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We prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic
functional equation f(x+2y)+f(x−2y) = 4f(x+y)+4f(x−y)−6f(x)+f(2y)+f(−2y)−4f(y)−4f(−y)
in various complete random normed spaces.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] concern-
ing the stability of group homomorphisms. Hyers [2] gave a first affirmative partial answer to
the question of Ulam for Banach spaces. Hyers’ theoremwas generalized byAoki [3] for addi-
tive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy
difference. The paper of Rassias [4] has provided a lot of influence in the development of what
we call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability of functional equa-
tions. A generalization of the Rassias theorem was obtained by Găvruţa [5] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias approach.

The functional equation

f
(
x + y

)
+ f
(
x − y

)
= 2f(x) + 2f

(
y
)

(1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for
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the quadratic functional equation was proved by Cholewa [6] for mappings f : X → Y ,
where X is a normed space and Y is a Banach space. Czerwik [7] proved the generalized
Hyers-Ulam stability of the quadratic functional equation. The stability problems of several
functional equations have been extensively investigated by a number of authors, and there
are many interesting results concerning this problem (see [8–12]).

In [13], Jun and Kim consider the following cubic functional equation:

f
(
2x + y

)
+ f
(
2x − y

)
= 2f

(
x + y

)
+ 2f

(
x − y

)
+ 12f(x). (1.2)

It is easy to show that the function f(x) = x3 satisfies the functional equation (1.2), which is
called a cubic functional equation, and every solution of the cubic functional equation is said
to be a cubic mapping.

Considered the following quartic functional equation

f
(
2x + y

)
+ f
(
2x − y

)
= 4f

(
x + y

)
+ 4f

(
x − y

)
+ 24f(x) − 6f

(
y
)
. (1.3)

It is easy to show that the function f(x) = x4 satisfies the functional equation, which is called
a quartic functional equation, and every solution of the quartic functional equation is said to
be a quartic mapping. One can easily show that an odd mapping f : X → Y satisfies the
additive-quadratic-cubic-quadratic functional equation

f
(
x + 2y

)
+ f
(
x − 2y

)
= 4f

(
x + y

)
+ 4f

(
x − y

)
− 6f(x)

+ f
(
2y
)
+ f
(
−2y
)
− 4f

(
y
)
− 4f

(
−y
) (1.4)

if and only if it is an additive-cubic mapping, that is,

f
(
x + 2y

)
+ f
(
x − 2y

)
= 4f

(
x + y

)
+ 4f

(
x − y

)
− 6f(x). (1.5)

It was shown in Lemma 2.2 of [14] that g(x) := f(2x)−2f(x) and h(x) := f(2x)−8f(x)
are cubic and additive, respectively, and that f(x) = (1/6)g(x) − (1/6)h(x).

One can easily show that an even mapping f : X → Y satisfies (1.4) if and only if it is
a quadratic-quartic mapping, that is,

f
(
x + 2y

)
+ f
(
x − 2y

)
= 4f

(
x + y

)
+ 4f

(
x − y

)
− 6f(x) + 2f

(
2y
)
− 8f

(
y
)
. (1.6)

Also g(x) := f(2x)−4f(x) and h(x) := f(2x)−16f(x) are quartic and quadratic, respectively,
and f(x) = (1/12)g(x) − (1/12)h(x).

For a given mapping f : X → Y , we define

Df
(
x, y
)
:= f
(
x + 2y

)
+ f
(
x − 2y

)
− 4f

(
x + y

)
− 4f

(
x − y

)
+ 6f(x)

− f
(
2y
)
− f
(
−2y
)
+ 4f

(
y
)
+ 4f

(
−y
) (1.7)

for all x, y ∈ X.
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Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x) for all x, y ∈ X,

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall the fixed-point alternative of Diaz and Margolis.

Theorem 1.1 (see [15, 16]). Let (X, d) be a complete generalized metric space and let J : X → X be
a strictly contractive mapping with Lipschitz constant L < 1, then for each given element x ∈ X, either

d
(
Jnx, Jn+1x

)
= ∞ (1.8)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0,
(2) the sequence {Jnx} converges to a fixed point y∗ of J ,

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞},
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [17] were the first to provide applications of stability theory
of functional equations for the proof of new fixed-point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [18–21]).

2. Preliminaries

In the sequel, we adopt the usual terminology, notations, and conventions of the theory of
random normed spaces, as in [22–26]. Throughout this paper,Δ+ is the space of all probability
distribution functions, that is, the space of all mappings F : R∪{−∞,+∞} → [0, 1], such taht
F is left continuous, nondecreasing on R, F(0) = 0 and {F(+∞) = 1}. D+ is a subset of Δ+

consisting of all functions F ∈ Δ+ for which l−F(+∞) = 1, where l−f(x) denotes the left limit
of the function f at the point x, that is, l−f(x) = limt→x−f(t). The spaceΔ+ is partially ordered
by the usual pointwise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t) for all t
in R. The maximal element for Δ+ in this order is the distribution function ε0 given by

ε0(t) =

{
0, if t ≤ 0,
1, if t > 0.

