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We generalize the Hausdorff fuzzy metric in the sense of Rodriguez-Lépez and Romaguera, and
we introduce a new M,-fuzzy metric, where M,-fuzzy metric can be thought of as the degree of
nearness between two fuzzy sets with respect to any positive real number. Moreover, under ¢-con-
traction condition, in the fuzzy metric space, we give some common fixed point theorems for fuzzy

mappings.

1. Introduction

The concept of fuzzy sets was introduced initially by Zadeh [1] in 1965. After that, to use this
concept in topology and analysis, many authors have expansively developed the theory of
fuzzy sets and application [2, 3]. In the theory of fuzzy topological spaces, one of the main
problems is to obtain an appropriate and consistent notion of fuzzy metric space. This pro-
blem was investigated by many authors [4-13] from different points of view. George and
Veeramani’s fuzzy metric space [6] has been widely accepted as an appropriate notion of met-
ric fuzziness in the sense that it provides rich topological structures which can be obtained, in
many cases, from classical theorems. Further, it is necessary to mention that this fuzzy metric
space has very important application in studying fixed point theorems for contraction-type
mappings [7, 14-16]. Besides that, a number of metrics are used on subspaces of fuzzy sets.
For example, the sendograph metric [17-19] and the d,-metric for fuzzy sets [20-25] induced
by the Hausdorff-Pompeiu metric have been studied most frequently, where d,,-metric is an
ordinary metric between two fuzzy sets. Combining fuzzy metric (in the sense of George and
Veeramani) and Hausdorff-Pompeiu metric, Rodriguez-Lépezand Romaguera [26] construct
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a Hausdorff fuzzy metric, where Hausdorff fuzzy metric can be thought of as the degree of
nearness between two crisp nonempty compact sets with respect to any positive real number.

In this present investigation, considering the Hausdorff-Pompeiu metric and theories
on fuzzy metric spaces (in the sense of George and Veeramani) together, we study the degree
of nearness between two fuzzy sets as a natural generalization of the degree of nearness bet-
ween two crisp sets, in turn, it helps in studying new problems in fuzzy topology. Based on
the Hausdorff fuzzy metric Hy;, we introduce a suitable notion for the M, -fuzzy metric on
the fuzzy sets whose A-cut are nonempty compact for each A € [0, 1]. In particular, we explore
several properties of M, -fuzzy metric. Then, under ¢-contraction condition, we give some
common fixed point theorems in the fuzzy metric space on fuzzy sets.

2. Preliminaries

According to [27], a binary operation * : [0,1] x [0,1] — [0, 1] is called a continuous t-norm
if ([0,1], %) is an Abelian topological semigroups with unit 1 such that a * b < ¢ * d whenever
a<candb<dforalla,b,c,de[0,1].

Definition 2.1 (see [6]). The 3-tuple (X, M, %) is said to be a fuzzy metric space if X is an arbi-
trary set, x is a continuous f-norm, and M is a fuzzy set on X* x (0, oo) satisfying the following
conditions, forall x,y,z € X, t,5 > 0:
(i) M(x,y,t) >0;

(ii) M(x,y,t) = 1if and only if x = y;

(iii) M(x,y,t) = M(y, x,1);

(iv) M(x,z,t +5) > M(x,y,t) * M(z,y,5);

(v) M(x,y,-) : (0,00) — [0, 1] is continuous.

If (X, M, *) is a fuzzy metric space, it will be said that (M, *) is a fuzzy metric on X.

A simply but useful fact [7] is that M(x,y,—) is nondecreasing for all x,y € X. Let
(X, d) be a metric space. Denote by a - b the usual multiplication for all a,b € [0,1], and let
M, be the fuzzy set defined on X x X x (0, o0) by

Ma(x,y,t) = (2.1)

t
t+d(x,y)'

Then, (X, My, -) is a fuzzy metric space, and (My, -) is called the standard fuzzy metric in-
duced by 4 [8].

George and Veeramani [6] proved that every fuzzy metric (M, *) on X generates a
topology 7am on X which has a base the family of open sets of the form:

{Bum(x,e,t):x€eX, 0<e<1, t>0}, (2.2)

where Byp(x,e,t) = {y € X : M(x,y,t) >1—-¢} forall ¢ € (0,1) and t > 0. They proved that
(X, M) is a Hausdorff first countable topological space. Moreover, if (X, d) is a metric space,
then the topology generated by d coincides with the topology Tar, generated by the induced
fuzzy metric (My, *) (see [8]).
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Lemma 2.2 (see [6]). Let (X, M, %) be a fuzzy metric space and let T be the topology induced by the
fuzzy metric. Then, for a sequence {x,} e in X, x, — x if and only if M (x,, x,t) — lasn — oo
forallt > 0.

