
˜X
(x), μ+

˜Y
(x)

)]

,
(2.3)

(c) the union of ˜X and ˜Y is denoted by ˜X ∪ ˜Y where

μ
˜X∪ ˜Y (x) = sup

[

μ
˜X(x), μ ˜Y (x)

]

=
[

sup
(

μ−
˜X
(x), μ−

˜Y
(x)

)

, sup
(

μ+
˜X
(x), μ+

˜Y
(x)

)]

;
(2.4)

(d) X is a subset of Ydenoted by X ⊆ Y if μ−
X(x) ≤ μ−

Y (x) and μ+
X(x) ≤ μ+

Y (x).
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Definition 2.3 (see [14]). The compatibility measure ϕ(A,B) of an interval-valued fuzzy setA
with an interval-valued fuzzy set B (A is a reference set) is given by

ϕ(A,B) =
[

ϕ−(A,B), ϕ+(A,B)
]

, (2.5)

such that

ϕ−(A,B) = min
[

ϕ1(A,B), ϕ2(A,B)
]

,

ϕ+(A,B) = max
[

ϕ1(A,B), ϕ2(A,B)
]

,
(2.6)

where

ϕ1(A,B) =
maxx∈X

{

min
[

μ−
A(x), μ

−
B(x)

]}

maxx∈X
[

μ−
A(x)

] ,

ϕ2(A,B) =
maxx∈X

{

min
[

μ+
A(x), μ

+
B(x)

]}

maxx∈X
[

μ+
A(x)

] .

(2.7)

Theorem 2.4 (see [14]). Consider arbitrary, nonempty interval-valued fuzzy sets A, B, and C from
the family of ivf(X) and a compatibility measure in the sense of Definition 2.3. Then,

(a) A ϕ(A,A) = [1, 1] = {1},

(b) ϕ(A,B) = [0, 0] = {0} ⇔ A ∩ B = ∅,

(c) in general ϕ(A,B)/= ϕ(B,A).

LetU be a universal set and E a set of parameters. Let P(U) denote the power set ofU
and A ⊆ E. Molodtsov [1] defined soft set as follows.

Definition 2.5. A pair (F, E) is called a soft set overU, where F is a mapping given by F : E →
P(U). In other words, a soft set over U is a parameterized family of subsets of the universe
U.

Definition 2.6 (see [5]). LetU be a universal set, and let E be a set of parameters. Let IU denote
the power set of all fuzzy subsets of U. Let A ⊆ E. A pair (F, E) is called a fuzzy soft set over
U where F is a mapping given by

F : A −→ IU. (2.8)

Definition 2.7 (see [12]). Let U = {x1, x2, . . . , xn} be the universal set of elements and E =
{e1, e2, . . . , em} be the universal set of parameters. The pair (U,E)will be called a soft universe.
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Let F : E → IU, where IU is the collection of all fuzzy subsets ofU, and let μ be a fuzzy subset
of E. Let Fμ : E → IU × I be a function defined as follows:

Fμ(e) =
(

F(e), μ(e)
)

. (2.9)

Then, Fμ is called a generalised fuzzy soft set (GFSS in short) over the soft set (U,E). Here,
for each parameter ei, Fμ(ei) = (F(ei), μ(ei)) indicates not only the degree of belongingness
of the elements of U in F(ei) but also the degree of possibility of such belongingness which
is represented by μ(ei). So we can write Fμ(ei) as follows:

Fμ(ei) =
({

x1

F(ei)(x1)
,

x2

F(ei)(x2)
, . . . ,

xn

F(ei)(xn)

}

, μ(ei)
)

, (2.10)

where F(ei)(x1), F(ei)(x2), . . . , F(ei)(xn) are the degree of belongingness and μ(ei) is the
degree of possibility of such belongingness.

Definition 2.8 (see [13]). LetU be an initial universe and E a set of parameters. ˜P(U) denotes
the set of all interval-valued fuzzy sets of U. Let A ⊆ E. A pair ( ˜F,A) is an interval-valued
fuzzy soft set over U, where ˜F is a mapping given by ˜F : A → ˜P(U).

3. Generalised Interval-Valued Fuzzy Soft Set

In this section, we generalise the concept of interval-valued fuzzy soft sets as introduced in
[13]. In our generalisation of interval-valued fuzzy soft set, a degree is attached with the
parameterization of fuzzy sets while defining an interval-valued fuzzy soft set.

Definition 3.1. LetU = {x1, x2, . . . , xn} be the universal set of elements and E = {e1, e2, . . . , em}
the universal set of parameters. The pair (U,E) will be called a soft universe. Let ˜F : E →
˜P(U) and μ be a fuzzy set of E, that is, μ : E → I = [0, 1], where ˜P(U) is the set of all
interval-valued fuzzy subsets onU. Let ˜Fμ : E → ˜P(U) × I be a function defined as follows:

˜Fμ(e) =
(

˜F(e), μ(e)
)

. (3.1)

Then, ˜Fμ is called a generalised interval-valued fuzzy soft set (GIVFSS in short) over the
soft universe (U,E). For each parameter ei, ˜Fμ(ei) = ( ˜F(ei)(x), μ(ei)) indicates not only the
degree of belongingness of the elements of U in ˜F(ei) but also the degree of possibility of
such belongingness which is represented by μ(ei). So we can write ˜Fμ(ei) as follows:

˜Fμ(ei) =

({

x1

˜F(ei)(x1)
,

x2

˜F(ei)(x2)
, . . . ,

xn

˜F(ei)(xn)

}

, μ(ei)

)

. (3.2)
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Example 3.2. Let U = {x1, x2, x3} be a set of universe, E = {e1, e2, e3} a set of parameters, and
let μ : E → I. Define a function ˜Fμ : E → ˜P(U) × I as follows:

˜Fμ(e1) =
({

x1

[0.3, 0.6]
,

x2

[0.7, 0.8]
,

x3

[0.5, 0.8]

}

, 0.6
)

,

˜Fμ(e2) =
({

x1

[0.1, 0.4]
,

x2

[0, 0.3]
,

x3

[0.1, 0.5]

}

, 0.5
)

,

˜Fμ(e3) =
({

x1

[0.7, 0.8]
,

x2

[0.1, 0.2]
,

x3

[0, 0.4]

}

, 0.3
)

.

