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This paper focuses on developing diagonal gradient-type methods that employ accumulative
approach in multistep diagonal updating to determine a better Hessian approximation in each
step. The interpolating curve is used to derive a generalization of the weak secant equation, which
will carry the information of the local Hessian. The new parameterization of the interpolating curve
in variable space is obtained by utilizing accumulative approach via a norm weighting defined by
two positive definite weighting matrices. We also note that the storage needed for all computation
of the proposed method is just O(n). Numerical results show that the proposed algorithm is effi-
cient and superior by comparison with some other gradient-type methods.

1. Introduction

Consider the unconstrained optimization problem:

min f(x), x ∈ Rn, (1.1)

where f : Rn → R is twice continuously differentiable function. The gradient-type methods
for solving (1.1) can be written as

xk+1 = xk − B−1
k gk, (1.2)
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where gk and Bk denote the gradient and the Hessian approximation of f at xk, respectively.
By considering Bk = αkI, Barzilai and Borwein (BB) [1] give

αk+1 =
sT
k
yk

sT
k
sk

, (1.3)

where it is derived by minimizing ‖αk+1sk − yk‖2 respect to α with sk = xk+1 − xk and yk =
gk+1 − gk. Recently, some improved one-step gradient-type methods [2–5] in the frame of BB
algorithm were proposed to solve (1.1). It is proposed to let Bk be a diagonal nonsingular
approximation to the Hessian and a new approximating matrix Bk+1 to the Hessian is devel-
oped based on weak secant equation of Dennis and Wolkowicz [6]

sTkBk+1sk = sTkyk. (1.4)

In one-step method, data from one previous step is used to revise the current approximation
of Hessian. Later Farid and Leong [7, 8] proposed multistep diagonal gradient methods
inspired by the multistep quasi-Newton method of Ford [9, 10]. In this multistep framework,
a fixed-point approach for interpolating polynomials was derived from data in previous itera-
tions (not only one previous step) [7–10]. General approach of multistep method is based on
the measurement of distances in the variable space where the distance of every iterate is
measured from one-selected iterate. In this paper, we are interested to develop multistep
diagonal updating based on accumulative approach for defining new parameter value of
interpolating curve. From this point, the distance is accumulated between consecutive iterates
as they are traversed in the natural sequence. For measuring the distance, we need to para-
meterize the interpolating polynomial through a norm that is defined by a positive definite
weighting matrix, say M. Therefore, the performance of the multistep method may be sig-
nificantly improved by carefully defining the weighting matrix. The rest of paper is organized
as follows. In Section 2, we discuss a new multistep diagonal updating scheme based on the
accumulative approach. In Section 3, we establish the global convergence of our proposed
method. Section 4 presents numerical result and comparisons with BB method and one-step
diagonal gradient method are reported. Conclusions are given in Section 5.

2. Derivation of the New Diagonal Updating via
Accumulative Approach

This section motivates to state new implicit updates for diagonal gradient-type method
through accumulative approach to determining a better Hessian approximation at each itera-
tion. In multistep diagonal updating methods, weak secant equation (1.4) may be generalized
by means of interpolating polynomials, instead of employing data just from one previous
iteration like in one-step methods. Our aim is to derive efficient strategies for choosing a
suitable set of parameters to construct the interpolating curve and investigate the best norm
for measurement of the distances required to parameterize the interpolating polynomials. In
general, this method obeys the recursive formula of the form

xk+1 = xk − αkB
−1
k gk, (2.1)
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where xk is the kth iteration point, αk is step length which is determined by a line search,
Bk is an approximation to the Hessian in a diagonal form, and gk is the gradient of f at xk.
Consider a differentiable curve x(τ) in Rn. The derivative of g(x(τ)), at point x(τ∗), can be
obtained by applying the chain rule:

dg

dτ

∣
∣
∣
∣
τ=τ∗

= G(x(τ))
dx

dτ

∣
∣
∣
∣
τ=τ∗

. (2.2)

