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We prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic

functional equation f(x+2y)+f (x-2y) = 4f (x+y)+4f (x—y)-6f (x)+f Qy)+f(-2y)-4f (y)-4f (-y)
in various complete random normed spaces.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] concern-
ing the stability of group homomorphisms. Hyers [2] gave a first affirmative partial answer to
the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki [3] for addi-
tive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy
difference. The paper of Rassias [4] has provided a lot of influence in the development of what
we call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability of functional equa-
tions. A generalization of the Rassias theorem was obtained by Gavruta [5] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias approach.
The functional equation

flx+y)+ f(x-y) =2f(x) +2f(y) (1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for
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the quadratic functional equation was proved by Cholewa [6] for mappings f : X — Y,
where X is a normed space and Y is a Banach space. Czerwik [7] proved the generalized
Hyers-Ulam stability of the quadratic functional equation. The stability problems of several
functional equations have been extensively investigated by a number of authors, and there
are many interesting results concerning this problem (see [8-12]).

In [13], Jun and Kim consider the following cubic functional equation:

f@x+y)+f(2x-y) =2f(x+y) +2f (x —y) + 12f (x). (1.2)

It is easy to show that the function f(x) = x> satisfies the functional equation (1.2), which is
called a cubic functional equation, and every solution of the cubic functional equation is said
tobe a cubic mapping.

Considered the following quartic functional equation

f@x+y)+ f(2x-y) =4f(x+y) +4f (x —y) +24f (x) = 6f (). (1.3)

It is easy to show that the function f(x) = x* satisfies the functional equation, which is called
a quartic functional equation, and every solution of the quartic functional equation is said to
be a quartic mapping. One can easily show that an odd mapping f : X — Y satisfies the
additive-quadratic-cubic-quadratic functional equation

fx+2y) + f(x=2y) =4f (x +y) +4f(x - y) - 6f(x)

(1.4)
+f2y) + f(2y) ~4f (y) —4f (-v)
if and only if it is an additive-cubic mapping, that is,
flx+2y) + f(x=2y) =4f (x +y) +4f (x ~y) - 6f(x). (1.5)

It was shown in Lemma 2.2 of [14] that g(x) := f(2x)-2f(x) and h(x) := f(2x)-8f(x)
are cubic and additive, respectively, and that f(x) = (1/6)g(x) — (1/6)h(x).

One can easily show that an even mapping f : X — Y satisfies (1.4) if and only if it is
a quadratic-quartic mapping, that is,

fx+2y) + f(x-2y) =4f (x +y) +4f (x—y) —6f(x) +2f (2y) - 8f(y).  (1.6)

Also g(x) := f(2x) —4f(x) and h(x) := f(2x)—16f(x) are quartic and quadratic, respectively,
and f(x) = (1/12)g(x) — (1/12)h(x).
For a given mapping f : X — Y, we define
Df(x,y) = f(x+2y) + f(x - 2y) —4f (x +y) —4f (x - y) +6f(x)

(1.7)
- fQ2y) - f(-2y) +4f(y) +4f (-y)

forall x,y € X.
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Let X be a set. A functiond : X x X — [0, 0] is called a generalized metric on X if d
satisfies

(1) d(x,y) =0ifand only if x = y,
(2) d(x,y) =d(y,x) forall x,y € X,
(3) d(x,z) <d(x,y)+d(y,z) forall x,y,z € X.

We recall the fixed-point alternative of Diaz and Margolis.

Theorem 1.1 (see [15, 16]). Let (X, d) be a complete generalized metric space and let J : X — X be
a strictly contractive mapping with Lipschitz constant L < 1, then for each given element x € X, either

d( J'x, ]"”x) - (1.8)

for all nonnegative integers n or there exists a positive integer ny such that
(1) d(J"x, J"*'x) < oo for all n > ny,
2
(3) y* is the unique fixed point of | in the set Y = {y € X | d(J™x,y) < oo},
@) d(y,y") < (1/(1-L))d(y, Jy) forall y € Y.

the sequence { J"x} converges to a fixed point y* of J,

In 1996, Isac and Rassias [17] were the first to provide applications of stability theory
of functional equations for the proof of new fixed-point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [18-21]).

2. Preliminaries

In the sequel, we adopt the usual terminology, notations, and conventions of the theory of
random normed spaces, as in [22-26]. Throughout this paper, A* is the space of all probability
distribution functions, that is, the space of all mappings F : RU {-c0, +o0} — [0, 1], such taht
F is left continuous, nondecreasing on R, F(0) = 0 and {F(+o0) = 1}. D" is a subset of A*
consisting of all functions F € A* for which [ F(+o0) = 1, where I~ f (x) denotes the left limit
of the function f at the point x, thatis, I” f (x) = lim;_, - f(t). The space A* is partially ordered
by the usual pointwise ordering of functions, that is, F < G if and only if F(t) < G(t) for all ¢
in R. The maximal element for A* in this order is the distribution function ¢y given by

0, ift<0,
) = > 2.1
eol6 {1, if £> 0. &1

A triangular norm (shortly t-norm) is a binary operation on the unit interval [0, 1], that
is, a function T : [0,1] x [0,1] — [0,1], such that for all a,b,c € [0,1] the following four
axioms satisfied:

(T1) T(a,b) = T(b, a) (commutativity),
(T2) T(a,(T(b,c))) =T(T(a,b),c) (associativity),
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(T3) T(a,1) = a (boundary condition),
(T4) T(a,b) < T(a,c) whenever b < ¢ (monotonicity).

Basic examples are the Lukasiewicz t-norm T;,T;(a,b) = max(a+b—-1,0) forall a,b €
[0,1] and the t-norms Tp, Tpr, Tp, where Tp(a,b) := ab, Tyi(a,b) := min{a, b},

min(a,b), if max(.a, b) =1, 2.2)
0, otherwise.

Tp(a,b) = {

If T is a t-norm, then x;") is defined for every x € [0,1] and n € NU {0} by 1,if n =0
and T(x(T"_l), x)if n > 1. A t-norm T is said to be of HadZi¢ type (we denote by T € #) if the
family (x(T"))n N 18 equicontinuous at x = 1 (cf. [27]).

Other important triangular norms are the following (see [28]):

(1) The Sugeno-Weber family {T3"}, c[_1,00) 15 defined by T5Y = Tp, TSV = Tp and
-1+
wa (x,y) = max <O, W) (2.3)
if A€ (-1,00).
(2) The Domby family {T)l?}/\e[o o] 18 defined by Tp if A =0, Tpr if A = o0, and
D _ ].
T (x,y) = | W1/ (2.4)
1+ (1 -)/0"+ (-y)/y)")
if 1 € (0, 0).

(3) The Aczel-Alsina family {T/*) | is defined by Tp if 1 = 0, T if A = o0 and

Ae[0,00

TAA (x, y) = - ost'slogy) " (2.5)

if L € (0, ).

A t-norm T canbe extended (by associativity) in a unique way to an n-array operation
taking for (x1,...,x,) € [0,1]" the value T (x3, ..., x,) defined by

TI.Ozlxi =1, T, xi = T(Ti':llxi, xn> =T(x1,...,%,). (2.6)

T can also be extended to a countable operation taking for any sequence (x;),cn in
[0,1] the value

Tioflxi = nli_)n;loT,Z1xi- (2.7)

The limit on the right side of (6.4) exists since the sequence (T}, x;)
bounded from below.

neN 1S nonincreasing and



Journal of Applied Mathematics 5

Proposition 2.1 (see [28]). We have the following.

(1) For T > Ty, the following implication holds:

Jim T x = 1 = D (1-x,) < 0. (2.8)

n=1

(2) If T is of Hadzi¢ type, then

lim T2, x4 = 1 (2.9)

n—oo

for every sequence (x,),en i1 [0,1] such that lim,, _, o x, = 1.

AA D
B) I T € (TP 0oy YITE ) 10,0 hEM
Jim T2 0 = 1 &= > (1 -x,)% < 0. (2.10)
n=1
@) IFT e T3V, then
Jim T2 201 = 1 = > (1-x,) < 0. (2.11)
n=1

Definition 2.2 (see [26]). A Random normed space (briefly, RN-space) is a triple (X, pt, T), where
X is a vector space, T is a continuous ¢-norm, and y is a mapping from X into D* such that,
the following conditions hold:

(RN1) px(t) = €o(t) forall t > 0 if and only if x =0,
(RN2) prax(t) = px(t/|a|) forall x € X, and a #0,
(RN3) oy (t +5) > T(px(t), uy(s)) forall x,y € X and t, s > 0.
Definition 2.3. Let (X, u, T) be an RN-space.
(1) A sequence {x,} in X is said to be convergent to x in X if, for every e > 0 and A > 0,
there exists positive integer N such that yi,,_x(e) > 1 -\ whenever n > N.

(2) A sequence {x,} in X is called a Cauchy sequence if, for every € > 0 and A > 0, there
exists positive integer N such that piy,—x,(€) >1 - A whenever n > m > N.

(3) An RN-space (X, u, T) is said to be complete if and only if every Cauchy sequence in
X is convergent to a point in X. A complete RN-space is said to be random Banach
space.