(3.3)

Then, ˜Fμ is a GIVFSS over (U,E).
In matrix notation, we write

˜Fμ =

⎛

⎝

[0.3, 0.6] [0.7, 0.8] [0.5, 0.8] 0.6
[0.1, 0.4] [0, 0.3] [0.1, 0.5] 0.5
[0.7, 0.8] [0.1, 0.2] [0, 0.4] 0.3

⎞

⎠. (3.4)

Definition 3.3. Let ˜Fμ and ˜Gδ be two GIVFSSs over (U,E). ˜Fμ is called a generalised interval-
valued fuzzy soft subset of ˜Gδ, and we write ˜Fμ ⊆ ˜Gδ if

(a) μ(e) is a fuzzy subset of δ(e) for all e ∈ E,

(b) ˜F(e) is an interval-valued fuzzy subset of ˜G(e) for all e ∈ E.

Example 3.4. Let U = {x1, x2, x3} be a set of three cars, and let E = {e1, e2, e3} be a set of
parameters where e1 = cheap, e2 = expensive, e3 = red. Let ˜Fμ be a GIVFSS over (U,E) defined
as follows:

˜Fμ(e1) =
({

x1

[0.1, 0.3]
,

x2

[0.5, 0.7]
,

x3

[0.3, 0.5]

}

, 0.4
)

,

˜Fμ(e2) =
({

x1

[0, 0.3]
,

x2

[0, 0.2]
,

x3

[0.1, 0.3]

}

, 0.4
)

,

˜Fμ(e3) =
({

x1

[0.5, 0.6]
,

x2

[0.1, 0.1]
,

x3

[0.1, 0.3]

}

, 0.1
)

.

(3.5)

Let ˜Gδ be another GIVFSS over (U,E) defined as follows:

˜Gδ(e1) =
({

x1

[0.3, 0.6]
,

x2

[0.7, 0.8]
,

x3

[0.5, 0.8]

}

, 0.6
)

,

˜Gδ(e2) =
({

x1

[0.2, 0.4]
,

x2

[0.2, 0.3]
,

x3

[0.3, 0.5]

}

, 0.5
)

,

˜Gδ(e3) =
({

x1

[0.7, 0.8]
,

x2

[0.2, 0.4]
,

x3

[0.2, 0.5]

}

, 0.3
)

.

(3.6)

It is clear that ˜Fμ is a GIVFS subset of ˜Gδ.
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Definition 3.5. Two GIVFSSs ˜Fμ and ˜Gδ over (U,E) are said to be equal, and we write ˜Fμ = ˜Gδ

if ˜Fμ is a GIVFS subset of ˜Gδ and ˜Gδ is a GIVFS subset of ˜Fμ. In other words, ˜Fμ = ˜Gδ if the
following conditions are satisfied:

(a) μ(e) is equal to δ(e) for all e ∈ E,

(b) ˜F(e) is equal to ˜G(e) for all e ∈ E.

Definition 3.6. A GIVFSS is called a generalised null interval-valued fuzzy soft set, denoted
by ˜∅μ if ˜∅μ : E → ˜P(U) × I such that

˜∅μ(e) =
(

˜F(e)(x), μ(e)
)

, (3.7)

where ˜F(e) = [0, 0] = [0] and μ(e) = 0 for all e ∈ E.

Definition 3.7. A GIVFSS is called a generalised absolute interval-valued fuzzy soft set,
denoted by ˜Aμ if ˜Aμ : E → ˜P(U) × I such that

˜Aμ(e) =
(

˜F(e)(x), μ(e)
)

, (3.8)

where ˜F(e) = [1, 1] = [1], and μ(e) = 1 for all e ∈ E.

4. Basic Operations on GIVFSS

In this section, we introduce some basic operations on GIVFSS, namely, complement, union
and intersection and we give some properties related to these operations.

Definition 4.1. Let ˜Fμ be a GIVFSS over (U,E). Then, the complement of ˜Fμ, denoted by ˜Fc
μ

and is defined by ˜Fc
μ = ˜Gδ, such that δ(e) = c(μ(e)) and ˜G(e) = c̃( ˜F(e)) for all e ∈ E, where c

is a fuzzy complement and c̃ is an interval-valued fuzzy complement.

Example 4.2. Consider a GIVFSS ˜Fμ over (U,E) as in Example 3.2:

˜Fμ =

⎛

⎝

[0.3, 0.6] [0.7, 0.8] [0.5, 0.8] 0.6
[0.1, 0.4] [0, 0.3] [0.1, 0.5] 0.5
[0.7, 0.8] [0.1, 0.2] [0, 0.4] 0.3

⎞

⎠. (4.1)

By using the basic fuzzy complement for μ(e) and interval-valued fuzzy complement for
˜F(e), we have ˜Fc

μ = Gδ where

Gδ =

⎛

⎝

[0.4, 0.7] [0.2, 0.3] [0.2, 0.5] 0.4
[0.6, 0.9] [0.7, 1] [0.5, 0.9] 0.5
[0.2, 0.3] [0.8, 0.9] [0.6, 1] 0.7

⎞

⎠. (4.2)
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Proposition 4.3. Let ˜Fμ be a GIVFSS over (U,E). Then, the following holds:

(

˜Fc
μ

)c
= ˜Fμ. (4.3)

Proof. Since ˜Fc
μ = ˜Gδ, then

(

˜Fc
μ

)c
= ˜Gc

δ (4.4)

but, from Definition 4.1, ˜Gδ = (c̃( ˜F(e)), c(μ(e))), then

˜Gc
δ =

(

c̃
(

c̃
(

˜F(e)
))

, c
(

c
(

μ(e)
))

)

=
(

˜F(e), μ(e)
)

= ˜Fμ.