We are interested to derive a relation that will be satisfied by the approximation of Hessian
in diagonal form at xk+1. If we assume that x(τ) passes through xk+1 and choose τ∗ so that

x(τ∗) = xk+1, (2.3)

then we have

G(xk+1)
dxk+1

dτ
=

dg(xk+1)
dτ

. (2.4)

As in this paper, we use two-step method, therefore; we use information of most recent points
xk−1, xk, xk+1 and their associated gradients. Consider x(τ) as the interpolating vector poly-
nomial of degree 2:

x
(

τj
)

= xk+j−1 j = 0, 1, 2. (2.5)

The selection of distinct scalar value τj efficiently through the new approach is the main con-
tribution of this paper and will be discussed later in this section. Let h(τ) be the interpolation
for approximating the gradient vector:

h
(

τj
)

= g
(

xk+j−1
)

j = 0, 1, 2. (2.6)

By denoting x(τ2) = xk+1 and defining

dx(τ2)
dτ

= rk,

dg(x(τ2))
dτ

= wk,

(2.7)

we can obtain our desired relation that will be satisfied by the Hessian approximation at xk+1

in diagonal form. Corresponding to this two-step approach, weak secant equation will be
generalized as follows:

rTk Bk+1rk = rTkwk. (2.8)
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Then, Bk+1 can be obtained by using an appropriately modified version of diagonal updating
formula in [3] as follows:

Bk+1 = Bk +

(

rT
k
wk − rT

k
Bkrk

)

tr
(

F2
k

) Fk, (2.9)

where Fk = diag((r(1)
k

)2, (r(2)
k

)2, . . . , (r(n)
k

)2). Now, we attempt to construct an algorithm for
finding desired vector rk and wk to improve the Hessian approximation. The proposed
method is outlined as follows. First, we seek to derive strategies for choosing a suitable set of
values τ0, τ1, and τ2. The choice of {τj}2

j=0 is such that to reflect distances between iterates xk

in Rn that are dependent on some metric of the following general form:

φM(z1, z2) =
{

(z1 − z2)
TM(z1 − z2)

}1/2
. (2.10)

The establishment on τj can be made via the so-called accumulative approach where the
accumulating distances (measured by the metric φM) between consecutive iterates are used
to approximate τj . This leads to the following definitions (where without loss of generality,
we take τ1 to be origin for value of τ):

τ1 = 0,

τj = τj+1 − φM

(

xk+j , xk+j−1
)

j = 0, 2.
(2.11)

Then, we can construct the set {τj}2
j=0 as follows:

τ0 = τ1 − φM(xk, xk−1)

def= −‖xk − xk−1‖M
= −‖sk−1‖M,

τ2 = φM(xk+1, xk)

def= ‖xk+1 − xk‖M
= ‖sk‖M,

(2.12)

where rk and wk are depending on the value of τ . As the set {τj}2
j=0 measures the distances,

therefore they need to be parameterized the interpolating polynomials via a norm defined by
a positive definite matrix M. It is necessary to choose M with some care, while improving
the approximation of Hessian can be strongly influenced via the choice of M. Two choices
for the weighting matrix M are considered in this paper. In first choice, if M = I, the ‖ · ‖M
reduces to the Euclidean norm, and then we obtain the following τj values accordingly:

τ2 = ‖sk‖2, τ1 = 0, τ0 = −‖sk−1‖2. (2.13)
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The second choice of weighting matrix M is to take M = Bk, where the current Bk is diagonal
approximation to the Hessian. By these two means, the measurement of the relevant distances
is determined by the properties of the current quadratic approximation (based on Bk) to the
objective function:

τ2 = (skBksk)1/2, τ1 = 0, τ0 = −(sk−1Bksk−1)1/2. (2.14)

Since Bk is a diagonal matrix, then it is not expensive to compute {τj}2
j=0 at each iteration. The

quantity δ is introduced here and defined as follows:

δ
def=

τ2 − τ1

τ1 − τ0
, (2.15)

and rk and wk are given by the following expressions:

rk = sk − δ2

1 + 2δ
sk−1, (2.16)

wk = yk − δ2

1 + 2δ
yk−1. (2.17)

To safeguard on the possibility of having very small or very large rTkwk, we require that the
condition