Definition 2.3 (see [6]). A sequence {x,},cy In a fuzzy metric space (X, M, ) is called a
Cauchy sequence if and only if for each 1 > € > 0, t > 0, there exists ny € N such that
M (xy, Xm,t) > 1 —¢ forall n,m > ng. A fuzzy metric space is said to be complete if and only
if every Cauchy sequence is convergent.

Definition 2.4 (see [13]). Let A be a nonempty subset of a fuzzy metric space (X, M, ). For
acXandt>0, M(a A t) =sup{M(a,y,t)|yeA t>0}

Lemma 2.5 (see [28]). Let G be a set and let {G, : a € [0, 1]} be a family of subsets of G such that

(1) Go = G,’
(2) a < pimplies Gg C Gy,

B)a; <ax <--+, limy, oty = a implies Gy = (21 Ga,-

Then, the function ¢ : G — [0, 1] defined by ¢(x) = sup{a € [0,1] : x € G} has the property that
{x € G:p(x)>a) =G, forevery a € [0,1].

Next, we recall some pertinent concepts on Hausdorff fuzzy metric. Denote by Cy(X)
the set of nonempty closed and bounded subsets of a metric space (X, d). It is well known
(see, e.g., [29]) that the function Hy defined on Cy(X) x Co(X) by

H,(A,B) = max{sup d(a,B),supd(A, b)}, (2.3)

acA beB

for all A,B € Cy(X), is a metric on Cy(X) called the Hausdorff-Pompeiu metric. In [30], it is
proved that the metric (C(X), H) is complete provided X is complete.

Let C(X) be the set of all nonempty compact subsets of a fuzzy metric space (X, M, *),
A,B e C(X),t>0,according to [26], the Hausdorff fuzzy metric Has on C(X) x C(X) x (0, o0)
is defined as

Hpy (A, B, t) = mm{;g/{ M(a, B, t)'irelng(A' b,t) } (2.4)

=min{p(A, B,t),p(B, A1)},

where p(A, B, t) = inf,ca M(a, B, t), and (Hp, *) is a fuzzy metric on C(X). It is shown that
p(A,B,t) =1lifand only if A C B, and Hm(A, B, t) = 1if and only if A = B.

Lemma 2.6 (see [26]). Let (X, M, *) be a fuzzy metric space. Then, (C(X), Hp, *) is complete if and
only if (X, M, *) is complete.

Lemma 2.7 (see [26]). Let (X, d) be a metric space. Then, the Hausdorff fuzzy metric (Hpy,, ) of the
standard fuzzy metric (Mg, -) coincides with standard fuzzy metric (Mp,,-) of the Hausdorff metric
Hy on C(X).
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3. On M -Fuzzy Metric

Let (X, M, *) be a fuzzy metric space. Denote by C(X) the totality of fuzzy sets:
u:X—[0,1] =1, (3.1)
which satisfy that, for each A € I, the A-cut of y,
[u], = {x € X pu(x) 24}, (32)

is nonempty compact in X.

Definition 3.1. Let (X, M, *) be a fuzzy metric space. The M-fuzzy metric between two fuzzy
sets is induced by the Hausdorff fuzzy metric Hy, as

Mo (1, p2, t) = min{pes (1, p2, t), pos (2, p1, 1) }, (3.3)
where py, up € C(X), t>0,and

per (b1, 2, t) = inf p([] ), [pa] /) (3.4)

<A<1

is the fuzzy separation of y; from pi,.
Lemma 3.2. Let (X, M, %) be a fuzzy metric space, p1, pa, p3 € C(X), s,t > 0. Then one has

1
@

Moo (pa, 2, ) € (0,1],

M (p1, pa, 1) = Moo (po, pia, 1),

(3) poo(p1, pr2, t) = VLifand only if uy C po,

(4) Mo, (1, po, t) = 1if and only if py = po,

(5) if p1 C po, then pos (1, ps, t+8) 2 Moo (p2, i3, 1),
(6) Poo(p1, p3, t +8) > Moy (p1, po, 1) * pos (M2, 3, 8),
(7) Moo (p1, pia t + ) 2 Moo (p1, i, £) ¥ Moo (2, i3, 5),

)
)
)
)
)
)
)
(8) Moo (p1, p2,—) : (0,00) — [0,1] is continuous.

M
M
Proof. For (1), by the definition of the A-cut [u1],, for every A € I, [p1], is nonempty compact
in X. By the theorem of nested intervals, there exists a point ag in [y1], for every A € I,
likewise, there exists a points by in [u;], for every A € I. Thus, M, (y1, p2, t) > 0. Moreover, it
is clear that A = B & Hpy(A,B,t) =1 & My, (p1, o, t) = 1.

