
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 902601, 8 pages
doi:10.1155/2012/902601

Research Article
On Convergence Results for Lipschitz
Pseudocontractive Mappings

Shin Min Kang1 and Arif Rafiq2

1 Department of Mathematics and Research Institute of Natural Science, Gyeongsang National University,
Jinju 660-701, Republic of Korea

2 Hajvery University, 43-52 Industrial Area, Gulberg-III, Lahore, Pakistan

Correspondence should be addressed to Shin Min Kang, smkang@gnu.ac.kr

Received 4 June 2012; Revised 3 September 2012; Accepted 3 September 2012

Academic Editor: Alicia Cordero

Copyright q 2012 S. M. Kang and A. Rafiq. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We establish the strong convergence for the Ishikawa iteration scheme associated with Lipschitz
pseudocontractive mappings in real Banach spaces. Moreover, our technique of proofs is of inde-
pendent interest.

1. Introduction and Preliminaries

Let E be a real Banach space and K be a nonempty convex subset of E. Let J denote the
normalized duality mapping from E to 2E

∗
defined by

J(x) =
{
f∗ ∈ E∗ :

〈
x, f∗〉 = ‖x‖2, ∥∥f∗∥∥ = ‖x‖

}
, ∀x ∈ E, (1.1)

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pairing. We
will denote the single-valued duality mapping by j.

Let T : D(T) ⊂ E → E be a mapping with domain D(T) in E.

Definition 1.1. T is said to be Lipschitz if there exists a constant L > 1 such that

∥∥Tx − Ty
∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ D(T). (1.2)
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Definition 1.2. T is said to be nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ D(T). (1.3)

Definition 1.3. T is said to be pseudocontractive if for all x, y ∈ D(T), there exists j(x − y) ∈
J(x − y) such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥∥x − y
∥∥2

. (1.4)

Remark 1.4. It is well known that every nonexpansive mapping is pseudocontractive. Indeed,
if T is nonexpansive mapping, then for all x,y ∈ D(T), there exists j(x − y) ∈ J(x − y) such
that

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥∥Tx − Ty
∥∥∥∥x − y

∥∥ ≤ ∥∥x − y
∥∥2

. (1.5)

Rhoades [1] showed that the class of pseudocontractive mappings properly contains
the class of nonexpansive mappings.

The class of pseudocontractions is, perhaps, the most important generalization of the
class of nonexpansive mappings because of its strong relationship with the class of accretive
mappings. A mapping A : E → E is accretive if and only if I −A is pseudocontractive.

For a nonempty convex subset K of a normed space E and a mapping T : K → K.
The Mann iteration scheme [2]: the sequence {xn} is defined by

x1 ∈ K,

xn+1 = (1 − an)xn + anTxn, n ≥ 1,
(1.6)

where {an} is a sequence in [0, 1].
The Ishikawa iteration scheme [3]: the sequence {xn} is defined by

x1 ∈ K,

xn+1 = (1 − an)xn + anTyn,

yn = (1 − bn)xn + bnTxn, n ≥ 1,

(1.7)

where {an} and {bn} are sequences in [0, 1].
In the last few years or so, numerous papers have been published on the iterative

approximation of fixed points of Lipschitz strongly pseudocontractive mappings using the
Ishikawa iteration scheme (e.g., [3]). Results which had been known only in Hilbert spaces
and only for Lipschitz mappings have been extended to more general Banach spaces (e.g.,
[4–6] and the references cited therein).

In 1974, Ishikawa [3] introduced an iteration scheme which, in some sense, is more
general than that of Mann and which converges, under this setting, to a fixed point of T . He
proved the following result.
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Theorem 1.5. Let K be a compact convex subset of a Hilbert space H and let T : K → K be
a Lipschitz pseudocontractive mapping. For arbitrary x1 ∈ K, let {xn}∞n=1 be a sequence defined
iteratively by

xn+1 = (1 − αn)xn + αnTyn,

yn =
(
1 − βn

)
xn + βnTxn, n ≥ 1,

(1.8)

where {αn}∞n=1 and {βn}∞n=1 are sequences satisfying conditions

(i) 0 ≤ αn ≤ βn < 1;

(ii) limn→∞ βn = 0;

(iii)
∑∞

n=1 αnβn = ∞.

Then {xn}∞n=1 converges strongly to a fixed point of T .

In [4], Chidume extended the results of Schu [7] from Hilbert spaces to the much
more general class of real Banach spaces and approximated the fixed points of strongly
pseudocontractive mappings.