ε1‖rk‖2
2 ≤ rTkwk ≤ ε2‖rk‖2

2 (2.18)

is satisfied (we use ε1 = 10−6 and ε2 = 106). If not, then we replace rk = sk and wk = yk. More
that the Hessian approximation (Bk+1) might not preserve the positive definiteness in each
step. One of the fundamental concepts in this paper is to determine an “improved” version
of the Hessian approximation to be used even in computing the metric when M = Bk and a
weighing matrix as norm should be positive definite. To ensure that the updates remain posi-
tive definite, a scaling strategy proposed in [7] is applied. Hence, the new updating formula
that incorporates the scaling strategy is given by

Bk+1 = ηkBk +

[

rT
k
wk − ηkr

T
k
Bkrk

]

tr
(

F2
k

) Fk, (2.19)

where

ηk = min

(

rT
k
wk

rT
k
Bkrk

, 1

)

. (2.20)

This guarantees that the updated Hessian approximation is positive. Finally, the new accumu-
lative MD algorithm is outlined as follows.
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2.1. Accumulative MD Algorithm

Step 1. Choose an initial point x0 ∈ Rn, and a positive definite matrix B0 = I.
Let k := 0.

Step 2. Compute gk. If ‖gk‖ ≤ ε, stop.

Step 3. If k = 0, set x1 = x0 − (g0/‖g0‖). If k = 1 set rk = sk and wk = yk go to Step 5.

Step 4. If k ≥ 2 and M = I is considered, compute {τj}2
j=0 from (2.13).

Else if M = Bk, compute {τj}2
j=0 from (2.14).

Compute δk, rk,wk and ηk, from (2.15), (2.16), (2.17), and (2.20), respectively.
If rT

k
wk ≤ 10−4‖rk‖2‖wk‖2, set rk = sk and wk = yk.

Step 5. Compute dk = −B−1
k
gk and calculate αk > 0 such that the Armijo [11], condition holds:

f(xk+1) ≤ f(xk) + σαkg
T
k dk, where σ ∈ (0, 1) is a given constant.

Step 6. Let xk+1 = xk − αkB
−1
k
gk, and update Bk+1 by (2.19).

Step 7. Set k := k + 1, and return to Step 2.

3. Convergence Analysis

This section is devoted to study the convergence of accumulative MD algorithm, when
applied to the minimization of a convex function. To begin, we give the following result,
which is due to Byrd and Nocedal [12] for the step generated by the Armijo line search algo-
rithm. Here and elsewhere, ‖ · ‖ denotes the Euclidean norm.

Theorem 3.1. Assume that f is a strictly convex function. Suppose the Armijo line search algorithm
is employed in a way that for any dk with dT

kgk < 0, the step length, αk satisfies

f(xk + αkdk) ≤ f(xk) + σαkg
T
k dk, (3.1)

where αk ∈ [τ, τ ′], 0 < τ < τ ′ and σ ∈ (0, 1). Then, there exist positive constants ρ1 and ρ2 such that
either

f(xk + αkdk) − f(xk) ≤ −ρ1

(

dT
k
gk
)2

‖dk‖2
(3.2)

or

f(xk + αkdk) − f(xk) ≤ −ρ2d
T
kgk (3.3)

is satisfied.

We can apply Theorem 3.1 to establish the convergence of some Armijo-type line
search methods.
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Theorem 3.2. Assume that f is a strictly convex function. Suppose that the Armijo line search algo-
rithm in Theorem 3.1 is employed with dk chosen to obey the following conditions: there exist positive
constants c1 and c2 such that

−gT
k dk ≥ c1

∥
∥gk
∥
∥

2
, ‖dk‖ ≤ c2

∥
∥gk
∥
∥, (3.4)

for all sufficiently large k. Then, the iterates xk generated by the line search algorithm have the property
that

lim inf
k→∞

∥
∥gk
∥
∥ = 0. (3.5)