For (2), it is clear that Mo, (p1, 2, 1) = Mo (2, p1, t).

For (3), since po (p1, H2, t) = 1if and only if p([p1],, [p2],,t) = 1 forall A € I, which im-
plies [p1], C [u2], for all X € I, we have that po, (p1, p2, t) = 1 if and only if pg C po.

For (4), it follows from (3).
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For (5), for every A € I, any x € [u1],, v € [u2], and z € [pu3],, by the proof of
Theorem 1 in [26], we have

M(x,z,t+5s) > M(x,y,t) * M(y,z,5) (3.5)

with all x, v, z € X, which implies
M(x, [ps] t+5) 2 M(x,y,t) * M(y, [ps] ) (3.6)

for all x € [p1], and all y € [up],. Since u1 C pp, then p([p1l],, [H2],,s) = 1. By (iv) of
Definition 2.1 and the arbitrariness of x and y, we have

(bl ]yt +5) = inf M(x, [us], £ +5)

> inf M(x, 1], inf M(y, [us] ¢t
2 Inf (%, [pa] S)*yéﬁlh (v, [ms] 1)

(3.7)

p([mly (2] s) * p([p2] ) [1e] ) 1)
= p([pe] A [.”3]1' t)
> Hy ([p2] ), [1s] o t),

which implies

inf p([] v [us] ot +5) 2 inf Hu (o] [s] 1o 1)- (338)

0<A<1

Consequently, po, (1, p3, t +8) > Mo (p2, i3, ).
For (6), for every A € I, by the proof of (5) and (iv) of Definition 2.1, we have
Jf p(lu]y [us] ot +5) 2 inf {p([m]y [pa] o) * p([k2] s [s] 0 5) )
> inf {Hu([m]y, (k2] ) * p([k2] ) [13])09) )

3RS

(3.9)
Consequently, po, (p1, i3, £+ 5) = Moo (pa, P, £) * poo (2, 3, 5).

For (7), for every A € I, by the proof of (6), we have
inf p([ii] [a] ot +8) 2 inf {p([pa] s [w2] 1) * p([p2] 1 [15] 108}

- > { inf p([p],, [p2],, f)} * { inf p([p2] ), [u3] )

0<A<1 0<A<1

}. (3.10)

Similarly, it can be shown that

inf p(ll,, [l t+9) > { inf (el Bl o) o {ind plal L]0 . @)

0<A<1 0<A<1

HenCe, MOO (/’lll H3, t+ S) > Moo (#11 H2, t) * MOO (#2/ H3, S)‘
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For (8), by the continuity on (0, c0) of the function t — Hy(A, B, t), it is clear that
Mo (p1, H2,-) : (0,00) — [0, 1] is continuous. O

Theorem 3.3. Let (X, M, *) be a fuzzy metric space. Then, (C(X), M, *) is a fuzzy metric space,
where M, is a fuzzy set on the C(X) x C(X) x (0, +00).

Proof. 1t is easily proved by Lemma 3.2. O

Example 3.4. Let d be the Euclidean metric on R, and let A = [aj, a»] and let B = [b1, by] be
two compact intervals. Then, H;(A, B) = max{|a; — b1], |ax — by|}. Let (R, My, *) be a fuzzy
metric space, where a * b the usual multiplication for all a,b € [0,1], and M, is defined on
R xR x (0,0) by

M(x,y,t) = (3.12)

t
t+d(x,y)

Denote by C(R) the totality of fuzzy sets p : R — [0, 1] which satisfy that for each A € I, the
A-cut of u[u], = {x € R: p(x) > 1} is a nonempty compact interval. For any A-cuts of fuzzy
sets p1, po € C(R) and for all £ > 0, by a simple calculation, we have

t
HM( Hif,, 2 ,t) = . (313)
N (TN
So by Definition 3.1, we get
M, (pr, po, t) = inf ! . (3.14)

i1t + Hy( [,Hl],v [P‘Z]x)

4. Properties of the M -Fuzzy Metric

Definition 4.1. Let (C(X), M, *) be a fuzzy metric space. For t € (0, +o0), define B(y, r, t) with
center a fuzzy set u € C(X) and radiusr,0 <r <1,t >0 as

B(u,r,t) ={yeCX) | Mo (, y,t) >1-r1}. (4.1)

Proposition 4.2. Every B(u, r,t) is an open set.
Proof. It is identical with the proof in [6]. O

Proposition 4.3. Let (C(X), M, *) be a fuzzy metric space. Define Tar, = {# C C(X) | p € A if
and only if there exist t >0 and r, 0 <r <1 such that B(u,r,t) C H4}.
Then, Tar,, is a topology on C(X).