(4.5)

Definition 4.4. Union of two GIVFSSs ( ˜Fμ,A) and ( ˜Gδ, B), denoted by ˜Fμ ∪ ˜Gδ, is a GIVFSS
(˜Hν,C)where C = A ∪ B and ˜Hν : E → ˜P(U) × I is defined by

˜Hν(e) =
(

˜H(e), ν(e)
)

(4.6)

such that ˜H(e) = ˜F(e) ∪ ˜G(e) and ν(e) = s(μ(e), δ(e)), where s is an s-norm and ˜H(e) =
[sup(μ−

˜F(e)
, μ−

˜G(e)
), sup(μ+

˜F(e)
, μ+

˜G(e)
)].

Example 4.5. Consider GIVFSS ˜Fμ and ˜Gδ as in Example 3.4. By using the interval-valued
fuzzy union and basic fuzzy union, we have ˜Fμ ∪ ˜Gδ = ˜Hv, where

˜Hv(e1) =

({

x1
[

sup(0.1, 0.3), sup(0.3, 0.6)
] ,

x2
[

sup(0.5, 0.7), sup(0.7, 0.8)
] ,

x3
[

sup(0.3, 0.5), sup(0.5, 0.8)
]

}

,max(0.4, 0.6)

)

=
({

x1

[0.3, 0.6]
,

x2

[0.7, 0.8]
,

x3

[0.5, 0.8]

}

, 0.6
)

.

(4.7)

Similarly, we get

˜Hv(e2) =
({

x1

[0.2, 0.4]
,

x2

[0.2, 0.3]
,

x3

[0.3, 0.5]

}

, 0.5
)

,

˜Hv(e3) =
({

x1

[0.7, 0.8]
,

x2

[0.2, 0.4]
,

x3

[0.2, 0.5]

}

, 0.3
)

.

(4.8)
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In matrix notation, we write

˜Hv(e) =

⎛

⎝

[0.3, 0.6] [0.7, 0.8] [0.5, 0.8] 0.6
[0.2, 0.4] [0.2, 0.3] [0.3, 0.5] 0.5
[0.7, 0.8] [0.2, 0.4] [0.2, 0.5] 0.3

⎞

⎠. (4.9)

Proposition 4.6. Let ˜Fμ, ˜Gδ, and ˜Hv be any three GIVFSSs. Then, the following results hold.

(a) ˜Fμ ∪ ˜Gδ = ˜Gδ ∪ ˜Fμ.

(b) ˜Fμ ∪ ( ˜Gδ ∪ ˜Hv) = ( ˜Fμ ∪ ˜Gδ) ∪ ˜Hv.

(c) ˜Fμ ∪ ˜Fμ ⊆ ˜Fμ.

(d) ˜Fμ ∪ ˜Aμ = ˜Aμ.

(e) ˜Fμ ∪ ˜∅μ = ˜Fμ.

Proof. (a) ˜Fμ ∪ ˜Gδ = ˜Hν.
From Definition 4.4, we have ˜Hν(e) = (˜H(e)(x), ν(e)) such that ˜H(e) = ˜F(e) ∪ ˜G(e)

and ν(e) = s(μ(e), δ(e)).
But ˜H(e) = ˜F(e) ∪ ˜G(e) = ˜G(e) ∪ ˜F(e) (since union of interval-valued fuzzy sets is

commutative) and ν(e) = s(μ(e), δ(e)) = s(δ(e), μ(e)) (since s-norm is commutative), then
˜Gδ ∪ ˜Fμ = ˜Hν.

(b) The proof is straightforward from Definition 4.4.
(c) The proof is straightforward from Definition 4.4.
(d) The proof is straightforward from Definition 4.4.
(e) The proof is straightforward from Definition 4.4.

Definition 4.7. Intersection of two GIVFSSs ( ˜Fμ,A) and ( ˜Gδ, B), denoted by ˜Fμ ∩ ˜Gδ, is a
GIVFSS (˜Hν,C) where C = A ∪ B and ˜Hν : E → ˜P(U) × I is defined by

˜Hν(e) =
(

˜H(e), ν(e)
)

(4.10)

such that ˜H(e) = ˜F(e) ∩ ˜G(e) and ν(e) = t(μ(e), δ(e)), where t is a t-norm and ˜H(e) =
[inf(μ−

˜F(e)
, μ−

˜G(e)
), inf(μ+

˜F(e)
, μ+

˜G(e)
)].

Example 4.8. Consider GIVFSS ˜Fμ and ˜Gδ as in Example 4.5. By using the interval-valued
fuzzy intersection and basic fuzzy intersection, we have ˜Fμ ∩ ˜Gδ = ˜Hv, where

˜Hv(e1) =
({

x1

[inf(0.1, 0.3), inf(0.3, 0.6)]
,

x2

[inf(0.5, 0.7), inf(0.7, 0.8)]
,

x3

[inf(0.3, 0.5), inf(0.5, 0.8)]

}

min(0.4, 0.6)
)

=
({

x1

[0.1, 0.3]
,

x2

[0.5, 0.7]
,

x3

[0.3, 0.5]

}

, 0.4
)

.