(2.1)

A triangular norm (shortly t-norm) is a binary operation on the unit interval [0, 1], that
is, a function T : [0, 1] × [0, 1] → [0, 1], such that for all a, b, c ∈ [0, 1] the following four
axioms satisfied:

(T1) T(a, b) = T(b, a) (commutativity),

(T2) T(a, (T(b, c))) = T(T(a, b), c) (associativity),
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(T3) T(a, 1) = a (boundary condition),

(T4) T(a, b) ≤ T(a, c)whenever b ≤ c (monotonicity).

Basic examples are the Łukasiewicz t-norm TL, TL(a, b) = max(a+ b− 1, 0) for all a, b ∈
[0, 1] and the t-norms TP , TM, TD, where TP (a, b) := ab, TM(a, b) := min{a, b},

TD(a, b) :=

{
min(a, b), if max(a, b) = 1,
0, otherwise.

(2.2)

If T is a t-norm, then x(n)
T is defined for every x ∈ [0, 1] and n ∈ N ∪ {0} by 1, if n = 0

and T(x(n−1)
T , x) if n ≥ 1. A t-norm T is said to be of Hadžić type (we denote by T ∈ H) if the

family (x(n)
T )

n∈N is equicontinuous at x = 1 (cf. [27]).
Other important triangular norms are the following (see [28]):

(1) The Sugeno-Weber family {TSW
λ

}
λ∈[−1,∞] is defined by TSW

−1 = TD, TSW
∞ = TP and

TSW
λ

(
x, y
)
= max

(
0,
x + y − 1 + λxy

1 + λ

)
(2.3)

if λ ∈ (−1,∞).

(2) The Domby family {TDλ }
λ∈[0,∞] is defined by TD if λ = 0, TM if λ = ∞, and

TDλ
(
x, y
)
=

1

1 +
(
((1 − x)/x)λ +

(
(1 − y)/y

)λ)1/λ (2.4)

ifλ ∈ (0,∞).

(3) The Aczel-Alsina family {TAA
λ }

λ∈[0,∞] is defined by TD if λ = 0, TM if λ = ∞ and

TAA
λ

(
x, y
)
= e−(| logx|

λ+| logy|λ)1/λ (2.5)

ifλ ∈ (0,∞).

A t-norm T can be extended (by associativity) in a unique way to an n-array operation
taking for (x1, . . . , xn) ∈ [0, 1]n the value T(x1, . . . , xn) defined by

T0
i=1xi = 1, Tni=1xi = T

(
Tn−1i=1 xi, xn

)
= T(x1, . . . , xn). (2.6)

T can also be extended to a countable operation taking for any sequence (xn)n∈N in
[0, 1] the value

T∞
i=1xi = lim

n→∞
Tni=1xi. (2.7)

The limit on the right side of (6.4) exists since the sequence (Tni=1xi)n∈N
is nonincreasing and

bounded from below.
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Proposition 2.1 (see [28]). We have the following.

(1) For T ≥ TL, the following implication holds:

lim
n→∞

T∞
i=1xn+i = 1 ⇐⇒

∞∑

n=1

(1 − xn) <∞. (2.8)

(2) If T is of Hadžić type, then

lim
n→∞

T∞
i=1xn+i = 1 (2.9)

for every sequence (xn)n∈N in [0, 1] such that limn→∞xn = 1.

(3) If T ∈ {TAA
λ

}
λ∈(0,∞) ∪ {TD

λ
}
λ∈(0,∞), then

lim
n→∞

T∞
i=1xn+i = 1 ⇐⇒

∞∑

n=1

(1 − xn)α <∞. (2.10)

(4) If T ∈ {TSW
λ

}
λ∈[−1,∞), then

lim
n→∞

T∞
i=1xn+i = 1 ⇐⇒

∞∑

n=1

(1 − xn) <∞. (2.11)

Definition 2.2 (see [26]). A Random normed space (briefly, RN-space) is a triple (X, μ, T), where
X is a vector space, T is a continuous t-norm, and μ is a mapping from X into D+ such that,
the following conditions hold:

(RN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0,

(RN2) μαx(t) = μx(t/|α|) for all x ∈ X, and α/= 0,

(RN3) μx+y(t + s) ≥ T(μx(t), μy(s)) for all x, y ∈ X and t, s ≥ 0.

Definition 2.3. Let (X, μ, T) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0,
there exists positive integerN such that μxn−x(ε) > 1 − λwhenever n ≥N.

(2) A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and λ > 0, there
exists positive integerN such that μxn−xm(ε) > 1 − λwhenever n ≥ m ≥N.