Proof. It is identical with the proof in [6]. O

Definition 4.4. A sequence {y,} in a fuzzy metric space (C(X), My, *) is a Cauchy sequence
if and only if for each € > 0, t > 0, there exists 1y € N such that M, (pn, pim, t) > 1 — € for all
n,m 2> ng.
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Lemma 4.5. Let (C(X), Mo, *) be a fuzzy metric space on fuzzy metric My, and let T be the topology
induced by the fuzzy metric M. Then, for a sequence {u,} in C(X), p, — u if and only if
Mo (p, pin,t) — lasn — co.

Proof. 1t is identical with the proof of Theorem 3.11 in [6]. O
Theorem 4.6. The fuzzy metric space (C(X), M, *) is complete provided (X, M, ) is complete.

Proof. Let (X, M, *) be a complete fuzzy metric space and let a sequence {y,,n > 1} be a
Cauchy sequence in C(X). Consider a fixed 0 < A < 1. Then, {[p,],,n > 1} is a Cauchy sequ-
ence in (C(X), Hp, *), where C(X) denotes all nonempty compact subsets of (X, M, *).
Since (C(X), Hp, *) is complete by Lemma 2.6, it follows that [u,], — py € C(X).
Actually, from the definition of M, and the continuity of Hyy, it is easy to see that [p,], —
Uy, uniformly in A € [0, 1].
Now, consider the family {p, : A € [0,1]}, where py = X. Take A < 3, we have

p(pp past) 2 p(#ﬂ/ [pn] 5 é) * p( [1n] g [1n] 1 é) * p< IZazy é) (4.2)

Since [yn]ﬂ C [unl,, it follows that p([‘un]ﬂ, [#n]y, t/3) = 1. Thus, for each 0 < € < 1, p(ug,

pt) 2 ppp, [pnlp t/3) * p([pnly, pa, t/3) if n is large enough. Hence, p(pg, py, t) = 1, and by
Lemma 3.2, we have pg C ;.

Now, take A, T and lim,,_, A, = A. We have to show that yy = N;_; py,. It is clear that
Uy C ﬂmn- (%)

On the other hand, we have

P<ﬁmnr#mf> 2P<ﬁ#wi[ﬂjhnré> *P<ﬁ[ﬂj]w [ﬂjhé) *P<[P‘f]yﬂlr§>/

n=1 n=1

(4.3)

for fixed j. However,

p(ﬁ ], Tl §> -1 (@)

n=1

Consequently, for every 0 < € < 1, there exists 0 < gy < € < 1 such that (1-¢¢)*(1—&o)*(1-&p) >
1 - . For given ¢, since [y;], — p, there exists j,, such that

p<ﬂmn,m, t> > p<ﬂmn, kil %) * (1~ &), (4.5)
n=1

n=1 n=1
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for j > j.,. Now,

2 2 t 2 t t X t
Pl NIl 3 ) 2e( Nt g *P(Mw[ﬂjh,gg)*l) il Nl 5 )
n=1 n=1 n=1 pn:l

(4.6)

for any p > 1. Since ;21 p1, C p1,, We obtain

(ﬂ/‘)‘n'o Hils, > ZP<P‘%' [Hi]lp’é) *P<[P‘J )‘P’Q Zim /‘>- (4.7)

Now, p(pa,, [pjly,, t/2) > 1 ¢ for j > jo and all £ > 0. Note that (since the convergence
[#jly — pa is uniform in 1) jo does not depend on p. Since {[y;], , p = 1} decreases to
Mzt (11, if follows that Py, Nzt (114, t/2) > 1~ & for some po (depending on j).
Thus, p(NyZ1 Ha,r Nz (114, £/3) > (1= &) * (1 - £9), if j is large.
Finally, by taking j large enough, we obtain

p<ﬂmn,m, t> >(1—g)*(1—gy)*(1—g)>1-¢, (4.8)
n=1
that is,

(i, € p. ()

n=1

From (4.3) and (4.9), it yields N, #1, = pa. Thus, Lemma 2.5 is applicable and there exists
u € C(X) for every A € [0,1] such that [p,], — py. It remains to show that y, — pin (C(X),
M, *).

Let £ > 0. Then, since {p,} is a Cauchy sequence, there exists n, such that n, m > n, im-
plies Moo (ptn, i, t) > 1 — €.