Theorem 2.4 (see [25]). If (X, pu,T) is an RN-space and {x,} is a sequence such that x, — x, then
limy, -, o pix, (t) = px(t) almost everywhere.
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The theory of random normed spaces (RN-spaces) is important as a generalization
of deterministic result of linear normed spaces and also in the study of random operator
equations. The RN-spaces may also provide us with the appropriate tools to study the
geometry of nuclear physics and have important application in quantum particle physics.
The generalized Hyers-Ulam stability of different functional equations in random normed
spaces, RN-spaces, and fuzzy normed spaces has been recently studied [20, 24, 29-39].

3. Non-Archimedean Random Normed Space

By a non-Archimedean field, we mean a field X equipped with a function (valuation) | - | from
K into [0, 00) such that |[r| = 0if and only if r = 0, |rs| = |r||s|, and |r + s| < max{|r|, |s|} for all

r,s € K.Clearly, |1| = |- 1| = 1 and |n| < 1 for all n € N. By the trivial valuation, we mean the
mapping | - | taking everything but 0 into 1 and |0 = 0. Let X be a vector space over a field
K with a non-Archimedean nontrivial valuation | - |. A function || - || : X — [0, 00) is called a

non-Archimedean norm if it satisfies the following conditions:

(NAN1) ||x|| = 0if and only if x = 0,
(NAN2) forany r € K and x € X, |[rx|| = |r|]|x||,
(NANS3) the strong triangle inequality (ultrametric), namely,

[l +y|| < max{lix|, [[y]]} (xyeX), (3.1)

then (X, | - ||) is called a non-Archimedean normed space. Due to the fact that
0 — Xl < max{||xjs1 —xj|| :m<j<n-1} (n>m), (3.2)

a sequence {x,} is a Cauchy sequence if and only if {x,.; — x,} converges to zero in a non-
Archimedean normed space. By a complete non-Archimedean normed space, we mean one
in which every Cauchy sequence is convergent.

In 1897, Hensel [40] discovered the p-adic numbers of as a number theoretical
analogues of power series in complex analysis. Fix a prime number p. For any nonzero
rational number x, there exists a unique integer n, € Z such that x = (a/b)p™, where a
and b are integers not divisible by p. Then [x|, := p™* defines a non-Archimedean norm on
Q. The completion of Q with respect to the metric d(x,y) = |x - y|, is denoted by Q,, which
is called the p-adic number field.

Throughout the paper, we assume that X is a vector space and Y is a complete non-
Archimedean normed space.

Definition 3.1. A non-Archimedean random normed space (briefly, non-Archimedean RN-space)
is a triple (X,p,T), where X is a linear space over a non-Archimedean field X, T is a
continuous t-norm, and y is a mapping from X into D* such that the following conditions
hold:

(NA-RN1) py(t) = eo(t) for all t > 0 if and only if x = 0,

(NA-RN2) prax(t) = px(t/|a]) forall x € X, ¢t > 0, and a #£0,

(NA-RN3) prrsy(max{t,s}) > T(py(t), py(s)) forall x,y,z € X and t,s > 0.
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It is easy to see that if (NA-RN3) holds, then so is
(RN3) ,ux+y(t +8) 2> T(‘l/lx(t), ﬂy(s))

As a classical example, if (X, ||.]|) is a non-Archimedean normed linear space, then the
triple (X, 4, Tnr), where

0, t<|x|,
() = 3.3
P (t) {1, £> ], (3.3)

is a non-Archimedean RN-space.

Example 3.2. Let (X, || - ||) be a non-Archimedean normed linear space. Define

Ux(F) = (xeX, t>0), (3.4)

E+[lx]

then (X, p, Tar) is a non-Archimedean RN-space.

Definition 3.3. Let (X, pu, T) be a non-Archimedean RN-space. Let {x,} be a sequence in X,
then {x,} is said to be convergent if there exists x € X such that

I g, (£) = 1 (3.5)

for all t > 0. In that case, x is called the limit of the sequence {x,}.

A sequence {x,} in X is called a Cauchy sequence if for each € > 0 and each t > 0 there
exists ny such that for all n > ny and all p > 0, we have ,uxw_xn(t) >1-¢.

If each Cauchy sequence is convergent, then the random norm is said to be complete
and the non-Archimedean RN-space is called a non-Archimedean random Banach space.

Remark 3.4 (see [41]). Let (X, u, Tar) be a non-Archimedean RN-space, then
Forra (8) 2 min{ p sy (120,12, p =1} (3.6)

So, the sequence {x,} is a Cauchy sequence if for each € > 0 and t > 0 there exists ng such that
for all n > ng,

Hxya—x, () > 1 — €. (3.7)

4. Generalized Ulam-Hyers Stability for a Quartic
Functional Equation in Non-Archimedean RN-Spaces of
Functional Equation (1.4): An Odd Case

Let X be a non-Archimedean field, let X be a vector space over X, and let (Y, 4, T) be a non-
Archimedean random Banach space over X.
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Next, we define a random approximately AQCQ mapping. Let ¥ be a distribution
function on X x X x [0, o0) such that ¥(x, y, ) is nondecreasing and

W(cx,cx,t) > II‘(x,x, |?t|> (x € X, c#0). (4.1)

Definition 4.1. A mapping f : X — Y is said to be W-approximately AQCQ if
Upfeey () 2 ¥(x,y,t) (x,yeX, t>0). (4.2)

In this section, we assume that 2#0 in X (i.e., characteristic of X is not 2). Our main
result, in this section, is the following.

We prove the generalized Hyers-Ulam stability of the functional equation D f(x, y) = 0
in non-Archimedean random spaces, an odd case.

Theorem 4.2. Let X be a non-Archimedean field, let X be a vector space over KX and let (Y, u,T)
be a non-Archimedean random Banach space over K. Let f : X — Y be an odd mapping and -
approximately AQCQ mapping. If for some a € R, a > 0, and some integer k, k > 3 with [2F| < a,

‘P(Z_kx, 27ky, t> >¥(x,y,at) (xeX, t>0), (4.3)
im 72 M( 2, L) 21 (xe€X, t>0) (4.4)
nL{I;o j=n X, |8|k] - X 7 7 .

then there exists a unique cubic mapping C : X — Y such that

ai”t
Hi-2f /-y () 2 TE MY X, o (4.5)

forall x € X and t > 0, where

e f f i f 2k—1x 2k—1x i 1 2k—1x
M(x,t) =T [‘P(Z,z,|4|>,‘P<x,2,t>,...,‘lf<—2 g ) (2

(xeX, t>0).
(4.6)
Proof. Letting x = y in (4.2), we get
Hiey-aressio (8) 2 ¥ (Y, 1) (4.7)

forall y € X and t > 0. Replacing x by 2y in (4.2), we get

Hfan-afGy+erey-af e () 2 ¥ (2y, y,t) (4.8)
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forally € X and t > 0. By (4.7) and (4.8), we have
Hfay)-10f@p+6f ) (8) 2 T (Hacray)-a£@y+5fw) (D), hay)-af Gy)+of p-af ) (1)

t
= T(#f(3y>—4f<2y>+5f<y> <m>r#f<4y)—4f(3y)+6f(2y)—4f(y) (t)) (4.9)
t
> T(‘P<y,y/ m>/‘1’(2y/% t))

forall y € X and t > 0. Letting v := x/2 and g(x) := f(2x) — 2f(x) for all x € X in (4.9), we
get

x x t X
.ug(x)*Sg(X/2) (t) 2 T<IP<§/ E/ m);qf(x/ E/ t>> (410)

for all x € X and t > 0. Now, we show by induction on j that forallx € X,t>0and j > 1,

He(@1x)-8ig(x/2) ()
> M] (x/ t)

. Flx 201yt o 2ily
.= T2-1 xx t X p 2]_x Z_x — Yyl T ¢
=T [‘P(z,z,|4|>,‘P<x,2,t>,..., > ) x, ==t )|

(4.11)

Putting j = 1in (4.11), we obtain (4.10). Assume that (4.11) holds for some j > 1. Replacing x
by 2/x in (4.10), we get

) ) t S
Hg(2ix)-8g(2i1x) (£) 2 T(‘P (2"1x, 27x, m), 1I‘(2’ x,27x, t) ) (4.12)

Since 8| <1,

He@ix)-8ig(x/2)(£) 2 T(Aug(fo)—Sg(Zf’lx) (£), Hsg(2i1x)-87*1 g (x/2) (t)>

t
=T( Heix)-8g21x) (), Hg2i-1x)-8i g(x/2) 8

. . t L
> T? <l}r<2771x, 21y m),w(zm, 21y, t>,M]~(x,t)>

(4.13)

= Mj+l (x/ t)
forall x € X and t > 0. Thus, (4.11) holds for all j > 2. In particular,

Hg(2k1x)-8kg(x/2) (t) > M(x, t) (.X' eX, t> 0) (414)
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Replacing x by 2-*"**~Dx in (4.14) and using inequality (4.3), we obtain

Then

2x

/lg(x/zkn)_gkg(x/2k(n+l))(t) > M(W,t> (x eX, t>0,n=0,1,2,.. ) (415)

an+1

/’lSk”g(x/Zk")—Sk("”>g(x/2k("+”)(t) > M<2x, Wt> (x eX, t>0,n=0,1,2,.. ) (416)

Hence

n+p
[lgkng(x/zkn)_Sk(n+p)g(x/2k(n+p)) (t) > Tj:n </48kjg(x/2kj)_8k(j+r7)g(x/2k(j+p)) (t))

Since

then

aj+1
I |(8k)]

j+1
ST M( 2x, —5—+) (xeX, t>0, n=0,1,2,...).
j=n |(8k)]+1

(4.17)

aj+1
lim T]fan 2x, '—t =1 (x€X, t>0), (4.18)

n— oo (Sk)j+1

(*s(z) .. 9

is a Cauchy sequence in the non-Archimedean random Banach space (Y, y, T). Hence we can
define a mapping C : X — Y such that

nlgrc}oﬂ(gsk)"g(x/zkn)_c(x) (t) =1 (.X' eX, t> 0) (420)

Next foreachn>1,xe€ Xand t >0,

Prgt-%)"g(e/200) () = Bt aovyig vy -9 gy 2om) (1)

-1
> T, (#<88k>"g<x/zk">—<88k>"“g<x/zk<i+“>(t)) (4.21)

i+1t
> T M( 2%, —— ).
|84]
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Therefore,

Hgx-cx) (£) 2 T(#g<x>—(88k>"g<x/zk"> (), sy g(x/20m)-C () (t)>

1 a”lt (422)
n—
> T Ti=0 M 2x, W ,ﬂ(gsk)ng(x/2kn)_c(x) (t) .