(4.11)
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Similarly, we get

˜Hv(e2) =
({

x1

[0, 0.3]
,

x2

[0, 0.2]
,

x3

[0.1, 0.3]

}

, 0.4
)

,

˜Hv(e3) =
({

x1

[0.5, 0.6]
,

x2

[0.1, 0.1]
,

x3

[0.1, 0.3]

}

, 0.1
)

.

(4.12)

In matrix notation, we write

˜Hv(e) =

⎛

⎝

[0.1, 0.3] [0.5, 0.7] [0.3, 0.5] 0.4
[0, 0.3] [0, 0.2] [0.1, 0.3] 0.4
[0.5, 0.6] [0.1, 0.1] [0.1, 0.3] 0.1

⎞

⎠. (4.13)

Proposition 4.9. Let ˜Fμ, ˜Gδ, and ˜Hv be any three GIVFSSs. Then, the following results hold.

(a) ˜Fμ ∩ ˜Gδ = ˜Gδ ∩ ˜Fμ.

(b) ˜Fμ ∩ ( ˜Gδ ∩ ˜Hv) = ( ˜Fμ ∩ ˜Gδ) ∩ ˜Hv.

(c) ˜Fμ ∩ ˜Fμ ⊆ ˜Fμ.

(d) ˜Fμ ∩ ˜Aμ = ˜Fμ.

(e) ˜Fμ ∩ ˜∅μ = ˜∅μ.

Proof. (a) ˜Fμ ∩ ˜Gδ = ˜Hν.
From Definition 4.7, we have ˜Hν(e) = (˜H(e)(x), ν(e)) such that ˜H(e) = ˜F(e) ∩ ˜G(e)

and ν(e) = t(μ(e), δ(e)).
But ˜H(e) = ˜F(e) ∩ ˜G(e) = ˜G(e) ∩ ˜F(e) (since intersection of interval-valued fuzzy

sets is commutative) and ν(e) = t(μ(e), δ(e)) = t(δ(e), μ(e)) (since t-norm is commutative),
then ˜Gδ ∩ ˜Fμ = ˜Hν.

(b) The proof is straightforward from Definition 4.7.
(c) The proof is straightforward from Definition 4.7.
(d) The proof is straightforward from Definition 4.7.
(e) The proof is straightforward from Definition 4.7.

Proposition 4.10. Let ˜Fμ and ˜Gδ be any two GIVFSSs. Then the DeMorgan’s Laws hold:

(a) ( ˜Fμ ∪ ˜Gδ)
c
= ˜Gc

δ ∩ ˜Fc
μ.

(b) ( ˜Fμ ∩ ˜Gδ)
c
= ˜Gc

δ
∪ ˜Fc

μ.

Proof. (a) Consider

˜Fc
μ ∩ ˜Gc

δ =
((

c̃(F(e)), c
(

μ(e)
)) ∩ (c̃(G(e)), c(δ(e)))

)

=
(

(c̃(F(e)) ∩ c̃(G(e))),
(

c
(

μ(e)
) ∩ c(δ(e))

))

=
(

((F(e)) ∪ (G(e)))c̃,
(

μ(e) ∪ δ(e)
)c
)

=
(

˜Fμ ∪ ˜Gδ

)c
.

(4.14)

(b) The proof is similar to the above.
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Proposition 4.11. Let ˜Fμ, ˜Gδ, and ˜Hv be any three GIVFSSs. Then, the following results hold.

(a) ˜Fμ ∪ ( ˜Gδ ∩ ˜Hv) = ( ˜Fμ ∪ ˜Gδ) ∩ ( ˜Fμ ∪ ˜Hv).

(b) ˜Fμ ∩ ( ˜Gδ ∪ ˜Hv) = ( ˜Fμ ∩ ˜Gδ) ∪ ( ˜Fμ ∩ ˜Hv).

Proof. (a) For all x ∈ E,

λ
˜F(x)∪( ˜G(x)∩˜H(x))(x) =

[

sup
(

λ−
˜F(x)

(x), λ−
˜G(x)∩˜H(x)

(x)
)

, sup
(

λ+
˜F(x)

(x), λ+
˜G(x)∩˜H(x)

(x)
)]

=
[

sup
(

λ−
˜F(x)

(x), inf
(

λ−
˜G(x)

(x), λ−
˜H(x)

(x)
))

,

sup
(

λ+
˜F(x)

(x), inf
(

λ+
˜G(x)

(x), λ+
˜H(x)

(x)
))]

=
[

inf
(

sup
(

λ−
˜F(x)

(x), λ−
˜G(x)

(x)
)

, sup
(

λ−
˜F(x)

(x), λ−
˜H(x)

(x)
))

,

inf
(

sup
(

λ+
˜F(x)

(x), λ+
˜G(x)

(x)
)

, sup
(

λ+
˜F(x)

(x), λ+
˜H(x)

(x)
))]

= λ( ˜F(x)∪ ˜G(x))∩( ˜F(x)∪˜H(x))(x),

γμ(x)∪(δ(x)∩ν(x))(x) = max
{

γμ(x)(x), γδ(x)∩ν(x)(x)
}

= max
{

γμ(x)(x),min
(

γδ(x)(x), γν(x)(x)
)}

= min
{

max
(

γμ(x)(x), γδ(x)(x)
)

,max
(

γμ(x)(x), γν(x)(x)
)}

= min
{

γμ(x)∪δ(x)(x), γμ(x)∪ν(x)(x)
}

= γ(μ(x)∪δ(x)) ˜∩ (μ(x)∪ν(x))(x).
(4.15)

(b) Similar to the proof of (a).

5. AND and OR Operations on GIVFSS with Application

In this section, we give the definitions of AND and OR operations on GIVFSS. An application
of this operations in decision making problem has been shown.