In this paper, we establish the strong convergence for the Ishikawa iteration scheme
associated with Lipschitz pseudocontractive mappings in real Banach spaces. Moreover, our
technique of proofs is of independent interest.

2. Main Results

We will need the following results.

Lemma 2.1 (see [8]). Let J : E → 2E be the normalized duality mapping. Then, for any x, y ∈ E,
one has

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
, ∀j(x + y

) ∈ J
(
x + y

)
. (2.1)

Lemma 2.2 (see [9]). If there exists a positive integer N such that for all n ≥ N, n ∈ N (the set of
all positive integers)

ρn+1 ≤
(
1 − δ2

n

)
ρn + bn, (2.2)

where δn ∈ [0, 1),
∑∞

n=1 δ
2
n = ∞ and bn = o(δn), then

lim
n→∞

ρn = 0. (2.3)

We now prove our main results.
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Theorem 2.3. Let K be a nonempty closed convex subset of a real Banach space E and T : K → K
be a Lipschitz pseudocontractive mapping such that p ∈ F(T) := {x ∈ K : Tx = x}. Let {αn}∞n=1 and
{βn}∞n=1 be sequences in [0, 1] satisfying the conditions:

(iv)
∑∞

n=1 α
2
n = ∞;

(v) limn→∞ αn = 0;

(vi) limn→∞ βn = 0.

For arbitrary x1 ∈ K, let {xn}∞n=1 be defined iteratively by

xn+1 = (1 − αn)xn + αnTyn,

yn =
(
1 − βn

)
xn + βnTxn, n ≥ 1.

(2.4)

Then the following conditions are equivalent:

(a) {xn}∞n=1 converges strongly to the fixed point p of T .

(b) {Txn}∞n=1 and {Tyn}∞n=1 are bounded.

Proof. Because p is a fixed point of T , then the set F(T) of fixed points of T is nonempty.
Suppose that limn→∞xn = p, then since T is Lipschitz, so

lim
n→∞

Txn = p,

lim
n→∞

yn = lim
n→∞

[(
1 − βn

)
xn + βnTxn

]
= p,

(2.5)

which implies that limn→∞Tyn = p. Therefore {Txn}∞n=1 and {Tyn}∞n=1 are bounded.
Set

M1 =
∥∥x0 − p

∥∥ + sup
n≥1

∥∥Txn − p
∥∥ + sup

n≥1

∥∥Tyn − p
∥∥. (2.6)

Obviously M1 < ∞.
It is clear that ‖x0−p‖ ≤ M1. Let ‖xn−p‖ ≤ M1. Next wewill prove that ‖xn+1−p‖ ≤ M1.
Consider

∥∥xn+1 − p
∥∥ =

∥∥(1 − αn)xn + αnTyn − p
∥∥

=
∥∥(1 − αn)

(
xn − p

)
+ αn

(
Tyn − p

)∥∥

≤ (1 − αn)
∥∥xn − p

∥∥ + αn

∥∥Tyn − p
∥∥

≤ M1.

(2.7)

So, from the above discussion, we can conclude that the sequence {xn − p}∞n=1 is bounded. Let
M2 = supn≥1‖xn − p‖.

Denote M = M1 +M2. Obviously M < ∞.
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Now from Lemma 2.1 we obtain for all n ≥ 1

∥∥xn+1 − p
∥∥2 =

∥∥(1 − αn)xn + αnTyn − p
∥∥2

=
∥∥(1 − αn)

(
xn − p

)
+ αn

(
Tyn − p

)∥∥2

≤ (1 − αn)2
∥∥xn − p

∥∥2 + 2αn

〈
Tyn − p, j

(
xn+1 − p

)〉

= (1 − αn)2
∥∥xn − p

∥∥2 + 2αn

〈
Txn+1 − p, j

(
xn+1 − p

)〉

+ 2αn

〈
Tyn − Txn+1, j

(
xn+1 − p

)〉

≤ (1 − αn)
2∥∥xn − p

∥∥2 + 2αn

∥∥xn+1 − p
∥∥2

+ 2αn

∥∥Tyn − Txn+1
∥∥∥∥xn+1 − p

∥∥

≤ (1 − αn)2
∥∥xn − p

∥∥2 + 2αn

∥∥xn+1 − p
∥∥2 + 2αnλn,

(2.8)

where

λn = M
∥∥Tyn − Txn+1

∥∥. (2.9)

Using (2.4) we have

∥∥yn − xn+1
∥∥ ≤ ∥∥yn − xn

∥∥ + ‖xn − xn+1‖
= βn‖xn − Txn‖ + αn

∥∥xn − Tyn

∥∥

≤ 2M
(
αn + βn

)
.