By letting n — oo, we obtain

ai+1t
Hgx)-cx)(t) =2 T2 M| 2x, W . (4.23)
So,
- “i+1t
Hf-2f(x/2-Cx/2)(F) 2 TEM <x, —|8k T > : (4.24)

This proves (4.5). From Dg(x,y) = Df(2x,2y) —2Df(x,y), by (4.2), we deduce that

#Df(Zx,Zy) (t) 2 1P<2x1 2]// t)/

" (4.25)
HUoDf(xy) (t) = UDf(x) <m) > UDf(xy) (£) 2 ¥ (x,y,t),
and so, by (NA-RN3) and (4.2), we obtain
UDgxy) (B) 2 T(Upfxay) (1), popfixy) (B) 2 T(¥(2x,2y,1), ¥ (x, y,t)) = N(x,y,t).
(4.26)
It follows that
t
/’lSk"Dg(x/Zk",y/Zk") (t) = #Dg(x/Zk",y/Zk") <W>
(4.27)

x y ot anlt
ZN<2W’2W’W> Z'”2N<x’y’|8|kﬂ>

forall x,y € X, t >0, and n € N. Since

limN<x y @t > —1 (4.28)
n— oo |8|k("*1)
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forall x,y € X and t > 0, by Theorem 2.4, we deduce that
,MDC(x,y)(t) =1 (4.29)

forall x,y € X and t > 0. Thus, the mapping C : X — Y satisfies (1.4).
Now, we have

T n X _qn+l i

C(2x) - 8C(x) —nlgrc}o[S g<2n_1> 8 g<2n>]
o n-1 X n_ (X _
—8,}51;,[8 g<2n_1> -8 8(2?)] =0

for all x € X. Since the mapping x — C(2x) — 2C(x) is cubic (see Lemma 2.2 of [14]), from
the equality C(2x) = 8C(x), we deduce that the mapping C : X — Y is cubic. O

(4.30)

Corollary 4.3. Let K be a non-Archimedean field, let X be a vector space over X, and let (Y, u,T) bea
non-Archimedean random Banach space over X under a t-normT € H. Let f : X — Y bean odd and
W-approximately AQCQ mapping. If, for some a € R, a > 0, and some integer k, k > 3, with |2¥| < a,

‘P(Z_kx,Z_ky, t> >W(x,y,at) (x€X, t>0), (4.31)

then there exists a unique cubic mapping C : X — Y such that

ai+1t
Hfe)—2f(x/2)-Cx/2) () 2 T2 M| x, W (4.32)
forallx € X and t > 0.
Proof. Since
alt
lim M<x, W) =1 (xeX, t>0) (4.33)

and T is of Hadzi¢ type, from Proposition 2.1, it follows that

alt
1 oo —
nh_)rnooT].:nM <x, _|8|kj> 1 (xeX, t>0). (4.34)
Now, we can apply Theorem 4.2 to obtain the result. O

Example 4.4. Let (X, u, Tnp) be non-Archimedean random normed space in which

‘le(t) = t+—||x|| (X eX, t> 0) (435)
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And let (Y, i, Trp) be a complete non-Archimedean random normed space (see Example 3.2).
Define

t
. 4.36
¥(x,y,t) T (4.36)
It is easy to see that (4.3) holds for & = 1. Also, since
M(x,t) = o (4.37)
SR '

we have

. . alt . . ;
Hm Ty, M <x, W) = fm <n}1£nooT;\n’I’j_"M <x, W) >

. ' ¢ (4.38)
= lim Iim { ———
n—oom—ow \ {4 |8k|

=1 (xe€X, t>0).

Let f : X — Y be an odd and ¥-approximately AQCQ mapping. Thus, all the conditions of
Theorem 4.2 hold, and so there exists a unique cubic mapping C : X — Y such that

Hf-2f (x/2)-Cx/2) (E) 2 (4.39)

t+|8K|

Theorem 4.5. Let X be a non-Archimedean field, let X be a vector space over X, and let (Y, u,T)
be a non-Archimedean random Banach space over K. Let f : X — Y be an odd mapping and -
approximately AQCQ mapping. If for some a € R, a > 0, and some integer k, k > 1 with [2F| < a,

IP(Z*kx, 27y, t> >¥(x,y,at) (xeX, t>0),

im7e M( 20, YL 21 (xeX, t>0) 4
e T A '

then there exists a unique additive mapping A : X — Y such that

ai+1t
Hfo-8f(x/2)-Ax/2)(t) 2 TS M <x, W> (4.41)
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forall x € X and t > 0, where

t x 2k-1lx pk-1lx ¢ 2k-1x
M ’t ::Tk_l IP E/£/_>/“Pp /_/t /...,IP A 7 7 AT ,IP 2k_1 7 /t
(1) [ (2 2’ 4] (x 2 ) 2 T2 | )

(xeX, t>0)
(4.42)

Proof. Letting iy := x/2 and g(x) := f(2x) —8f(x) for all x € X in (4.9), we get

x x t x
Hgx)-2g(x/2)(£) 2T (‘P<§, > m)ﬂP(x, > t)) (4.43)

forallx €e X and ¢t > 0.
The rest of the proof is similar to the proof of Theorem 4.2. O

Corollary 4.6. Let K be a non-Archimedean field, let X be a vector space over K, and let (Y, u,T) be
a non-Archimedean random Banach space over X under a t-norm T € H. Let f : X — Y be an odd
and W-approximately AQCQ mapping. If, for some a € R, a > 0, and some integer k, k > 1, with
12K| < a,

‘P(Z’kx, 2y, t) >W(x,y,at) (x€X, t>0), (4.44)

then there exists a unique additive mapping A : X — Y such that

lXi+1t
Hf)-8f(x/2)-A@/2) (F) 2 TS M| x, oF (4.45)
forall x € X and t > 0.
Proof. Since
i alt
nlgl(}oM x,w =1 (xeX, t>0) (4.46)

and T is of Hadzi¢ type, from Proposition 2.1, it follows that

j
lim T M <x, %> =1 (xeX, t>0). (4.47)

n— oo ]

Now, we can apply Theorem 4.5 to obtain the result. O
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Example 4.7. Let (X, u, Tp) non-Archimedean random normed space in which

pe(t) = (x€X, t>0), (4.48)

£+ ||

and let (Y, u, Tr) be a complete non-Archimedean random normed space (see Example 3.2).
Define

t
‘P(x,y, t) = m (449)

It is easy to see that (4.3) holds for a = 1. Also, since

t
M(x,t) = — 4.50
(x8) = 7 (450)
we have
imTe . M( 2% ZEY 2 tim ( limT" . M !
nl—I}go M]:n x’ |2|k] - nl—I}go mll)l’loo M,j:n x’ W

N t (4.51)
lim lim [ ———
n—oom—oo\ f 4+ |2k|

=1 (xeX, t>0).

Let f : X — Y be an odd and ¥-approximately AQCQ mapping. Thus, all the conditions of
Theorem 4.2 hold, and so there exists a unique additive mapping A : X — Y such that

(4.52)

t
, , H>—.
e - (e/D-AG/2) (8) 2 2]

5. Generalized Hyers-Ulam Stability of the Functional Equation (1.4)
in Non-Archimedean Random Normed Spaces: An Even Case

Now, we prove the generalized Hyers-Ulam stability of the functional equation D f(x,y) =0
in non-Archimedean Banach spaces, an even case.