Definition 5.1. If ( ˜Fμ,A) and ( ˜Gδ, B) are two GIVFSSs, then “( ˜Fμ,A) AND ( ˜Gδ, B)” denoted
by ( ˜Fμ,A) ∧ ( ˜Gδ, B) is defined by

(

˜Fμ,A
)

∧
(

˜Gδ, B
)

=
(

˜Hλ,A × B
)

, (5.1)

where ˜Hλ(α, β) = (H(α, β), λ(α, β)) for all (α, β) ∈ A×B, such that ˜H(α, β) = ˜F(α)∩ ˜G(β) and
λ(α, β) = t(μ(α), δ(β)), for all (α, β) ∈ A × B, where t is a t-norm.

Example 5.2. Suppose the universe consists of three machines x1, x2, x3, that is, U =
{x1, x2, x3}, and consider the set of parameters E = {e1, e2, e3} which describe their perfor-
mances according to certain specific task. Suppose a firm wants to buy one such machine
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depending on any two of the parameters only. Let there be two observations ˜Fμ and ˜Gδ by
two experts A and B, respectively, defined as follows:

˜Fμ(e1) =
({

x1

[0.1, 0.3]
,

x2

[0.5, 0.7]
,

x3

[0.3, 0.5]

}

, 0.4
)

,

˜Fμ(e2) =
({

x1

[0, 0.3]
,

x2

[0, 0.2]
,

x3

[0.1, 0.3]

}

, 0.4
)

,

˜Fμ(e3) =
({

x1

[0.5, 0.6]
,

x2

[0.1, 0.1]
,

x3

[0.1, 0.3]

}

, 0.1
)

,

˜Gμ(e1) =
({

x1

[0.3, 0.5]
,

x2

[0.2, 0.6]
,

x3

[0.4, 0.5]

}

, 0.3
)

,

˜Gμ(e2) =
({

x1

[0.3, 0.5]
,

x2

[0.4, 0.6]
,

x3

[0, 0.3]

}

, 0.1
)

,

˜Gμ(e3) =
({

x1

[0.1, 0.6]
,

x2

[0.4, 0.7]
,

x3

[0.2, 0.3]

}

, 0.2
)

.

(5.2)

To find the AND between the two GIVFSSs, we have ( ˜Fμ,A) AND ( ˜Gδ, B) = (˜Hλ,A × B),
where

˜Hλ(e1, e1) =
({

x1

[0.1, 0.3]
,

x2

[0.2, 0.6]
,

x3

[0.3, 0.5]

}

, 0.3
)

,

˜Hλ(e1, e2) =
({

x1

[0.1, 0.3]
,

x2

[0.4, 0.6]
,

x3

[0, 0.3]

}

, 0.1
)

,

˜Hλ(e1, e3) =
({

x1

[0.1, 0.3]
,

x2

[0.4, 0.7]
,

x3

[0.2, 0.3]

}

, 0.2
)

,

˜Hλ(e2, e1) =
({

x1

[0, 0.3]
,

x2

[0, 0.2]
,

x3

[0.1, 0.3]

}

, 0.3
)

,

˜Hλ(e2, e2) =
({

x1

[0, 0.3]
,

x2

[0, 0.2]
,

x3

[0, 0.3]

}

, 0.1
)

,

˜Hλ(e2, e3) =
({

x1

[0, 0.3]
,

x2

[0, 0.2]
,

x3

[0.1, 0.3]

}

, 0.2
)

,

˜Hλ(e3, e1) =
({

x1

[0.3, 0.5]
,

x2

[0.1, 0.1]
,

x3

[0.1, 0.3]

}

, 0.1
)

,

˜Hλ(e3, e2) =
({

x1

[0.3, 0.5]
,

x2

[0.1, 0.1]
,

x3

[0, 0.3]

}

, 0.1
)

,

˜Hλ(e3, e3) =
({

x1

[0.1, 0.6]
,

x2

[0.1, 0.1]
,

x3

[0.1, 0.3]

}

, 0.1
)

.

(5.3)
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Table 1: (˜Hλ,A × B).

x1 x2 x3 μ

(e1, e1) [0.1, 0.3] [0.2, 0.6] [0.3, 0.5] 0.3

(e1, e2) [0.1, 0.3] [0.4, 0.6] [0, 0.3] 0.1

(e1, e3) [0.1, 0.3] [0.4, 0.7] [0.2, 0.3] 0.2

(e2, e1) [0, 0.3] [0, 0.2] [0.1, 0.3] 0.3

(e2, e2) [0, 0.3] [0, 0.2] [0, 0.3] 0.1

(e2, e3) [0, 0.3] [0, 0.2] [0.1, 0.3] 0.2

(e3, e1) [0.3, 0.5] [0.1, 0.1] [0.1, 0.3] 0.1

(e3, e2) [0.3, 0.5] [0.1, 0.1] [0, 0.3] 0.1

(e3, e3) [0.1, 0.6] [0.1, 0.1] [0.1, 0.3] 0.1

Table 2: Numerical grade rp∈P (xi).