(2.10)

From the conditions limn→∞αn = 0 = limn→∞βn and (2.10), we obtain

lim
n→∞

∥∥yn − xn+1
∥∥ = 0, (2.11)

and since T is Lipschitz,

lim
n→∞

∥∥Tyn − Txn+1
∥∥ = 0, (2.12)

thus, we have

lim
n→∞

λn = 0. (2.13)

The real function f : [0,∞) → [0,∞) defined by f(t) = t2 is increasing and convex. For all
λ ∈ [0, 1] and t1, t2 > 0 we have

((1 − λ)t1 + λt2)
2 ≤ (1 − λ)t21 + λt22. (2.14)
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Consider

∥∥xn+1 − p
∥∥2 =

∥∥(1 − αn)xn + αnTyn − p
∥∥2

=
∥∥(1 − αn)(xn − p) + αn(Tyn − p)

∥∥2

≤ [
(1 − αn)

∥∥xn − p
∥∥ + αn

∥∥Tyn − p
∥∥]2

≤ (1 − αn)
∥∥xn − p

∥∥2 + αn

∥∥Tyn − p
∥∥2

≤ (1 − αn)
∥∥xn − p

∥∥2 +M2αn.

(2.15)

Substituting (2.15) in (2.8), we get

∥∥xn+1 − p
∥∥2 ≤

[
(1 − αn)2 + 2αn(1 − αn)

]∥∥xn − p
∥∥2

+ 2αn

(
M2αn + λn

)

=
(
1 − α2

n

)∥∥xn − p
∥∥2 + εnαn,

(2.16)

where εn = 2(M2αn + λn). Now, with the help of
∑∞

n=1 α
2
n = ∞, limn→∞αn = 0, (2.13), and

Lemma 2.2, we obtain from (2.16) that

lim
n→∞

∥∥xn − p
∥∥ = 0. (2.17)

This completes the proof.

Remark 2.4. Our technique of proofs is of independent interest.

Corollary 2.5. LetK be a nonempty closed convex subset of a real Hilbert space E and let T : K → K
be a Lipschitz pseudocontractive mapping such that p ∈ F(T). Let {αn}∞n=1 and {βn}∞n=1 be sequences
in [0, 1] satisfying the conditions (iv), (v), and (vi).

For arbitrary x1 ∈ K, let {xn}∞n=1 be the sequence defined iteratively by (2.4). Then the
following conditions are equivalent:

(a) {xn}∞n=1 converges strongly to the fixed point p of T .

(b) {Txn}∞n=1 and {Tyn}∞n=1 are bounded.

The proof of the following result runs on the lines of proof of the Theorem 2.3, so is
omitted.

Theorem 2.6. LetK be a nonempty closed convex subset of a real Banach space E and let T, S : K →
K be two Lipschitz pseudocontractive mappings such that p ∈ F(T) ∩ F(S) := {x ∈ K : Tx = x =
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Sx}. Let {αn}∞n=1 and {βn}∞n=1 be sequences in [0, 1] satisfying the conditions (iv), (v), and (vi). For
arbitrary x1 ∈ K, let {xn}∞n=1 be a sequence defined iteratively by

xn+1 = (1 − αn)xn + αnTyn,

yn =
(
1 − βn

)
xn + βnSxn, n ≥ 1.

(2.18)

Then the following conditions are equivalent:

(a) {xn}∞n=0 converges strongly to the common fixed point p of T and S.

(b) {Txn}∞n=0 and {Syn}∞n=0 are bounded.

Corollary 2.7. LetK be a nonempty closed convex subset of a real Hilbert space E and let T, S : K →
K be two Lipschitz pseudocontractive mappings such that p ∈ F(T) ∩ F(S). Let {αn}∞n=1 and {βn}∞n=1
be sequences in [0, 1] satisfying conditions (iv), (v), and (vi).

For arbitrary x1 ∈ K, let {xn}∞n=1 be the sequence defined iteratively by (2.18). Then the
following conditions are equivalent:

(a) {xn}∞n=0 converges strongly to the common fixed point p of T and S.

(b) {Txn}∞n=0 and {Syn}∞n=0 are bounded.

Remark 2.8. It is worth to mentioning that we have the following.

(1) The results of Chidume [4] and Zhou and Jia [10] depend on the geometry of the
Banach space, whereas in our case we do not need such geometry.

(2) We remove the boundedness assumption on K introduced in [4, 10].
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