Theorem 5.1. Let K be a non-Archimedean field, let X be a vector space over K, and let (Y, u,T) be
a non-Archimedean random Banach space over X. Let f : X — Y be an even mapping, f(0) =0, and
W-approximately AQCQ mapping. If for some a € R, a > 0, and some integer k, k > 4 with [2F| < a,

w(2kx, 2Ry, 1) 2 W(x,y,at) (xeX, £>0),

it (5.1)
ImTZ M 2x,—— ) =1 (x€X, t>0),
n—oo I |16|k7
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then there exists a unique quartic mapping Q : X — Y such that

- txi+1t
Hf()-4f (x/2)-Qx/2) () 2 TZ M x, e[ (5.2)

forall x € X and t > 0, where

ke E f i f zkflx zkflx L 1 2k—1x
M(x,t) =T [‘P(Z,z,|4|>,‘P<x,2,t>,...,11’<—2 g ) (2 e

(xeX, t>0).
(5.3)
Proof. Letting x = y in (4.2), we get
prey-efeysie () 2 ¥ (Y, y,t) (5.4)
for all y € X and t > 0. Replacing x by 2y in (4.2), we get
Hrap-aseuasenraro) (8) 2 ¥ (2, 1) (5.5)

forally € X and t > 0. By (5.4) and (5.5), we have
Hf (ay)-20f y)+eaf(y) (8) 2> T (Ha(ray)-ary)+srw) (B), Bfay)-ar@y)ef ey -4 w) ()

t
= T(ﬂf<3y>—4f<2y>+5f<y) <m>/ﬂf(4y)4f(3y)+6f(2y)4f(y) (t)> (5.6)

> T(‘P(y,y, |Zt|>,lp(2y,y, t))

forall y € X and t > 0. Letting v := x/2 and g(x) := f(2x) —4f(x) for all x € X in (5.6), we
get

x
Hg(x)-16g(x/2)(£) > T (‘P < 5

ﬁ)‘l’(x%t)) (5.7)

N R

forallx € X and ¢t > 0.
The rest of the proof is similar to the proof of Theorem 4.2. O

Corollary 5.2. Let K be a non-Archimedean field, let X be a vector space over K, and let (Y, pu,T)
be a non-Archimedean random Banach space over X under a t-norm T € H. Let f : X — Y be an
even, f(0) = 0, and W-approximately AQCQ mapping. If, for some a € R, a > 0, and some integer
k, k > 4, with |2¥| < a,

IP(Z‘kx, 27ky, t) >¥(x,y,at) (xeX, t>0), (5.8)
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then there exists a unique quartic mapping Q : X — Y such that

ai+1t
Hf)-af(x/2-Q/2) () 2 T M| X, el

forall x € X and t > 0.

Proof. Since

. alt
lim M| x, = ) =1 (xeX, t>0)
n— oo |16|7

and T is of HadZi¢ type, from Proposition 2.1, it follows that

j
imTe M( 2, -2 ) =1 (xeX, t>0).
" |16/

n—oo

Now, we can apply Theorem 5.1 to obtain the result.

Example 5.3. Let (X, u, Tnp) be non-Archimedean random normed space in which

() =—— (xeX, t>0).

17

(5.9)

(5.10)

(5.11)

(5.12)

And let (Y, p, Tm) be a complete non-Archimedean random normed space (see Example 3.2).

Define
¥(x,y,t) = i
VY=
It is easy to see that (4.3) holds for a = 1. Also, since
M(x,t) = !
T+t

we have

alt
) - T . m [
Jim T, M <x' I16["7 > s <’3§n°°TM”_"M <x’ 16/

. . t
lim lim ( ———
nﬂoomﬂoo<t+|]6k| >

=1 (xeX, t>0).

(5.13)

(5.14)

(5.15)
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Let f : X — Y be an even, f(0) = 0, and W-approximately AQCQ mapping. Thus all the
conditions of Theorem 5.1 hold, and so there exists a unique quartic mapping Q : X — Y
such that

Hf ()4 (x/2)-Q(x/2) (£) 2 (5.16)

b
t+|16F|

Theorem 5.4. Let X be a non-Archimedean field, let X be a vector space over X and let (Y, u,T) be
a non-Archimedean random Banach space over K. Let f : X — Y be an even mapping, f(0) = 0 and
W-approximately AQCQ mapping. If for some a € R, a > 0, and some integer k, k > 2 with [2F| < a,

IP(Z*kx, 27y, t> >¥(x,y,at) (xeX, t>0),

it (5.17)
nlgl(}oTj=nM<2x, W> =1 (xeX, t>0),

then there exists a unique quadratic mapping Q : X — Y such that

- di+1t
Hf(0-16(x/2-Q/2) (F) 2 T2 M| x, T (5.18)

forall x € X and t > 0, where

R f f i f 2k—1x 2k—1x i 1 2k—1x
M(x,t) =T [‘P(z,z,|4|>,‘P<x,2,t),...,11’<—2 g ) (2

(xeX, t>0).
(5.19)

Proof. Letting v := x/2 and g(x) = f(2x) — 16f(x) for all x € X in (5.6), we get

x x t X
#g(x)—‘ig(X/Z) (t) > T<1P<§/ E/ m),?(.x, E/ t)) (520)

forallx € X and t > 0.
The rest of the proof is similar to the proof of Theorem 5.1. O

Corollary 5.5. Let K be a non-Archimedean field, let X be a vector space over X, and let (Y, pu,T)
be a non-Archimedean random Banach space over X under a t-norm T € H. Let f : X — Y be an
even, f(0) =0, and W-approximately AQCQ mapping. If, for some a € R, a > 0, and some integer
k, k > 2, with |2¥| < a,

‘P(Z‘kx,Z_ky, t) >¥(x,y,at) (xeX, t>0), (5.21)
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then there exists a unique quadratic mapping Q : X — Y such that

(Xi+1t
Hf-16f(x/2)-Q(x/2) (£) 2 TE MY x, aF

forall x € X and t > 0.

Proof. Since

_ alt
lim M x,w =1 (xeX t>0)

and T is of HadZi¢ type, from Proposition 2.1, it follows that

n—oo ]

Now, we can apply Theorem 5.4 to obtain the result.

Example 5.6. Let (X, u, Trp) be a non-Archimedean random normed space in which

() =—— (xeX, t>0).

it
imT%,M( x,~= ) =1 (x€X, t>0).
|4~

19

(5.22)

(5.23)

(5.24)

(5.25)

And let (Y, p, Tm) be a complete non-Archimedean random normed space (see Example 3.2).

Define
¥(x,y,t) = i
VY=
It is easy to see that (4.3) holds for a = 1. Also, since
M(x,t) = !
T+t

we have

R at\ o m
i T jon M <x, @) = hm <,31LHJM,]-—”M <x/ PG

. . t
lim lim { ————
tm b (i)

=1 (xeX, t>0).

(5.26)

(5.27)

(5.28)
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Let f : X — Y be an even, f(0) = 0, and ¥-approximately AQCQ mapping. Thus, all the
conditions of Theorem 5.4 hold, and so there exists a unique quadratic mapping Q : X — Y
such that

t
Hf ()16 (x/2)-Q(x/2) (E) 2 m (5.29)

6. Latticetic Random Normed Space

Let £ = (L,>1) be a complete lattice, that is, a partially ordered set in which every nonempty
subset admits supremum and infimum, and 0, = infL, 1, = sup L. The space of latticetic
random distribution functions, denoted by A7, is defined as the set of all mappings F : RU
{—o0,+00} — L such that F is left continuous and nondecreasing on R, F(0) = 0z, F(+o0) =
1.

D; C A7 is defined as D] = {F € A : I"'F(+o) = 1.}, where I” f(x) denotes the left
limit of the function f at the point x. The space A7 is partially ordered by the usual pointwise
ordering of functions, that is, F > G if and only if F(t) >; G(¢) for all ¢ in R. The maximal
element for A] in this order is the distribution function given by

0s, ift<0,
eo(t) = 6.1
o {u, if £>0. (6.1)

In Section 2, we defined t-norms on [0, 1], and now we extend t-norms on a complete
lattice.

Definition 6.1 (see [42]). A triangular norm (t-norm) on L is a mapping T : (LY - L satisfying
the following conditions:
(a)
(b)
(c)
(d) (for all (x,x',y,y') € (L)*)(x<p x'and y<ry = T(x,y)<L T(x,y')) (monotonic-
ity).

for all x € L)(T(x,1,) = x) (boundary condition);

(

(for all (x,y) € (L)Z)(C(x,y) = C(y, x)) (commutativity);

(for all (x,y,z) € (L)3)(C(x,t(y, z)) = T(T(x,y), z)) (associativity);
(

Let {x,} be a sequence in L converges to x € L (equipped order topology). The t-norm
Cis said to be a continuous t-norm if

Jim T, ) = Txy) (62

forally € L.
A t-norm T can be extended (by associativity) in a unique way to an n-array operation
taking for (xi,...,x,) € L" the value T(x, ..., x,) defined by

Toxi=1, Ty =T(Tlx,x0) = Tlen, -, 20, (6.3)
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T can also be extended to a countable operation taking for any sequence (x;),cn in L
the value

TZyxi = lim T, (6.4

The limit on the right side of (6.4) exists since the sequence (T, x;)
bounded from below.

Note that we put T = T whenever L = [0,1]. If T is a t-norm, then x(T") is defined for
every x € [0,1]and n € NU {0} by 1 if n = 0 and T(x(T"_l),x) if n > 1. A t-norm T is said to
be of Hadi¢ type, (we denote by T € o) if the family (x\"
[27]).

neN 1S nonincreasing and

))n < 18 equicontinuous at x = 1 (cf.

Definition 6.2 (see [42]). A continuous t-norm T on L = [0,1]? is said to be continuous t—
representable if there exist a continuous t-norm * and a continuous t-conorm ¢ on [0, 1] such
that, for all x = (x1,x2), y = (y1,y2) € L,

T(x,y) = (x1*y1,202). (6.5)
For example,

T(a,b) = (a1by, min{a, + by, 1}), o
M(a,b) = (min{ay, by}, max{as, by}) (6.6)

forall a = (ay,a2), b = (b1, b) € [0,1]2 are continuous t-representable. Define the mapping
T, from L? to L by

x, if y> x,
Th(x,y) = { _ (6.7)
y, ifx>p y.