Proof. By (3.4), we have that either (3.2) or (3.6) becomes

f(xk + αkdk) − f(xk) ≤ −c∥∥gk
∥
∥

2
, (3.6)

for some positive constants. Since f is strictly convex, it is also bounded below. Then, (3.1)
implies that f(xk + αkdk) − f(xk) → 0 as k → ∞. This also implies that ‖gk‖ → 0 as k → ∞
or at least

lim inf
k→∞

∥
∥gk
∥
∥ = 0. (3.7)

To prove that the accumulative MD algorithm is globally convergent when applied
to the minimization of a convex function, it is sufficient to show that the sequence {‖Bk‖}
generated by (2.19)-(2.20) is bounded both above and below, for all finite k so that its asso-
ciated search direction satisfies condition (3.4). Since Bk is diagonal, it is enough to show that
each element of Bk says B

(i)
k

; i = 1, . . . , n is bounded above and below by some positive con-
stants. The following theorem gives the boundedness of {‖Bk‖}.

Theorem 3.3. Assume that f is strictly convex function where there exists positive constants m and
M such that

m‖z‖2 ≤ zT∇2f(x)z ≤ M‖z‖2, (3.8)

for all x, z ∈ Rn. Let {‖Bk‖} be a sequence generated by the accumulative MD method. Then, ‖Bk‖ is
bounded above and below for all finite k, by some positive constants.

Proof. Let B(i)
k be the ith element of Bk. Suppose B0 is chosen such that ω1 ≤ B

(i)
0 ≤ ω2; i =

1, . . . , n, where ω1 and ω2 are some positive constants.
Case 1. If (2.18) is satisfied, we have

B1 =

⎧

⎪⎨

⎪⎩

η0B0; if rT0 w0 < rT0 B0r0

B0 +
rT0 w0 − rT0 B0rk

tr
(

F2
0

) F0; if rT0 w0 ≥ rT0 B0r0.
(3.9)
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By (2.18) and the definition of ηk, one can obtain

ε1

ω2
≤ η0 ≤ 1. (3.10)

Thus, if rT0 w0 < rT0 B0r0, then B1 = η0B0 satisfies

ε1ω1

ω2
≤ B

(i)
1 ≤ ω2. (3.11)

On the other hand, if rT0 w0 ≥ rT0 B0r0, then

B
(i)
1 = B

(i)
0 +

(

rT0 w0 − rT0 B0r0
)

tr
(

F2
0

)

(

r
(i)
0

)2
, (3.12)

where r
(i)
0 is the ith component of r0. Letting (r(M)

0 ) be the largest component (in magnitude)
of r0, that is, (r(i)0 )2 ≤ (r(M)

0 )2; for all i, then it follows that ‖r0‖2 ≤ n(r(M)
0 )2, and the property

of rT0 w0 ≥ rT0 B0r0, (3.12) becomes

ω1 ≤ B
(i)
0 ≤ B

(i)
1 ≤ ω2 +

n(ε2 −ω1)
tr
(

F2
0

)

(

r
(M)
0

)4 ≤ ω2 + n(ε2 −ω1). (3.13)

Hence, B(i)
1 is bounded above and below, for all i in both occasions.

Case 2. If (2.18) is violated, then the updating formula for B1 becomes

B
(i)
1 = η0B

(i)
0 +

(

sT0y0 − η0s
T
0B0s0

)

tr
(

E2
0

)

(

s
(i)
0

)2
, (3.14)

where s
(i)
0 is the ith component of s0, E0 = diag((s(1)0 )2, (s(2)0 )2, . . . , (s(n)0 )2), and η0 = min(1,

sT0y0/s
T
0B0s0).
Because η0 ≤ 1 also implies that sT0y0 − sT0B0s0 ≥ 0, then this fact, together with the

convexity property (3.8), and the definition of η give

min
(

1,
m

ω2

)

ω1 ≤ η0B
(i)
0 ≤ B

(i)
1 ≤ B

(i)
0 +

(M −ω1)‖s0‖2

tr
(

E2
0

)

(

s
(i)
0

)2
. (3.15)

Using the similar argument as above, that is, by letting s
(M)
0 be the largest component (in mag-

nitude) of s0, then it follows that

min
(

1,
m

ω2

)

ω1 ≤ B
(i)
1 ≤ ω2 + n(M −ω1). (3.16)
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Figure 1: Performance profile based on Iteration for all problems.
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Figure 2: Performance profile based on function call.