Let n(> n.) be fixed. Then,

H ([pn] [ 1) = Jim Hoa ([l [pen] o 1) 2 Tim inf Ho ([pa] (] 1)

m— o0 <A<
(4.9)
= lim M, (Un, i, t) > 1 - €.
Thus, p, — pin the M,-fuzzy metric. The proof is completed. O

Lemma 4.7. Let (X, M, %) be a compact fuzzy metric space and compact subsets A, B € C(X). Then,
foreach x € Aand t > 0, there exists a y € B such that M(x,y,t) > Hy(A, B, t).
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Proof. Suppose there exists a xo € A such that M(xo,y,t) < Hu(A,B,t) for any y € B and
t > 0. Then,

sup M (xo,y,t) < Hym(A, B, t), (4.10)
y€EB
that is,
sup M(xo,y,t) <min{ inf sup M (x, y,t), inf sup M(x, y,t) ¢. (4.11)
yeB x€B yeA X€EA yeB
So,
sup M (xo, y,t) < inf sup M(x,y,t). 4.12)
y€EB x€A y€EB ’
This is a contradiction with x € A. O

Lemma 4.8. Let (X, M, %) be a compact fuzzy metric space, t > 0 and A, B € C(X). Then, for any
compact set A1 C A, there exists a compact set By C B such that Hy (A1, B1,t) > Hu(A, B, t).

Proof. Let C = {y : there exists a x € A; such that M(x,y,t) > Hym(A, B, t)} and let By = C(\B.
Forany x € A} C A, t >0, by Lemma 4.7, there exists a y € B such that

M(x,y,t) > Hu(A,B,1). (4.13)

Thus, By # 0, moreover, B is compact since it is closed in X and B; C B.
Now, for any x € Ay, t > 0, there exists a y € By such that

M(x,y,t) > Hu(A,B,t). (4.14)
Thus, we have M(x, By,t) > Hp1(A, B, t), which implies that

P(Alr Blrt) = ;g{ M(xr Bl/t) 2 HM(A/ B, t) (415)

Similarly, it can be shown that p(A;1, B1,t) > Hp (A, B, t).
Hence, Hp(A1, By, t) > Hpy (A, B, t). This completes the proof. O

Theorem 4.9. Let (X, M, x) be a compact fuzzy metric space and p1, pp € C(X), t > 0. Then, for any
us € C(X) satisfying ps C p, there exists a py € C(X) such that py C pp and

Moo (#3/ Ha, t) > Moo (,ulr H2, t) (416)
Proof. Since p1, pz, and p3 are normal, we have @ # [ps], C [p1], and @ # [p2], forall X € I. Let

Cy = {y : there exists a x € [p3], such that M(x,y,t) > Mo, (1, 2, 1)}, (4.17)
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and let By = Cy ([u2],. For any x € [u3], C [p1],, by Lemma 4.7, there exists a y € [u»], such
that

M(x,y,t) > Hu([iu] , [p2] o t) > Moo (p1, 2, ). (4.18)

Thus, B, is nonempty compact in X, moreover, By C Byif 0 <y <1 < 1.
From the proof of Lemma 4.8, we have

Hy([s]  Ba ) 2 Mo (o ). (219)

By Lemma 3.1 in [28], there exists a fuzzy set p4 with the property that [p4], = By for A € I
Since B, are nonempty compact for all A € I, we have py € C(X). Consequently,

M, (3, pa, t) > Moo (p1, pio, £). (4.20)

This completes the proof. O

Definition 4.10 (see [24]). Let X, Y be any fuzzy metric space. ¥ is said to be a fuzzy mapping
if and only if ¥ is a mapping from the space C(X) into C(Y), that is, ¥(u) € C(Y) for each
u € C(X).

5. Common Fixed Point Theorems in the Fuzzy Metric Space on
Fuzzy Sets
Theorem 5.1. Let (X, M, *) be a compact fuzzy metric space and let {F;}72, be a sequence of fuzzy

self-mappings of C(X). Let ¢ : [0,1] — [0,1] be a nondecreasing function satisfying the following
condition: ¢ is continuous from the left and

P(h) * g*(h) *---x¢"(h) — 1 asn— oo, Yh€ (0,1], (5.1)

where ¢ denote the nth iterative function of ¢. Suppose that for each p, p> € C(X), and for arbitrary
positive integers iand j, i#j, t >0,

M (Fi ), ), ) 2 (i8] Moo o ), o Fs ) 20), o, 1), 26),

%[poo (2, Fi(p1),4t) + poo (1, Fj (p2),4t)] })/
(5.2)

then there exists p, € C(X) such that p. C Fi(p) foralli € Z,.

Proof. Let pg € C(X) and p1 € F1(uo). By Theorem 4.9, for any t > 0, there exists y, € C(X)
such that py € F2(p1) and

Moo (pa, po, t) = Moy (Fi(po), F2(p1), ). (5.3)
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Again by Theorem 4.9, for any t > 0, we can find p3 € C(X) such that 3 C ¥3(u2) and
M, (2, p3, 1) > Moo (Fa2 (1), Fa(p2), 1). (5.4)
By induction, we produce a sequence {,} of points of C(X) such that

Hn+1 g?nﬂ(#n), n=0,12,...;

(5.5)
Mo, (,un/ Hn+1, t) > M, (?n (,un—l)r Furl (/fln)/ t) .