Recall (see [27, 28]) that if {x,} is a given sequence in L, (T,)i; x; is defined
recurrently by (T xi = x1 and (T, x; = C/\((C,\)?:_llxi,xn) foralln > 2.

A negation on £ is any decreasing mapping N : L — L satisfying A(0z) = 1, and
N(Az) = 0z. If N(N(x)) = x, for all x € L, then N is called an involutive negation. In the
following, £ is endowed with a (fixed) negation .

Definition 6.3. A latticetic random normed space (in short LRN-space) is a triple (X, u, C»), where
X is a vector space and yu is a mapping from X into D] such that the following conditions
hold:

(LRN1) pr(t) = €o(t) for all t > 0 if and only if x =0,

(LRN2) prax(t) = px(t/|a]) forall xin X, a #0and t > 0,

(LRN3) prrry (t +8) 21 Th(px(t), py(s)) forall x,y € X and t,s > 0.

We note that from (LPN2) it follows that p_,(t) = py(t) forallx € X and t > 0.
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Example 6.4. Let L = [0,1] x [0, 1] and operation <;, be defined by

L = {(alfaZ) : (alraZ) € [0/1] X [0/ 1]/ a + ap S 1}/
(6.8)
(a1, a2) <p (b1, by) &= a1 <by, ax >by, Va=(aj,az), b= (b;,by) € L.

then (L, <r) is a complete lattice (see [42]). In this complete lattice, we denote its units by 0r, =
(0,1) and 1 = (1,0). Let (X, || - ||) be a normed space. Let T(a, b) = (min{ay, b1}, max{ay, by })
forall a = (a1,a2), b = (b1, b2) € [0,1] x [0,1] and p be a mapping defined by

t 1]
£ [l £+ L]l

et = ( ) tem, (6.9)

then (X, p, ) is a latticetic random normed spaces.
If (X, u, C,) is a latticetic random normed space, then

V={V(g,\) 1e> 05 AL\ {0s12)), V(eA)={xeX :Fu(e) > NN}, (6.10)

is a complete system of neighborhoods of null vector for a linear topology on X generated by
the norm F.

Definition 6.5. Let (X, p, C») be a latticetic random normed spaces.

(1) A sequence {x,} in X is said to be convergent to x in X if, for every ¢+ > 0 and
€ € L\ {0}, there exists a positive integer N such that p, _(t) > NV(¢) whenever
n>N.

(2) A sequence {x,} in X is called a Cauchy sequence if, for every t > 0and e € L \ {0,},
there exists a positive integer N such that py,_y,, (t) > N(g) whenever n > m > N.

(3) A latticetic random normed spaces (X, u, C,) is said to be complete if and only if
every Cauchy sequence in X is convergent to a point in X.

Theorem 6.6. If (X, p, T,) is a latticetic random normed space and {x,} is a sequence such that
Xn — X, then limy, _ o py, (£) = px(t).

Proof. The proof is the same as classical random normed spaces, see [25]. O

7. Generalized Hyers-Ulam Stability of the Functional Equation (1.4):
An Odd Case via Fixed-Point Method

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the
functional equation Df (x, y) = 0 in random Banach spaces: an odd case.

Theorem 7.1. Let X be a linear space, let (Y, p, Tp) be a complete LRN-space, and @ let be a mapping
from X?* to D} (D(x,y) is denoted by ®@,.,,) such that, for some 0 < a < 1/8,

Doy (t) LDy (at) (x,y €X,t>0). (7.1)
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Let f : X — Y be an odd mapping satisfying

1Df (xy) ()21 Dry (1) (7.2)
forall x,y € X and t > 0. Then
im8 () -2f(X
C(x) = lim38 (f(2n71> 2f<2n>> (7.3)
exists for each x € X and defines a cubic mapping C : X — Y such that
1-8a 1-8a
Hfx)-2f(x)-C(x) (£) 2L Th <‘Dx,x <5—at>/cD2x,x< 5 f)) (7.4)
forall x € X and t > 0.
Proof. Letting x = y in (7.2), we get
HFGy)-4f @y)+5£(y) () 2L Dy, (F) (7.5)

forall y € X and t > 0. Replacing x by 2y in (7.2), we get
Wi ay)-af Gy)rof@y)-4f ) () 21 Day,y () (7.6)
forall y € X and t > 0. By (7.5) and (7.6),

Hfy)-107 @y)+16£(y) (51) 2L Th (HarGy)-af )57 ) (4E), Hfay)-47 Gy)+6f y)-4£(y) ()
= Ta(pfy)-47 y)+57 ) (1), Hray)-af Gyy+efey)-4f ) (1) (7.7)
>1 Th(Dyy (1), Doy, (1))

forall y € X and t > 0. Letting i := x/2 and g(x) := f(2x) —2f(x) for all x € X, we get
Hg(x)-85(x/2) () 2L TA(Pu/2,0/2(F), D x/a(t)) (7.8)

forallx e X and t > 0.
Consider the set

S:={h:X —Y, h(0) =0} (7.9)
and introduce the generalized metric on S:

d(h, k) = inf{u € R* : o)k (1) 2L T (@rx (£), Par (1)), Y € X, ¥t > 0) (7.10)
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where, as usual, inf@) = +oo. It is easy to show that (S,d) is complete (see the proof of

Lemma 2.1 of [24]).
Now, we consider the linear mapping J : S — S such that

Jh(x) = 8h(’2—“)

(7.11)

for all x € X, and we prove that | is a strictly contractive mapping with the Lipschitz constant

8a.
Let h, k € S be given such that d(h, k) < €. Then

Hh(x)-k(x) (St) 2L t/\ ((Dx,x(t)/ cDZx,x(t))
for all x € X and t > 0. Hence

HTh(x)-Tk(x) (Baet) = pgn(x/2)-8k(x/2) (Baxet)
= Hn(x/2)—k(x/2) (a€L)
> t/\(cDx/Z,x/Z(f"(t)/ (I)x,x/Z (“t))

ZLZA((I)x,x(t)/ (DZx,x (t))
forall x € X and t > 0. So, d(h, k) < € implies that

d(Jh, Jk) < ze.

®| R

This means that
d(Jh, Jk) < Ga(h k)
for all h, k € S. It follows from (7.8) that
lflg(x)—Sg(x/Z) (Sat) 2L t/\(q)x,x(t)r (D2x,x(t))

forallx € X and t > 0.So,d(g,Jg) <5a <5/8.

By Theorem 1.1, there exists a mapping C : X — Y satisfying the following:

(1) Cis a fixed point of J, that is,

(@)~

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

forall x € X.Since g: X — Yisodd, C: X — Y isan odd mapping. The mapping

C is a unique fixed point of ] in the set

M={heS:d(h g) <w}.

(7.18)
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This implies that C is a unique mapping satisfying (7.17) such that there exists a

u € (0, o0) satisfying
Hg(x)-C(x) (ut) >1 Ca (q)x,x (t)r (I)Zx,x (t))

forall x € X and t > 0.
(2) d(J"g,C) — Oasn — oo. This implies the equality
. n X\ _
Jm () =€)

for all x € X.
(3) d(h,C) < (1/(1 -8a))d(h, Jh) with h € M, which implies the inequality

5a

(8:€) < 75

from which it follows that

5a
Hg(x)-C(x) (mt> 2L t/\(q)x,x(t)r (DZx,x(t))'

(7.19)

(7.20)

(7.21)

(7.22)

This implies that the inequality (7.4) holds. From Dg(x,y) = Df(2x,2y) -

2Df(x,y), by (7.2), we deduce that

KD f(x2y) (£) 2L Poxy (1),

t t
H-2Df(xy) t) = HDf(xy) <—> > Dy <_>
2 2
and so, by (LRN3) and (7.1), we obtain

1Dg(xy) (3t) 2LTA (M f2x0y (), P-2Df () (21))
21 Ch ((D2x,2y (t), (Dx,y (t) ) ZL(DZx,Zy (t) .

It follows that

t

t 1 t
Z cDx/Z"‘l,y/Z"-l (8—n>2L e 2L®x'y<§W>

forallx,y € X,t>0and n e N.

(7.23)

(7.24)

(7.25)
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Since lim,, o, @y, ((3/8) (t/(8a)"™)) =1 for all x, y € X and t > 0, by Theorem 2.4, we
deduce that

HDC(xy) (3) =12 (7.26)

forall x, y € X and t > 0. Thus the mapping C : X — Y satisfies (1.4).
Now, we have

C@) -8C() = lim [ (57 ) -85 (5]

= 8 lim [8"’1g<2i1> - sng(zin>] =0

(7.27)

for all x € X. Since the mapping x — C(2x) — 2C(x) is cubic (see Lemma 2.2 of [14]), from
the equality C(2x) = 8C(x), we deduce that the mapping C : X — Y is cubic. O

Corollary 7.2. Let 6 > 0 and let p be a real number with p > 3. Let X be a normed vector space with
norm || - ||. Let f : X — Y be an odd mapping satisfying

t
t+0(lIxl” + [lyl”)

HDf(xy) (E) 2 (7.28)

forall x,y € X and t > 0. Note that (X, p, Tp) is a complete LRN-space, in which L = [0, 1], then
on X\ (X
C(x) = lim8 (f(yj> 2f<2n>> (7.29)

exists for each x € X and defines a cubic mapping C : X — Y such that

(2 - 8)t

x)=2f (x)-C(x) () = 7.30
Hren-2iw-cw (D) 2 o e o AP (7:30)
forall x € X and t > 0.
Proof. The proof follows from Theorem 7.1 by taking
t
D (t) = (7.31)