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1 −0.8 −0.5 −0.8 0 0 0 (1) (1.1) (0.8)

x2 (0.4) (1.3) (1.3) −0.3 −0.2 −0.3 −0.8 −0.7 −0.7
x3 (0.4) −0.8 −0.5 (0.3) (0.1) (0.3) −0.2 −0.4 −0.1
μ 0.3 0.1 0.2 0.3 0.1 0.2 0.1 0.1 0.1

Now, to determine the best machine, we first compute the numerical grade rp∈P (xi) for each
p ∈ P such that

rp∈P (xi) =
∑

x∈U

((

c−i − μ−
H(pi)(x)

)

+
(

c+i − μ+
H(pi)(x)

))

. (5.4)

The result is shown in Tables 1 and 2.
Let P = {p1 = (e1, e1), p2 = (e1, e2), . . . , p9 = (e3, e3)}.
Now, we mark the highest numerical grade (indicated in parenthesis) in each row

excluding the last row which is the grade of such belongingness of a machine against each
pair of parameters (see Table 3). Now, the score of each such machine is calculated by taking
the sum of the products of these numerical grades with the corresponding value of μ. The
machine with the highest score is the desired machine. We do not consider the numerical
grades of the machine against the pairs (ei, ei), i = 1, 2, 3, as both the parameters are the same:

Score (x1) = (1 ∗ 0.1) + (1.1 ∗ 0.1) = 0.21,

Score (x2) = (1.3 ∗ 0.1) + (1.3 ∗ 0.2) = 0.39,

Score (x3) = (0.3 ∗ 0.3) + (0.3 ∗ 0.2) = 0.15.

The firm will select the machine with the highest score. Hence, they will buy machine x2.
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Table 3: Grade table.

p1 p2 p3 p4 p5 p6 p7 p8 p9

xi x2, x3 x2 x2 x3 x3 x3 x1 x1 x1

Highest grade — 1.3 1.3 0.3 — 0.3 1 1.1 —

μ 0.3 0.1 0.2 0.3 0.1 0.2 0.1 0.1 0.1

Definition 5.3. If ( ˜Fμ,A) and ( ˜Gδ, B) are two GIVFSSs, then “( ˜Fμ,A) OR ( ˜Gδ, B)” denoted by
( ˜Fμ,A) ∨ ( ˜Gδ, B) is defined by

(

˜Fμ,A
)

∨
(

˜Gδ, B
)

=
(

˜Hλ,A × B
)

, (5.5)

where ˜Hλ(α, β) = (H(α, β), λ(α, β)) for all (α, β) ∈ A × B, such that ˜H(α, β) = ˜F(α) ∩ ˜G(β) and
λ(α, β) = s(μ(α), δ(β)), for all (α, β) ∈ A × B, where s is an s-norm.

Example 5.4. Consider Example 5.2. To find the OR between the twoGIVFSSs, we have ( ˜Fμ,A)
OR ( ˜Gδ, B) = (˜Hλ,A × B), where

˜Hλ(e1, e1) =
({

x1

[0.3, 0.5]
,

x2

[0.5, 0.7]
,

x3

[0.4, 0.5]

}

, 0.4
)

,

˜Hλ(e1, e2) =
({

x1

[0.3, 0.5]
,

x2

[0.5, 0.7]
,

x3

[0.4, 0.5]

}

, 0.4
)

,

˜Hλ(e1, e3) =
({

x1

[0.1, 0.6]
,

x2

[0.5, 0.7]
,

x3

[0.3, 0.5]

}

, 0.4
)

,

˜Hλ(e2, e1) =
({

x1

[0.3, 0.5]
,

x2

[0., 0.6]
,

x3

[0.4, 0.5]

}

, 0.4
)

,

˜Hλ(e2, e2) =
({

x1

[0.3, 0.5]
,

x2

[0.4, 0.6]
,

x3

[0.1, 0.3]

}

, 0.4
)

,

˜Hλ(e2, e3) =
({

x1

[0.1, 0.6]
,

x2

[0.4, 0.7]
,

x3

[0.2, 0.3]

}

, 0.4
)

,

˜Hλ(e3, e1) =
({

x1

[0.5, 0.6]
,

x2

[0.2, 0.6]
,

x3

[0.4, 0.5]

}

, 0.3
)

,

˜Hλ(e3, e2) =
({

x1

[0.5, 0.6]
,

x2

[0.4, 0.6]
,

x3

[0.1, 0.3]

}

, 0.1
)

,

˜Hλ(e3, e3) =
({

x1

[0.5, 0.6]
,

x2

[0.4, 0.7]
,

x3

[0.2, 0.3]

}

, 0.2
)

.

(5.6)

Remark 5.5. We use the same method in Example 5.2 for the OR operation if the firm wants to
buy one such machine depending on any one of the parameters only.
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Proposition 5.6. Let ( ˜Fμ,A) and ( ˜Gδ, B) be any two GIVFSSs. Then, the following results hold:

(a) (( ˜Fμ,A) ∧ ( ˜Gδ, B))
c
= ( ˜Fμ,A)

c ∨ ( ˜Gδ, B)
c
,

(b) (( ˜Fμ,A) ∨ ( ˜Gδ, B))
c
= ( ˜Fμ,A)

c ∧ ( ˜Gδ, B)
c
.

Proof. Straightforward from Definitions 4.1, 5.1, and 5.3.

Proposition 5.7. Let ( ˜Fμ,A), ( ˜Gδ, B), and (˜Hλ,C) be any three GIVFSSs. Then, the following
results hold:

(a) ( ˜Fμ,A) ∧ (( ˜Gδ, B) ∧ (˜Hλ,C)) = (( ˜Fμ,A) ∧ ( ˜Gδ, B)) ∧ (˜Hλ,C),

(b) ( ˜Fμ,A) ∨ (( ˜Gδ, B) ∨ (˜Hλ,C)) = (( ˜Fμ,A) ∨ ( ˜Gδ, B)) ∨ (˜Hλ,C),

(c) ( ˜Fμ,A) ∨ (( ˜Gδ, B) ∧ (˜Hλ,C)) = (( ˜Fμ,A) ∨ ( ˜Gδ, B)) ∧ (( ˜Fμ,A) ∨ (˜Hλ,C)),

(d) ( ˜Fμ,A) ∧ (( ˜Gδ, B) ∨ (˜Hλ,C)) = (( ˜Fμ,A) ∧ ( ˜Gδ, B)) ∨ (( ˜Fμ,A) ∧ (˜Hλ,C)).