Now, we prove that {y,} is a Cauchy sequence in C(X). In fact, for arbitrary positive integer
n, by the inequality (5.2), Lemma 3.2, and the formula (5.5), we have

M, (ﬂn/ Hn+1, t) > M, (gn (ﬂn—1>/ Fri1 (,un)/ t)

> ¢(mf{Moo (s pinr ), pon ity Fo () 26), o (s Frt (42, 28),
1
3 17, Bt (), 40) + e Foin0), 401 ),
2 ¢ <lnf{ MOO (I’ln—lr l/lﬂ/ t)/ Moo (I’lnfll ,un/ t)/
1
Moo (,un/ Hn+1, Zt)/ E [Moo (,un—lr Hn+1, Zt) + 1] } >/
> (i) <11’1f{ M, (/’tn—lr Hn, i’), M, (#nr Hn+1, t),

1
Moo (,unl Hn+l, Zt)/ E [Moo (,un—l/ Hn, t) +1x Moo (l’lnl Hn+l, t) + 1] })/
(5.6)

where p, C Fn(pn-1) implies po (Un, Fn(pn-1),2t) = 1, by (3) of Lemma 3.2. In addition, it is
easy to get that ¢(h) > h for all h € (0,1). In fact, suppose that there exists some t; € (0,1)
such that ¢(hy) < hy. Since ¢ is nondecreasing, we have

¢" (ho) < ¢" ' (ho) <--- < p(ho) < ho. (5.7)

Since ¢p(h) * ¢p*(h) * ---* ¢"(h) — lasn — oo, for all h € (0,1), then we have ¢"(hy) — 1

as n — oo. From the inequality (5.7), we have 1 < hy. This is a contradiction which implies

¢(h) > hforall h € (0,1). We can prove that Mo, (pn-1, fin,t) < Moo (Un, pin+1,t). In fact, if
Moo (Un-1, pin, t) > Moo (Hn, Pns1, t), then from the inequality (5.6), we get

M, (,un/ Hn+1, t) 2 ¢(Mm (,un/ Hn+1, t)) > M, (,unr Hn+1, t)/ (5.8)

which is a contradiction. Thus, from the inequality (5.6), we have

Mo, (fn, i1, t) 2 (Moo (nt, pinst)) 2 -+ 2 " (Moo (po, pia, 1) ). (5.9)
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Furthermore, for arbitrary positive integers m and k, we have
1> M (//lk/ Hi+m, t)

t t t
> Moo <,uk/ Hi+1, a) * Moo (I’lk+1l Hi+2, E) E U 3 Moo <,uk+m—lr Hk+ms a)

(o)) (e ) o (o )

(5.10)

and ¢p(h) * ¢*(h) x--- = p"(h) — lasn — oo, forall h € (0,1), it follows that

¢~ <Moo <#0r#1/ é)) * <Moo <#o,ﬂ1, %)) xR <Moo <#0,#1,£>> (5.11)

is convergent, which implies that {u,} is a Cauchy sequence in C(X). Since X is a compact
fuzzy metric space, it follows X is complete. By Theorem 4.6, C(X) is complete. Let y1,, — .
Next, we show that p, C Fi(p.) for all i € Z.. In fact, for arbitrary positive integers i and j,
i# j, by Theorem 4.9, we have

Poo (fas Fi(e) 1)
t 3t
> Moo <#*/ﬂjr Z) * Poo (ﬂ]r ?i (I’l*)/ Z)
t t
> Mo (et ) Mo (), Fi1), )
t . t
> Mo, <#*,/4;, ;L) * ¢<mf{Moo <#j—1,/4*, 5),;)00 (Hj-1, Fi(Hj-1) 1), Poo (ps Fi () ),
1
3 e i 12),20) sy, B, 20)] )
t . t t
> M, <#*rﬂjr ;) * ¢<mf{ M, <P‘]’-1r#*r 5),Moo <P‘]’-1rﬂjr 5)/% (per Fi(pe) 1),

[Meo (per 1y £) + Moo (s ptj1, ) * poo (e, Fi(pn)  £)] })
(5.12)

N

where p; C Fj(pj-1) implies po, (u), Fj(pj-1),t) = 1. Letting n — oo, Mo, (pn, pts, t) = 1, and
using the left continuity of ¢, we have