E+O(1lxll” + [y [I”)
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for all x,y € X and t > 0. Then we can choose a = 277, and we get

0 > mi (1-257)t (1-25P)t
x)=2f(x)-C(x 2 min s
Hr@n-2f(x)-c (1-237)t+5-270(2)x[P)” (1 =257t +5-2P0([2x|F + ||x|")

N (1-2%P)t

T (1=-25P)t+5-27P0(|12x|]P + [|x||P)

~ (2P - 8)t

(2P -8)t+5- (2P +1)0)|x|]P”

(7.32)

which is the desired result. O

Theorem 7.3. Let X be a linear space, let (Y, p, Tp) be a complete LRN-space, and let @ be a mapping
from X2 to D} (D(x,y) is denoted by @) such that, for some 0 < a < 8,

Dy /oy2() <L Dyy(at)  (x,y € X, £>0). (7.33)
Let f : X — Y be an odd mapping satisfying (7.2), then
— 1i 1 n+l n
C(x) = lim o (f(z x) —2f(2 x)> (7.34)

exists for each x € X and defines a cubic mapping C : X — Y such that

8-« 8-«
Hf@x)-2f(x)-C(x) (£) 2, Ta <(I>x,x (—5 t> , Doy x ( 5 t>> (7.35)

forall x € X and t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 7.1.
Consider the linear mapping J : S — S such that

Jh(x) = %h(Zx) (7.36)

for all x € X, and we prove that ] is a strictly contractive mapping with the Lipschitz constant
a/8.
Let h, k € S be given such that d(h, k) < ¢, then

Hh(x)-k(x) (€1) 2L TH( Dy x (£), Dox 2 (1)) (7.37)
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forall x € X and t > 0. Hence

4 a
HTh(x)-Tk(x) (gst) = H(1/8)h(2x)~(1/8)k(2x) <§€f>

= Pn(2x)-k(x) (a€t) (7.38)
>1 CA(Doxox (at), Daxox (at))
Z t/\ ((Dx,x (t)/ q)Zx,x (t))

forall x € X and t > 0. So, d(h, k) < € implies that

d(Jh, Jk) < =e. (7.39)

®| R

This means that

d(Jh, Jk) < Ga(h k) (7.40)

forall g,h € S. Letting g(x) := f(2x) — 2f(x) for all x € X, from (7.8), we get that

5
Hg(x)-(1/8)g(2x) <§t> > CA(Dux (), Daxx (1)) (7.41)

forallx € X and t > 0. So, d(g,Jg) <5/8.
By Theorem 1.1, there exists a mapping C : X — Y satisfying the following:

(1) Cis a fixed point of J, that is,

C(2x) =8C(x) (7.42)

forall x € X.Since g: X — Yisodd, C: X — Y isan odd mapping. The mapping
C is a unique fixed point of | in the set

M={heS:d(hg)<wx). (7.43)

This implies that C is a unique mapping satisfying (7.42) such that there exists a
u € (0, o0) satisfying

Hg()-Cx) (Ut) 2 TH(Dox(t), Doxx (1)) (7.44)

forall x € X and ¢ > 0.
(2) d(J"g,C) — 0asn — oo. This implies the equalit

nlim 81—ng(2"x) =C(x) (7.45)

forall x € X.
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(3) d(h,C) < (1/(1 —a/8))d(h, Jh) for every h € M, which implies the inequality

5

d < 7.46
(8,C) < S (7.46)
from which it follows that
5
Hg(x)-C(x) 8—_tXt 21 Ch ((Dx,x(t)/ (I)Zx,x(t)) (747)
for all x € X and t > 0. This implies that the inequality (7.35) holds.
From
t
,uDg(x,y) (3t) ZLt/\ (q)Zx,Zy (t)/ q)x,y (t) ) ZLt/\ <(D2x,2y (t)/ (Dx,y <§> > ’ (748)

by (7.33), we deduce that

~ 8 n-1 t
HsnDg(anx2ny) (3t) = UDg(anxmy) (3 - 8"1) 2L Dany,ony (8" 1t> 2L 2 Oyy <<E> E> (7.49)

forallx,y € X,t>0,and n € N. Asn — oo, we deduce that
KDC(x,y)(3t) =12 (7.50)

forall x,y € X and t > 0. Thus the mapping C : X — Y satisfies (1.4).
Now, we have

C(2x) - 8C(x) = lim [817 g(2"+1x) - Sj_l g(Z”x)]

. . (7.51)
_ . - n+1 _ = n _
=8 lim 8"+1g<2 x) T g2 x)] =0

n—oo

for all x € X. Since the mapping x — C(2x) — 2C(x) is cubic (see Lemma 2.2 of [14]), from
the equality C(2x) = 8C(x), we deduce that the mapping C : X — Y is cubic. O

Corollary 7.4. Let 0 > 0 and let p be a real number with 0 < p < 3. Let X be a normed vector space
with norm || - ||. Let f : X — Y be an odd mapping satisfying (7.28), then

C(x) = lim sln (f(2x) -2f(2"x)) (7.52)
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exists for each x € X and defines a cubic mapping C : X — Y such that

) > e 759)
K121 Ct) = (8 om) e+ 5(1+ 27)Bl[xI '
forall x € X and t > 0. Note that (X, p, Tnr) is a complete LRN-space, in which L = [0, 1].
Proof. The proof follows from Theorem 7.3 by taking

Z t) =2 : (7.54)

Df(ey)(t) = :
T 0 + [yl

forall x, y € X and t > 0. Then we can choose a = 27, and we get the desired result. O

Theorem 7.5. Let X be a linear space, let (Y, p, CTy) be a complete LRN-space, and let @ be a mapping
from X?* to D} (D(x,y) is denoted by ®@,.,,) such that, for some 0 < a < 1/2,

Doy () <L Dy y(at)  (x,y €X, t>0). (7.55)

Let f : X — Y be an odd mapping satisfying (7.2), then

A(x) = Tim 2" <f<2i1> - 8f<21)) (7.56)

exists for each x € X and defines an additive mapping A : X — Y such that

1-2a 1-2a
> — .
Hf2x)-8f (x)-A(x) (£) 2L Th <q)x,x ( =, t) , Doy < = f)) (7.57)

forall x € X and t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 7.1.
Letting v := x/2 and g(x) = f(2x) = 8f(x) forall x € X in (7.7), we get

Pg(x)-2g(x/2) (5) 2L TA(Dx/2,x/2(t), P x/2(t)) (7.58)

forallx € X and ¢t > 0.
Now, we consider the linear mapping | : S — S such that

Jh(x) := 2h<’21) (7.59)

for all x € X. It is easy to see that J is a strictly contractive self-mapping on S with the
Lipschitz constant 2a.
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It follows from (7.58) and (7.55) that
//lg(x)fZg(x/Z) (5C(t) > TM ((I)x,x (t)/ q)2x,x (t)) (760)

forallx € X and t > 0.So, d(g,Jg) < 5a < c.
By Theorem 1.1, there exists a mapping A : X — Y satisfying the following;:

(1) Ais afixed point of J, that is,
A(f) “Llaw (7.61)

forallx € X.Sinceg : X — Yisodd, A : X — Y is an odd mapping. The
mapping A is a unique fixed point of ] in the set

M={heS:d(hg)<ow). (7.62)

This implies that A is a unique mapping satisfying (7.61) such that there exists a
u € (0, o0) satisfying

Hg(x)-A(x) (ut) > Ch ((I)x,x(t)/ (DZx,x(t)) (763)

forall x € X and ¢ > 0.
(2) d(J"g,A) — 0asn — oo. This implies the equality

lim 2"g<21n) = A(x) (7.64)

n—oo

for all x € X.
(3) d(h, A) < (1/(1 -2a))d(h, Jh) for each h € M, which implies the inequality

5a

A& A) < 75,

(7.65)

This implies that the inequality (7.57) holds. Since ppg(x,y) (3t)>1 @2y 2y (), it follows
that

t
HonDg(x/2,y/2n) (Bt) = UDg(x/2n,y/2m) <32—n>

(7.66)
t o 1 t
> Dy on-1,y /201 on 2r 2L Pyy EW
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forallx,y € X,t>0,and n € N. Asn — oo, we deduce that
UDA(xy) (Bt) =12 (7.67)

forall x,y € X and t > 0. Thus, the mapping A : X — Y satisfies (1.4).