Proof. Straightforward from Definitions 5.1 and 5.3.

Remark 5.8. The commutativity property does not hold for AND and OR operations since
A × B /=B ×A.

6. Similarity between Two GIVFSS

In this section, we give a measure of similarity between two GIVFSSs. We are taking the set
theoretic approach because it is easier to calculate on and is a very popular method too.

Definition 6.1. Similarity between two GIVFSSs ˜Fμ and ˜Gδ, denoted by S( ˜Fμ, ˜Gδ), is defined
by

S
(

˜Fμ, ˜Gδ

)

=
[

ϕ−
(

˜F, ˜G
)

·m(μ, δ), ϕ+
(

˜F, ˜G
)

·m(μ, δ)
]

, such that

ϕ−
(

˜F, ˜G
)

= min
(

ϕ1

(

˜F, ˜G
)

, ϕ2

(

˜F, ˜G
))

,

ϕ+
(

˜F, ˜G
)

= max
(

ϕ1

(

˜F, ˜G
)

, ϕ2

(

˜F, ˜G
))

,

(6.1)

where

ϕ1

(

˜F, ˜G
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, if μ−
˜Fi
(x) = 0, ∀i,

∑n
i maxx∈X

{

min
(

μ−
˜Fi
(x), μ−

˜Gi
(x)

)}

∑n
i maxx∈X

[

μ−
˜Fi
(x)

] , otherwise,

ϕ2

(

˜F, ˜G
)

=

∑n
i maxx∈X

{

min
(

μ+
˜Fi
(x), μ+

˜Gi
(x)

)}

∑n
i maxx∈X

(

μ+
˜Fi
(x)

) ,

m
(

μ(e), δ(e)
)

= 1 −
∑
∣

∣μ(e) − δ(e)
∣

∣

∑
∣

∣μ(e) + δ(e)
∣

∣

.

(6.2)



Journal of Applied Mathematics 15

Definition 6.2. Let ˜Fμ and ˜Gδ be two GIVFSSs over the same universe (U,E). We say that two
GIVFSS are significantly similar if ϕ−( ˜F, ˜G) ·m(μ, δ) � 1/2.

Theorem 6.3. Let ˜Fμ, ˜Gδ, and ˜Hλ be any three GIVFSSs over (U,E). Then, the following hold:

(a) in general S( ˜Fμ, ˜Gδ)/=S( ˜Gδ, ˜Fμ),

(b) ϕ−( ˜F, ˜G) ≥ 0 and ϕ+( ˜F, ˜G) ≤ 1,

(c) ˜Fμ = ˜Gδ ⇒ S( ˜Fμ, ˜Gδ) = 1,

(d) ˜Fμ ⊆ ˜Gδ ⊆ ˜Hλ ⇒ S( ˜Fμ,˜Hλ) � S( ˜Gδ,˜Hλ),

(e) ˜Fμ˜∩ ˜Gδ = ∅ ⇔ S( ˜Fμ, ˜Gδ) = 0.

Proof. (a) The proof is straightforward and follows from Definition 6.1.
(b) From Definition 6.1, we have

ϕ1

(

˜F, ˜G
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0, if μ−
˜Fi
(x) = 0, ∀i,

∑n
i maxx∈X

{

min
(

μ−
˜Fi
(x), μ−

˜Gi
(x)

)}

∑n
i maxx∈X

(

μ−
˜Fi
(x)

) , otherwise.
(6.3)

If μ−
˜Fi
(x) = 0, for all i, then ϕ−( ˜F, ˜G) = 0, and, if μ−

˜Fi
(x)/= 0, for some i, then it is clear

that ϕ−( ˜F, ˜G) ≥ 0.
Also since ϕ+( ˜F, ˜G) = max(ϕ1( ˜F, ˜G), ϕ2( ˜F, ˜G)), suppose that ϕ1( ˜F, ˜G) = 1 and

ϕ2( ˜F, ˜G) = 1, then ϕ+( ˜F, ˜G) = 1, that means, if ϕ1( ˜F, ˜G) < 1 and ϕ2( ˜F, ˜G) < 1, then
ϕ+( ˜F, ˜G) ≤ 1.

(c) The proof is straightforward and follows from Definition 6.1.
(d) The proof is straightforward and follows from Definition 6.1.
(e) The proof is straightforward and follows from Definition 6.1.

Example 6.4. Let ˜Fμ be GIVFSS over (U,E) defined as follows:

˜Fμ(e1) =
({

x1

[0.3, 0.7]
,

x2

[0.4, 0.8]
,

x3

[0.1, 0.3]

}

, 0.4
)

,

˜Fμ(e2) =
({

x1

[0.5, 0.6]
,

x2

[0.1, 0.3]
,

x3

[0, 0.4]

}

, 0.6
)

,

˜Fμ(e3) =
({

x1

[0.7, 0.9]
,

x2

[0.1, 0.5]
,

x3

[0.8, 1]

}

, 0.8
)

.

(6.4)
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Let ˜Gδ be another GIVFSS over (U,E) defined as follows:

˜Gδ(e1) =
({

x1

[0.1, 0.4]
,

x2

[0.5, 0.7]
,

x3

[0.2, 0.3]

}

, 0.3
)

,

˜Gδ(e2) =
({

x1

[0.6, 0.8]
,

x2

[0.5, 0.6]
,

x3

[0.4, 0.8]

}

, 0.7
)

,

˜Gδ(e3) =
({

x1

[0.4, 0.7]
,

x2

[0.3, 0.5]
,

x3

[0.5, 0.7]

}

, 0.6
)

.