Poo (fes Fi(pe) 1 £) 2 P(poo (pa, Fi(ia) 1)), (5.13)

which implies pe, (ps, Fi(ps), 1) = 1. Hence, by Lemma 3.2, it follows that p. C Fi(p.). Then,
the proof is completed. O
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Theorem 5.2. Let (X, M, *) be a compact fuzzy metric space and let {F;}i2; be a sequence of fuzzy
self-mappings of C(X). Suppose that for each p1, o € C(X), and for arbitrary positive integers i and
j,i#j,t>0,

Moo (Fi(p1), Fi(2),£) = (Moo (p1, 2, 1), poo (1, Fi(p1), 2t),

(5.14)
Poo (2, Fi(12),2t), p (1, Fi(H2),48), poo (2, Fi(p1), ),

where ¢(hy, hy, h3, hy, hs) @ (0, 1]5 — [0, 1] is nondecreasing and continuous from the left for each
variable. Denote y(h) = ¢(h, h, h, a,b), where (a,b) € {(h=h,1),(1,h*h)}.If

y(h) *y*(h) *---%y"(h) — 1 asn— oo, Yh € (0,1], (5.15)
where y™ denote the nth iterative function of y, then there exists p, € C(X) such that p, C Fi(u.) for
allie Z,.

Proof. Let pg € C(X) and p1 € F1(Ho). By Theorem 4.9, for any t > 0, there exists pu, € C(X)
such that pp € F2(p1) and

Mo (p1, 2, ) 2 Moo (F1(po), F2(p1), t). (5.16)
Again by Theorem 4.9, for any t > 0, we can find p3 € C(X) such that 3 C ¥3(u2) and

Moo (p2, p3, t) 2 Moo (F2(p11), F3 (p2), ). (5.17)
By induction, we produce a sequence {,} of points of C(X) such that

Hn1 C ?n+1(,un)/ n=012,...;

(5.18)
Moo (,un/ Hn+1, t) > Moo (?n (,un—l)/ ?nﬂ (ﬂn)/ t)-

Now, we prove that {yu,} is a Cauchy sequence in C(X). In fact, for arbitrary positive integer
n, by the inequality (5.14), Lemma 3.2, and the formula (5.18), we have

Moo (ptn, pinia t) > Moo (Fn(pin-1), Fur (Hn), t)
> ¢(Meo (Hn-1, pins t), Poo (Hn-1, Fn(pin-1), 2t),
Poo (b, Fre1 (), 28), P oo (Hn-t, Frt (Hn) 1 48), Poo (Mo Fin (Hn1) 1))
> ¢ (Moo (Hn-1, pins t), Moo (pin-1, pins t), Moo (pins pns1, t), Moo (Hn-1, i, 2£), 1)
> ¢ (Mes (fn-1, pinst), Moy (Hn1, pins 1),
Moo (i, pinsr,t), M (fn-1, n, t) ¥ Moo (fn, pins1,t),1),
(5.19)

where p, C Fu(pn-1) implies pos (pn, Fn(fn-1),2t) = 1 by (3) in Lemma 3.2 Likewise, we
have y(h) > hforall h € (0,1), t > 0. If Mo (pn-1, fn,t) > Moo (ln, Pn+1,t), then from the
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inequality (5.19), we obtain

MOO (ﬂnl I’ln+1/ t) Z Y(Moo (I’ln/ ,urlJrll t)) > Moo (,un/ l’ln+1/ t)/ (520)

which is a contradiction. Thus, from the inequality (5.19), we have

Moo (pn, pins1, 1) 27 (Moo (Bn1, in, £)) = -+ 2 ¥ (Moo (po, pi1, 1) ). (5.21)

Furthermore, for arbitrary positive integers m and k, we have

Mo (pns pinst t) 2 (Moo (pn-1, pins t), Moo (Hn-1, pins ),
Moo (pn, pns1,t), M (Hn-1, in, t) ¥ Moo (fn, pins1,t),1)
> (Meo (pn-1, pin, ), Moo (pin-1, pin, 1),
Moo (ptn-1, pnst), M_ (n-1, in, t) ¥ Moo (fn-1, pin, ), 1)
=¥ (Moo (Hn-1, fin 1)),
Moo (fn, pns1, ) 2 Y (Moo (ot pins £)) 2 -+ 2 ¥ (Moo (po, pia, ).