Now, we have

A(2x) - 2A(x) = lim [2"g<zf_1> —2"+1g<%>]
_ : n-1 X _nn i _
= 2nl1_r)1;10 [2 g<2n_1> 2 g(2n>] =0

for all x € X. Since the mapping x — A(2x) — 8A(x) is additive (see Lemma 2.2 of [14]),
from the equality A(2x) = 2A(x), we deduce that the mapping A : X — Y is additive. O

(7.68)

Corollary 7.6. Let 6 > 0 and let p be a real number with p > 1. Let X be a normed vector space with
norm || - ||. Let f : X — Y be an odd mapping satisfying (7.28), then

Alx) = ,}ilréozn<f<z:—1> —Sf(zin)) (7.69)

exists for each x € X and defines an additive mapping A : X — Y such that

(2P - 2)t

x)-8f(x)-A(x) (£) 2 7.7
Hr@n-sfx-a) () @ ~2)t+ 51+ 2)0] 2] (7.70)
forall x € X and t > 0, where (X, u, Tar) is a complete LRN-space in which L = [0,1].
Proof. The proof follows from Theorem 7.5 by taking

U t) > t (7.71)

Df(xy) () 2 .
T e + vl

for all x,y € X and t > 0. Then we can choose a = 277, and we get the desired result. O

Theorem 7.7. Let X be a linear space, let (Y, p, Tp) be a complete LRN-space, and let @ be a mapping
from X2 to D} (D(x,y) is denoted by @) such that, for some 0 < a < 2,

(I)x,y(at)ZL (Dx/2,y/2(t) (x,y eX, t> 0) (772)

Let f : X — Y be an odd mapping satisfying (7.2), then

A(x) = lim 217< f<2"+1x> -8 f(2"x)> (7.73)
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exists for each x € X and defines an additive mapping A : X — Y such that

2-a 2—-a
e (2x)-8f (x)-A(x) (£) >, Ta <cDx,x <Wt> , Do x <Wt>> (7.74)

forall x € X and t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 7.1.
Consider the linear mapping J : S — S such that

Jh(x) := %h(Zx) (7.75)

for all x € X. It is easy to see that J is a strictly contractive self-mapping on S with the
Lipschitz constant a/2. Let g(x) = f(2x) — 8f(x), from (7.58), it follows that

5
ﬂg(x)—l/Zg(Zx) <§t> ZL t/\(cDx,x (t)/ (I)Zx,x (t)) (776)

forallx € Xand t > 0.So, d(g, Jg) <5/2. By Theorem 1.1, there exists a mapping A: X — Y
satisfying the following:

(1) Ais afixed point of J, that is,

AQ2x) = 2A(x) (7.77)

forallx € X.Sinceh: X — Yisodd, A: X — Y isan odd mapping. The mapping
A is a unique fixed point of | in the set

M={heS:d(hg) < o). (7.78)

This implies that A is a unique mapping satisfying (7.77) such that there exists a
u € (0, oo) satisfying

Hg(x)-Acx) (Ut) 2L T (D (£), Do (£)) (7.79)

forallx e X and t > 0.

(2) d(J"g,A) — 0asn — oo. This implies the equality
R S
nhm z—ng(Z x) = A(x) (7.80)

forall x € X.
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(3) d(h,A) < (1/(1 —a/2))d(h, Jh), which implies the inequality

d(g, A) < : (7.81)

2-a

This implies that the inequality (7.74) holds.

Proceeding as in the proof of Theorem 7.5, we obtain that the mapping A : X — Y
satisfies (1.4). Now, we have

A(2x) -2A(x) = lim lzl_n g(2"+1x) - 271171 g(2"x)]
: : (7.82)
= %Eﬂi‘[zmg (2'x) - né (2nx)] =0

for all x € X. Since the mapping x — A(2x) — 8A(x) is additive (see Lemma 2.2 of [14]),
from the equality A(2x) = 2A(x), we deduce that the mapping A : X — Y is additive. O

Corollary 7.8. Let 0 > 0 and let p be a real number with 0 < p < 1. Let X be a normed vector space
with norm || - ||. Let f : X — Y be an odd mapping satisfying (7.28), then

A(x) = lim 217 < f (2"+1x> -8(2"x)) (7.83)

exists for each x € X and defines an additive mapping A : X — Y such that

(t) > @2 (7.84)
Hf(2x)-8f(x)-A(x) = (2 _ Zp)t + 5(1 + 2p)9||x”p :
forall x € X and t > 0, where (X, u, Tar) is a complete LRN-space in which L = [0, 1].
Proof. The proof follows from Theorem 7.7 by taking
IOE : (7.85)
Df(xy)(£) 2 .
T 0 + Iyl
for all x,y € X and ¢t > 0. Then we can choose a = 27, and we get the desired result. O

8. Generalized Hyers-Ulam Stability of the Functional Equation (1.4):
An Even Case via Fixed-Point Method

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the
functional equation Df (x, y) = 0 in random Banach spaces, an even case.
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Theorem 8.1. Let X be a linear space, let (Y, p, Ty) be a complete LRN-space, and let @ be a mapping
from X? to D} (D(x,y) is denoted by @ ) such that, for some 0 < a < 1/16,

q)x,y (Olt) >L q)zxgy (t) (x,y eX, t> O) (81)

Let f : X — Y be an even mapping satisfying f(0) = 0 and (7.2), then

i X\ X
Q(x) = lim 16 <f<F> 4f<2n>> (8.2)
exists for each x € X and defines a quartic mapping Q : X — Y such that
1-16a 1-16a
P 2x)-4f (-0 (2L T <<Dx,x (TO s Do (Tt» (8.3)

forall x € X and t > 0.

Proof. Letting x = y in (7.2), we get
Hf Gy)-62y)+15f(y) (E) 2L Py, (£) (8.4)
forall y € X and t > 0. Replacing x by 2y in (7.2), we get
Hfay)-af Gyyeaf @y)+f ) () 21 Doy (1) (8.5)
forally € X and t > 0. By (8.4) and (8.5),

P (4x)-20f 2x)+64f (x) (BE) 2L Th (a(f 3x)-6f 2x)+15f (x)) (4E), Hf (4x)—4f Bxr)+f 2x)df (x) (F))

(8.6)
2L t/\ ((Dx,x(t)r (I)Zx,x(t))
forall x € X and t > 0. Letting g(x) := f(2x) —4f(x) for all x € X, we get
Hg(x)-16g(x/2) (58) 2L TA(Dx/2,x/2(t), P x/2(t)) (8.7)

forall x € X and t > 0. Let (S,d) be the generalized metric space defined in the proof of
Theorem 7.1.

Now we consider the linear mapping J : S — S such that Jh(x) := 16h(x/2) for all
x € X. Itis easy to see that ] is a strictly contractive self-mapping on S with the Lipschitz
constant 16a. It follows from (8.7) that

Hg(x)-16g(x/2) (5dt) >1 Ca (q)x,x(t)r (I)Zx,x(t)) (88)
forallx € X and t > 0. So,

d(g Jg) <5a< 15—6 < 0. (8.9)
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By Theorem 1.1, there exists a mapping Q : X — Y satisfying the following:
(1) Qs a fixed point of J, that is,

X

(%) = 2.0 (8.10)

forall x € X. Since g : X — Y is even with g(0) = 0,Q : X — Y is an even
mapping with Q(0) = 0. The mapping Q is a unique fixed point of ] in the set

M={heS:d(hg) < w}. (8.11)

This implies that Q is a unique mapping satisfying (8.10) such that there exists a
u € (0, o0) satisfying

g (x)-Q(x) (Ut) 2L T (D (£), Dax  (F)) (8.12)

forall x € X and t > 0.
(2) d(J"g,Q) — Oasn — oo. This implies the equality

711152016"g(2ﬁn) - Q(x) (8.13)

for all x € X.
(3) d(h,Q) < (1/(1 -16a))d(h, Jh) for every h € M, which implies the inequality

5a

. 8.14
1-16a ( )

d(g,Q) <

This implies that the inequality (8.3) holds.
Proceeding as in the proof of Theorem 7.1, we obtain that the mapping Q : X — Y

satisfies (1.4). Now, we have

X

Q(2x) - 16Q(x) = lim [16"g<2ni_1> - 16"“g<2—n)]

(8.15)
_ . n—1 x n X =
=16 lim [16 g<2n—1> -16 g(z_n>] =0

n—oo

for all x € X. Since the mapping x — Q(2x) — 4Q(x) is quartic, we get that the mapping
Q: X — Yis quartic. O

Corollary 8.2. Let 6 > 0 and let p be a real number with p > 4. Let X be a normed vector space with
norm || - ||. Let f : X — Y be an even mapping satisfying f(0) = 0 and (7.28), then

Q(x) := rll%l6ﬂ<f<zil> _4f<21n)> (8.16)



Journal of Applied Mathematics 37

exists for each x € X and defines a quartic mapping Q : X — Y such that

(2r - 16)t
X)-4f (x)-Q(x) (£) 2 17
1 @x-4f(0-Q(x) (F) @ —16)t + 51+ 20) 0[] (8.17)
forall x € X and t > 0, where (X, u, Tar) is a complete LRN-space in which L = [0, 1].
Proof. The proof follows from Theorem 8.1 by taking
Z (t) 2 : (8.18)
Df(xy)(t) 2 .
T o (I + [lyI)
for all x,y € X and t > 0. Then we can choose a« = 277, and we get the desired result. O

Theorem 8.3. Let X be a linear space, let (Y, p, CTy) be a complete LRN-space, and let @ be a mapping
from X?* to D} (®(x,y) is denoted by ®@,.,,) such that, for some 0 < a < 16,

D,y (at) > Dy pn(t) (x,y€X, t>0). (8.19)
Let f : X — Y be an even mapping satisfying f(0) = 0 and (7.2), then
— 1 1 n+1 n
Q(x) = J%WQ(Z x) —4f(2 x)> (8.20)
exists for each x € X and defines a quartic mapping Q : X — Y such that

16 —a 16 —a
i 2x)-4f (0-Q(x) (F) >, Th <(Dx,x <Tt>’ Doy < 5 t)) (8.21)

forall x € X and t > 0.