(6.5)

Here,

m
(

μ(e), δ(e)
)

= 1 −
∑
∣

∣μ(e) − δ(e)
∣

∣

∑
∣

∣μ(e) + δ(e)
∣

∣

= 1 − |(0.4 − 0.3)| + |(0.6 − 0.7)| + |(0.8 − 0.6)|
|(0.4 + 0.3)| + |(0.6 + 0.7)| + |(0.80 + 0.6)|

∼= 0.8824,

ϕ1

(

˜F, ˜G
)

=
(max{min(0.3, 0.1),min(0.4, 0.5),min(0.1, 0.2)}

max(0.3, 0.4, 0.1) +max(0.5, 0.1, 0) +max(0.7, 0.1, 0.8)

+
max{min(0.5, 0.6),min(0.1, 0.5),min(0, 0.4)}

max(0.3, 0.4, 0.1) +max(0.5, 0.1, 0) +max(0.7, 0.1, 0.8)

+
max{min(0.7, 0.4),min(0.1, 0.3),min(0.8, 0.5)})

max(0.3, 0.4, 0.1) +max(0.5, 0.1, 0) +max(0.7, 0.1, 0.8)

=
max{0.1, 0.4, 0.1} +max{0.5, 0.1, 0} +max{0.4, 0.1, 0.5}
max(0.3, 0.4, 0.1) +max(0.5, 0.1, 0) +max(0.7, 0.1, 0.8)

=
0.4 + 0.5 + 0.5
0.4 + 0.5 + 0.8

= 0.824,

ϕ2

(

˜F, ˜G
)

=
(max{min(0.7, 0.4),min(0.8, 0.7),min(0.3, 0.3)}

max(0.7, 0.8, 0.3) +max(0.6, 0.3, 0.4) +max(0.9, 0.5, 1)

+
max{min(0.6, 0.8),min(0.3, 0.6),min(0.4, 0.8)}

max(0.7, 0.8, 0.3) +max(0.6, 0.3, 0.4) +max(0.9, 0.5, 1)

+
max{min(0.9, 0.7),min(0.5, 0.5),min(1, 0.7)})

max(0.7, 0.8, 0.3) +max(0.6, 0.3, 0.4) +max(0.9, 0.5, 1)

=
max{0.4, 0.7, 0.3} +max{0.6, 0.3, 0.4} +max{0.7, 0.5, 0.7}
max(0.7, 0.8, 0.3) +max(0.6, 0.3, 0.4) +max(0.9, 0.5, 1)

=
0.7 + 0.6 + 0.7
0.8 + 0.6 + 1

= 0.833.

(6.6)
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Then,

ϕ−
(

˜F, ˜G
)

= min
(

ϕ1

(

˜F, ˜G
)

, ϕ2

(

˜F, ˜G
))

= min(0.824, 0.833) = 0.824,

ϕ+
(

˜F, ˜G
)

= max
(

ϕ1

(

˜F, ˜G
)

, ϕ2

(

˜F, ˜G
))

= max(0.824, 0.833) = 0.833.
(6.7)

Hence, the similarity between the two GIVFSSs ˜Fμ and ˜Gδ will be

S
(

˜Fμ, ˜Gδ

)

=
[

ϕ−
(

˜F, ˜G
)

·m(μ, δ), ϕ+
(

˜F, ˜G
)

·m(μ, δ)
]

= [(0.824) · (0.8824), (0.833) · (0.8824)]

= [0.727, 0.735].

(6.8)

Therefore, ˜Fμ and ˜Gδ are significantly similar.

7. Application of Similarity Measure in Medical Diagnosis

In this section, we will try to estimate the possibility that a sick person having certain visible
symptoms is suffering from dengue fever. For this, we first construct a GIVFSS model for
dengue fever and the GIVFSS of symptoms for the sick person. Next, we find the similarity
measure of these two sets. If they are significantly similar, then we conclude that the person
is possibly suffering from dengue fever. Let our universal set contain only two elements
“yes” and “no,” that is, U = {y, n}. Here, the set of parameters E is the set of certain
visible symptoms. Let E = {e1, e2, e3, e4, e5, e6, e7}, where e1 = body temperature, e2 = cough
with chest congestion, e3 = loose motion, e4 = chills, e5 = headache, e6 = low heart rate
(bradycardia), and e7 = pain upon moving the eyes. Our model GIVFSS for dengue fever
Mμ is given in Table 4, and this can be prepared with the help of a physician.

Now, after talking to the sick person, we can construct his GIVFSS Gδ as in Table 5.
Now, we find the similarity measure of these two sets by using the same method as

in Example 6.4, where, after the calculation, we get ϕ−(˜M, ˜G)m(μ, δ) ∼= 0.22 < 1/2. Hence
the two GIVFSSs are not significantly similar. Therefore, we conclude that the person is not
suffering from dengue fever.

8. Conclusion

In this paper, we have introduced the concept of generalised interval-valued fuzzy soft set
and studied some of its properties. The complement, union, intersection, “AND,” and “OR”
operations have been defined on the interval-valued fuzzy soft sets. An application of this
theory is given in solving a decision making problem. Similarity measure of two generalised
interval-valued fuzzy soft sets is discussed, and its application to medical diagnosis has been
shown.
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Table 4: Model GIVFSS for dengue fever.

Mμ e1 e2 e3 e4 e5 e6 e7

y 1 0 0 1 1 1 1
n 0 1 1 0 0 0 0
μ 1 1 1 1 1 1 1

Table 5: GIVFSS for the sick person.

Fα e1 e2 e3 e4 e5 e6 e7

y [0.3, 0.4] [0.2, 0.5] [0, 0.2] 1 [0.4, 0.6] 0 [0.3, 0.4]
n [0.6, 0.9] [0.5, 0.7] [0.6, 0.8] [0.3, 0.5] 1 [0.4, 0.6] [0.3, 0.5]
δ 0.3 0.5 0.4 0.6 0.1 0.5 0.2
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