(5.22)

Furthermore, for arbitrary positive integers m and k, we have

1> Mg (,uk/ Hic+m, t)

t t t
> M, <ﬂk,ﬂk+1, E) * M, (,uk+1,,uk+z, E) %k Mo, (ykmq,ﬂkmz E)

t t t
> Yk <Moo <,u01/’tll E)) * Yk+1 <Moo (”0/#1/ a)) ook Yk+m_1 <Moo <I/l()/ Hi, E))

(5.23)

Since ¢(h) * ¢p?(h) * ---x ¢"(h) — lasn — oo, forall h € (0,1), it follows that

t t t
y* (Moo (/40/#1, Z)) x Yk <Moo (#o,m, E)) ST Gk (Moo (#0, H1, E)) (5.24)

is convergent, this implies that {, } is a Cauchy sequence in C(X). Since X is a compact fuzzy
metric space, it follows that X is complete. By Theorem 4.6, C(X) is complete. Let y,, — p..
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Now, we show that p, C Fi(u,) for alli € Z,. In fact, for arbitrary positive integers i and j,
i# j, by Theorem 4.9, we have

Peo (e, Fi(ps) 1)
t 3t
> M, <I/l*,//lj/ 71) * oo (/4;, Fi(p.), Z)
t t
> Moo <,u*/,uj/ Z) * Moo <¢] (ﬂj—l)/ ?i (/’l*)/ E)
t t
> M., (/1*, Wi, Z) * ¢<Moo (/4;-—1,#*, §>/Poo (i1, Fi(#i1) 1),
Poo (e, Fi(e) 1), Poo (i1, Fi(e), 28), Peo (pins F (#j—1>ff)>
t t t
> Moc (,u*/,l'lj/ Z) * ¢<Moo (I’ljflr Hs, E)/Moo </’l]'*1/ﬂ]‘/ E)’poo (l’l*’ ?i (nu*)’t)’

t
Moo (-1, pras t) * oo (b, Fi(pe) 1 £), Moo (#wﬂfv 5))
(5.25)

where p; C Fi(pj-1) implies po, (1), Fj(pj-1),t) = 1. Letting n — oo, Mo, (pn, pts, t) = 1, and
using the left continuity of ¢, we have

Poo (s Fi(pa) 1) 2 P (1,1, poo (b Fi () 1) s P (s Fi(pe) 1), 1) 2 ¥ (Poo (e, Fi (#*)ftzgf%)

which implies po, (s, Fi(p«), t) = 1. Hence, by Lemma 3.2, it follows that p. C Fi(p.), then the
proof is completed. O

Now, we give an example to illustrate the validity of the results in fixed point theory.
For simplicity, we only exemplify Theorem 5.1, while the example may be similarly con-
structed for Theorem 5.2.

Example 5.3. Let (C(X), M, *) be a fuzzy metric space, where X = [-1,1], My, Hy, and M,
are the same as in Example 3.4. Then, (C(X), M, *) is a compact metric space.

Now, define ¢ : [0,1] — [0,1] as ¢(x) = v/x, and define {¥;}2; a sequence of fuzzy
self-mappings of C(X) as

Fi(u) = %/4, for any p € C(X). (5.27)

For arbitrary positive integers i and j, without loss of generality, suppose i < j. For
each pq, o € C(X), by a routine calculation, we have

1 1
Mo (Fi ), (), ) = Mar (00 550

1 i
= MOO <,ul/ F,u2/2 t>



16 Journal of Applied Mathematics
> M, (#1, U2, 2it>
2 (Moo (p1, 2, 1))

> (0] Mar 1, 12), e 1, Fs (1), 20) o 1), 2),

3 e, o) 40) + o 1) 40)] )
(5.28)

Therefore, by Theorem 5.1, we assert that the sequence of fuzzy self-mappings {¥:};; has a
common fixed point p, in C(X). In fact, it is easy to check that

1, if x=1(0,0,...),
o) = { (5.29)

0, otherwise.

6. Conclusion

So far many authors have made a great deal of work in the Hausdorff-Pompeiu metric [20-
25]. To describe the degree of nearness between two crisp sets, Rodrguez-L6pez and
Romaguera have defined Hausdorff fuzzy metric. In this paper, we define a new M,-fuzzy
metric, which describes the degree of nearness between two fuzzy sets. Then, some properties
on M,,-fuzzy metric are discussed. In addition, in this new circumstances, we give some fixed
point theorems which are the important generalizations of contraction mapping principle in
functional analysis.

The results of the present paper may be applied in different settings. In terms of topo-
logy, one can make use of topology in data analysis and knowledge acquisition [31]. For
another, topologies corresponding to fuzzy sets are used to detect dependencies of attributes
in information systems with respect to gradual rules as in [32]. Furthermore, fuzzy fixed point
theory can be used in existence and continuity theorems for dynamical systems with some
vague parameters [33, 34]. In addition, this work offers a new tool for the description and
analysis of fuzzy metric spaces. It would be possible to obtain more topological properties on
the new fuzzy metric space. So, we hope our results contribute to dealing with some problems
in practical applications for future study.
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