(3) An RN-space (X, μ, T) is said to be complete if and only if every Cauchy sequence in
X is convergent to a point in X. A complete RN-space is said to be random Banach
space.

Theorem 2.4 (see [25]). If (X, μ, T) is an RN-space and {xn} is a sequence such that xn → x, then
limn→∞ μxn(t) = μx(t) almost everywhere.
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The theory of random normed spaces (RN-spaces) is important as a generalization
of deterministic result of linear normed spaces and also in the study of random operator
equations. The RN-spaces may also provide us with the appropriate tools to study the
geometry of nuclear physics and have important application in quantum particle physics.
The generalized Hyers-Ulam stability of different functional equations in random normed
spaces, RN-spaces, and fuzzy normed spaces has been recently studied [20, 24, 29–39].

3. Non-Archimedean Random Normed Space

By a non-Archimedean field, we mean a field K equipped with a function (valuation) | · | from
K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r + s| ≤ max{|r|, |s|} for all
r, s ∈ K. Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. By the trivial valuation, we mean the
mapping | · | taking everything but 0 into 1 and |0| = 0. Let X be a vector space over a field
K with a non-Archimedean nontrivial valuation | · |. A function ‖ · ‖ : X → [0,∞) is called a
non-Archimedean norm if it satisfies the following conditions:

(NAN1) ‖x‖ = 0 if and only if x = 0,

(NAN2) for any r ∈ K and x ∈ X, ‖rx‖ = |r|‖x‖,
(NAN3) the strong triangle inequality (ultrametric), namely,

∥∥x + y
∥∥ ≤ max

{
‖x‖,

∥∥y
∥∥} (

x, y ∈ X
)
, (3.1)

then (X, ‖ · ‖) is called a non-Archimedean normed space. Due to the fact that

‖xn − xm‖ ≤ max
{∥∥xj+1 − xj

∥∥ : m ≤ j ≤ n − 1
}

(n > m), (3.2)

a sequence {xn} is a Cauchy sequence if and only if {xn+1 − xn} converges to zero in a non-
Archimedean normed space. By a complete non-Archimedean normed space, we mean one
in which every Cauchy sequence is convergent.

In 1897, Hensel [40] discovered the p-adic numbers of as a number theoretical
analogues of power series in complex analysis. Fix a prime number p. For any nonzero
rational number x, there exists a unique integer nx ∈ Z such that x = (a/b)pnx , where a
and b are integers not divisible by p. Then |x|p := p−nx defines a non-Archimedean norm on
Q. The completion of Q with respect to the metric d(x, y) = |x − y|p is denoted by Qp, which
is called the p-adic number field.

Throughout the paper, we assume that X is a vector space and Y is a complete non-
Archimedean normed space.

Definition 3.1. A non-Archimedean random normed space (briefly, non-Archimedean RN-space)
is a triple (X, μ, T), where X is a linear space over a non-Archimedean field K, T is a
continuous t-norm, and μ is a mapping from X into D+ such that the following conditions
hold:

(NA-RN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0,

(NA-RN2) μαx(t) = μx(t/|α|) for all x ∈ X, t > 0, and α/= 0,

(NA-RN3) μx+y(max{t, s}) ≥ T(μx(t), μy(s)) for all x, y, z ∈ X and t, s ≥ 0.
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It is easy to see that if (NA-RN3) holds, then so is

(RN3) μx+y(t + s) ≥ T(μx(t), μy(s)).

As a classical example, if (X, ‖.‖) is a non-Archimedean normed linear space, then the
triple (X, μ, TM), where

μx(t) =

{
0, t ≤ ‖x‖,
1, t > ‖x‖,

(3.3)

is a non-Archimedean RN-space.

Example 3.2. Let (X, ‖ · ‖) be a non-Archimedean normed linear space. Define

μx(t) =
t

t + ‖x‖ (x ∈ X, t > 0), (3.4)

then (X, μ, TM) is a non-Archimedean RN-space.

Definition 3.3. Let (X, μ, T) be a non-Archimedean RN-space. Let {xn} be a sequence in X,
then {xn} is said to be convergent if there exists x ∈ X such that

lim
n→∞

μxn−x(t) = 1 (3.5)

for all t > 0. In that case, x is called the limit of the sequence {xn}.

A sequence {xn} in X is called a Cauchy sequence if for each ε > 0 and each t > 0 there
exists n0 such that for all n ≥ n0 and all p > 0, we have μxn+p−xn(t) > 1 − ε.

If each Cauchy sequence is convergent, then the random norm is said to be complete
and the non-Archimedean RN-space is called a non-Archimedean random Banach space.