Hence, in both cases, B(i)
1 is bounded above and below, by some positive constants.

Since the upper and lower bound for B(i)
1 is, respectively, independent to k, we can proceed

by using induction to show that B(i)
k

is bounded, for all finite k.

4. Numerical Results

In this section, we examine the practical performance of our proposed algorithm in com-
parison with the BB method and standard one-step diagonal gradient-type method (MD).
The new algorithms are referred to as AMD1 and AMD2 when M = I and M = Bk are
used, respectively. For all methods we employ Armijo line search [11] where σ = 0.9. All
experiments in this paper are implemented on a PC with Core Duo CPU using Matlab 7.0.
For each run, the termination condition is that ‖gk‖ ≤ 10−4. All attempts to solve the test
problems were limited to a maximum of 1000 iterations. The test problems are chosen from
Andrei [13] and Moré et al. [14] collections. The detailed test problem is summarized in
Table 1. Our experiments are performed on a set of 36 nonlinear unconstrained problems,
and the problems vary in size from n = 10 to 10000 variables. Figures 1, 2, and 3 present the
Dolan and Moré [15] performance profile for all algorithms subject to the iteration, function
call, and CPU time.
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Table 1: Test problem and its dimension.

Problem Dimension References
Extended Trigonometric, Penalty 1, Penalty 2 10, . . . , 10000 Moré et al. [14]
Quadratic QF2, Diagonal 4, Diagonal 5, Generalized Tridiagonal 1
Generalized Rosenbrock, Generalized PSC1, Extended Himmelblau
Extended Three Exponential Terms, Extended Block Diagonal BD1
Extended PSC1, Raydan 2, Extended Tridiagonal 2, Extended Powell
Extended Freudenstein and Roth, Extended Rosenbrock 10, . . . , 10000 Andrei [13]
Extended Beale, Broyden Tridiagonal, Quadratic Diagonal Perturbed 10, . . . , 1000 Moré et al. [14]
Perturbed Quadratic, Quadratic QF1, Diagonal 1, Diagonal 2, Hager
Diagonal 3, Generalized Tridiagonal 2, Almost perturbed Quadratic
Tridiagonal perturbed quadratic, Full Hessian FH1, Full Hessian FH2
Raydan 1, EG2, Extended White and Holst 10, . . . , 1000 Andrei [13]

2 4 6 8 10 12 14
0

1
CPU time

BBMDAMD1 AMD20.2

0.4

0.6

0.8

p
(r

≤
τ
)

Figure 3: Performance profile based on CPU time per iteration.

From Figure 1, we see that AMD2 method is the top performer, being more successful
than other methods in the number of iteration. Figure 2 shows that AMD2 method requires
the fewest function calls. From Figure 3, we observe that the AMD2 method is faster than MD
and AMD1 methods and needs reasonable time to solve large-scale problems when compared
to the BB method. At each iteration, the proposed method does not require more storage
than classic diagonal updating methods. Moreover, a higher-order accuracy in approximating
the Hessian matrix of the objective function makes AMD method need less iterations and
less function evaluation. The numerical results by the tests reported in Figures 1, 2, and 3
demonstrate clearly the new method AMD2 shows significant improvements, when com-
pared with BB, MD, and AMD1. Generally, M = Bk performs better than M = I. It is most
probably due to the fact that Bk is a better Hessian approximation than the identity matrix I.

5. Conclusion

In this paper, we propose a new two-step diagonal gradient method as view of accumulative
approach for unconstrained optimization. The new parameterization for multistep diago-
nal gradient-type method is developed via employing accumulative approach. The new
technique is devised for interpolating curves which are the basis of multistep approach.
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Numerical results show that the proposed method is suitable to solve large-scale uncon-
strained optimization problems and more stable than other similar methods in practical com-
putation. The improvement that our proposed methods bring does come at a complexity cost
of O(n) while others are about O(n2) [9, 10].
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