Proof. In the generalized metric space (S, d) defined in the proof of Theorem 7.1, we consider
the linear mapping J : S — S such that

Th(x) = %h(zx) (8.22)

for all x € X. It is easy to see that J is a strictly contractive self-mapping on S with the
Lipschitz constant a/16.
Letting g(x) := f(2x) —4f(x) for all x € X, by (8.7), we get

5
Hg(x)~(1/16)g(2x) <Et> 21 Ca( D x(t), Doxx () (8.23)

forallx € X and t > 0. So, d(g,Jg) <5/16.
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By Theorem 1.1, there exists a mapping Q : X — Y satisfying the following:
(1) Qs a fixed point of J, that is,

Q(2x) = 16Q(x) (8.24)

forall x € X. Since g : X — Y is even with g(0) = 0, Q : X — Y is an even
mapping with Q(0) = 0. The mapping Q is a unique fixed point of J in the set

M={heS:d(hg) < w}. (8.25)

This implies that Q is a unique mapping satisfying (8.24) such that there exists a
u € (0, o0) satisfying

,ug(x)—Q(x) (ut) 2L t/\ ((I)x,x(t)/ cDZx,x(t)) (826)

forall x € X and t > 0.
(2) d(J"g,Q) — Oasn — oo. This implies the equality

lim 2 g(2") = Q(x) (827)

for all x € X.
(3) d(g,Q) < (16/(16 —a))d(g, Jg) for each h € M, which implies the inequality

d(g,Q) <5/(16 - a). (8.28)

This implies that the inequality (8.21) holds.

Proceeding as in the proof of Theorem 7.3, we obtain that the mapping Q : X — Y
satisfies (1.4). Now, we have

1
Ton g(2”x)]

. 1
= 1611151;0 16"*1g<2 +1x> - Wg(Z x)] =0

1
Q(2x) - 16Q(x) = lim |—g(2""x) -
x x ng%o[m g< x> (8.29)

for all x € X. Since the mapping x — Q(2x) — 4Q(x) is quartic, we get that the mapping
Q: X — Yis quartic. O

Corollary 8.4. Let 0 > 0 and let p be a real number with 0 < p < 4. Let X be a normed vector space
with norm || - ||. Let f : X — Y be an even mapping satisfying f(0) = 0 and (7.28), then

Q(x) := lim % ( f (2"+1x) —4 f(2"x)> (8.30)
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exists for each x € X and defines a quartic mapping Q : X — Y such that

Hreo-1w-0w () 2 = Zp)ilf;(f?tz T (8.31)
forall x € X and t > 0, where (X, u, Tnr) is a complete LRN-space in which L = [0, 1].
Proof. The proof follows from Theorem 8.3 by taking
HDf(xy) (£) 2 : (8.32)
E+0(IxlP + Iy (")
forall x,y € X and t > 0. Then we can choose a = 27, and we get the desired result. O

Theorem 8.5. Let X be a linear space, let (Y, u, Tp) be a complete LRN-space, and let © be a mapping
from X? to D} (®(x,y) is by denoted @) such that, for some 0 < a < 1/4,

(I)x,y(dt)ZL (I)Zx,Zy(t) (x,y eX, t> 0) (833)

Let f : X — Y be an even mapping satisfying f(0) = 0 and (7.2), then

T(x) := JE%}"(f(ZL) _16f<21n)> (8.34)

exists for each x € X and defines a quadratic mapping T : X — Y such that

1-4a 1-4a
Hf(2x)-16f (x)-T(x) (£) 2L Th <CDx,x <7t> , Do x ( 0 t)) (8.35)

forall x € X and t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 7.1.
Letting g(x) = f(2x) — 16 f(x) for all x € X in (8.6), we get

Pa()—4g(x/2) (5) 2L TR(Dx/2,x/2(t), P /2(t)) (8.36)

forall x € X and t > 0. It is easy to see that the linear mapping J : S — S such that
x
Th(x) := 4h(§) (8.37)

for all x € X, is a strictly contractive self-mapping with the Lipschitz constant 4a.
It follows from (8.36) that

Hg(x)-4g(x/2) (5(Xt) 2L t/\((I)x,x(t)/ (DZx,x (t)) (838)

forallx € X and t > 0.So, d(g,Jg) < 5a < co.
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By Theorem 1.1, there exists a mapping T : X — Y satisfying the following:

(1) T is a fixed point of ], that is,

X

T(§> - }LT(x) (8.39)

forall x € X. Since g : X — Y is even with g(0) = 0, T : X — Y is an even
mapping with T(0) = 0. The mapping T is a unique fixed point of J in the set
M = {h €S :d(hg) < wo}. This implies that T is a unique mapping satisfying
(8.39) such that there exists a u € (0, o) satisfying

ﬂg(x)—T(x) (ut) 2L tA(q)x,x(t)r (DZx,x(t)) (840)

forallx e X and t > 0.

(2)d(J"g,T) — 0asn — oo. This implies the equality

. n X\

lim 4 g<2—n> =T(x) (8.41)
for all x € X.

(3) d(h,T) < (1/(1—4a))d(h, Jh) for each h € M, which implies the inequality

S5a

. 8.42
1-4a ( )

d(g T) <

This implies that the inequality (8.35) holds.

Proceeding as in the proof of Theorem 7.1, we obtain that the mapping T : X — Y
satisfies (1.4). Now, we have

T(2x) - 4T(x) = lim [4"g<zf_1) —4"+1g<21n>]
_ . n-1 X _qn i _
() 2]

for all x € X. Since the mapping x — T(2x) — 16T (x) is quadratic, we get that the mapping
T : X — Y is quadratic. O

(8.43)

Corollary 8.6. Let 0 > 0 and let p be a real number with p > 2. Let X be a normed vector space with
norm || - ||. Let f : X — Y be an even mapping satisfying f(0) = 0 and (7.28), then

T(x) := nliillfn(f(zil) - 16f<2in>) (8.44)
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exists for each x € X and defines a quadratic mapping T : X — Y such that

HF@x)-16f(x)-T(x) (1) > @~ D) (8.45)
JEOICTTORT = or — )t + 5(1 + 20) ) |x[ '
forall x € X and t > 0.
Proof. The proof follows from Theorem 8.5 by taking
D, () := i (8.46)
S 8 (lP + [lyI7) |
for all x, y € X. Then we can choose a = 277, and we get the desired result. O

Theorem 8.7. Let X be a linear space, let (Y, p, Tpr) be a complete RN-space, and let ® be a mapping
from X?* to D* (®(x, y) is denoted by ®@y.,,) such that, for some 0 < a < 4,

@,y (at) > Dyypn(t) (x,yeX, t>0). (8.47)
Let f : X — Y be an even mapping satisfying f(0) = 0 and (7.2), then
— 1; 1 n+l n
T(x):= lim (f(2"1x) -16f(2 x)) (8.48)

exists for each x € X and defines a quadratic mapping T : X — Y such that

4-a 4-a
Hfx)-16f(0)-T(x) (£) 2 Tm <<Dx,x (—5 t>,®zx,x< 5 t>> (8.49)
forall x € X and t > 0.
Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 7.1.
It is easy to see that the linear mapping J : S — S such that

Jh(x) := jzh(Zx) (8.50)

for all x € X is a strictly contractive self-mapping with the Lipschitz constant a /4.
Letting g(x) = f(2x) —16f(x) for all x € X, from (8.36), we get

5
b g () 2 (@), Do) (551)

forallx € X and t > 0.So,d(g,Jg) <5/4.
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By Theorem 1.1, there exists a mapping T : X — Y satisfying the following:
(1) T is a fixed point of J, that is,

T(2x) = AT (x) (8.52)

forall x € X. Since g : X — Yiseven with g(0) =0,T : X — Y is an even mapping
with T(0) = 0. The mapping T is a unique fixed point of J in the set

M={heS:d(hg)<wx). (8.53)

This implies that T is a unique mapping satisfying (8.52) such that there exists a
u € (0, oo) satisfying

Hg(0)-T(x) (Ut) > Tag (Do x (£), Do (£)) (8.54)

forallx € Xand t > 0.
(2)d(J"g,T) — 0asn — oo. This implies the equality

lim %g(Z"x) =T(x) (8.55)
for all x € X.
(3)d(h,T) < (1/(1 —a/4))d(h, Jh) for each h € M, which implies the inequality
d(g,T) <5/(4-a). (8.56)

This implies that the inequality (8.49) holds.

Proceeding as in the proof of Theorem 2.3, we obtain that the mapping Q : X — Y
satisfies (1.4). Now, we have

T(2x) - 4T(x) = lim [4171 g(2"*1x> - 43_1 g(Z"x)]

(8.57)

n— oo

— ; 1 n+l 1 n —

=4 lim 411—+1g<2 x>—4—ng(2 x)] =0
for all x € X. Since the mapping x — T(2x) — 16T (x) is quadratic, we get that the mapping
T : X — Y is quadratic. O

Corollary 8.8. Let 0 > 0 and let p be a real number with 0 < p < 2. Let X be a normed vector space
with norm || - ||. Let f : X — Y be an even mapping satisfying f(0) = 0 and (7.28). Then

T(x):= lim L ( f<2’”1x> ~16 f(2”x)> (8.58)

411
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exists for each x € X and defines a quadratic mapping T : X — Y such that

(4-2r)t
Hren-16i-10 (D) 2 e e o Bl (8.59)
forall x € X and t > 0, where (X, u, Tar) is a complete LRN-space in which L = [0, 1].
Proof. The proof follows from Theorem 8.5 by taking
@, ,(t) = i (8.60)
T el + [yl '
for all x,y € X and t > 0. Then we can choose a = 27, and we get the desired result. O
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