Remark 3.4 (see [41]). Let (X, μ, TM) be a non-Archimedean RN-space, then

μxn+p−xn(t) ≥ min
{
μxn+j+1−xn+j (t) : j = 0, 1, 2, . . . , p − 1

}
. (3.6)

So, the sequence {xn} is a Cauchy sequence if for each ε > 0 and t > 0 there exists n0 such that
for all n ≥ n0,

μxn+1−xn(t) > 1 − ε. (3.7)

4. Generalized Ulam-Hyers Stability for a Quartic
Functional Equation in Non-Archimedean RN-Spaces of
Functional Equation (1.4): An Odd Case

Let K be a non-Archimedean field, let X be a vector space over K, and let (Y, μ, T) be a non-
Archimedean random Banach space over K.
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Next, we define a random approximately AQCQ mapping. Let Ψ be a distribution
function on X ×X × [0,∞) such that Ψ(x, y, ·) is nondecreasing and

Ψ(cx, cx, t) ≥ Ψ
(
x, x,

t

|c|

)
(x ∈ X, c /= 0). (4.1)

Definition 4.1. A mapping f : X → Y is said to be Ψ-approximately AQCQ if

μDf(x,y)(t) ≥ Ψ
(
x, y, t

) (
x, y ∈ X, t > 0

)
. (4.2)

In this section, we assume that 2/= 0 in K (i.e., characteristic of K is not 2). Our main
result, in this section, is the following.

We prove the generalized Hyers-Ulam stability of the functional equationDf(x, y) = 0
in non-Archimedean random spaces, an odd case.

Theorem 4.2. Let K be a non-Archimedean field, let X be a vector space over K and let (Y, μ, T)
be a non-Archimedean random Banach space over K. Let f : X → Y be an odd mapping and Ψ-
approximately AQCQ mapping. If for some α ∈ R, α > 0, and some integer k, k > 3 with |2k| < α,

Ψ
(
2−kx, 2−ky, t

)
≥ Ψ
(
x, y, αt

)
(x ∈ X, t > 0), (4.3)

lim
n→∞

T∞
j=nM

(

2x,
αjt

|8|kj

)

= 1 (x ∈ X, t > 0), (4.4)

then there exists a unique cubic mapping C : X → Y such that

μf(x)−2f(x/2)−C(x/2)(t) ≥ T∞
i=1M

(

x,
αi+1t

|8|ki

)

(4.5)

for all x ∈ X and t > 0, where

M(x, t) := Tk−1
[

Ψ
(
x

2
,
x

2
,
t

|4|

)
,Ψ
(
x,
x

2
, t
)
, . . . ,Ψ

(
2k−1x
2

,
2k−1x
2

,
t

|4|

)

,Ψ

(

2k−1x,
2k−1x
2

, t

)]

(x ∈ X, t > 0).
(4.6)

Proof. Letting x = y in (4.2), we get

μf(3y)−4f(2y)+5f(y)(t) ≥ Ψ
(
y, y, t

)
(4.7)

for all y ∈ X and t > 0. Replacing x by 2y in (4.2), we get

μf(4y)−4f(3y)+6f(2y)−4f(y)(t) ≥ Ψ
(
2y, y, t

)
(4.8)



Journal of Applied Mathematics 9

for all y ∈ X and t > 0. By (4.7) and (4.8), we have

μf(4y)−10f(2y)+16f(y)(t) ≥ T
(
μ4(f(3y)−4f(2y)+5f(y))(t), μf(4y)−4f(3y)+6f(2y)−4f(y)(t)

)

= T
(
μf(3y)−4f(2y)+5f(y)

(
t

|4|

)
, μf(4y)−4f(3y)+6f(2y)−4f(y)(t)

)

≥ T
(
Ψ
(
y, y,

t

|4|

)
,Ψ
(
2y, y, t

)
)

(4.9)

for all y ∈ X and t > 0. Letting y := x/2 and g(x) := f(2x) − 2f(x) for all x ∈ X in (4.9), we
get

μg(x)−8g(x/2)(t) ≥ T
(
Ψ
(
x

2
,
x

2
,
t

|4|

)
,Ψ
(
x,
x

2
, t
))

(4.10)

for all x ∈ X and t > 0. Now, we show by induction on j that for all x ∈ X, t > 0 and j ≥ 1,

μg(2j−1x)−8j g(x/2)(t)

≥Mj(x, t)

:= T2j−1
[

Ψ
(
x

2
,
x

2
,
t

|4|

)
,Ψ
(
x,
x

2
, t
)
, . . . ,Ψ

(
2j−1x
2

,
2j−1x
2

,
t

|4|

)

,Ψ

(

2j−1x,
2j−1x
2

, t

)]

.

(4.11)

Putting j = 1 in (4.11), we obtain (4.10). Assume that (4.11) holds for some j ≥ 1. Replacing x
by 2jx in (4.10), we get

μg(2jx)−8g(2j−1x)(t) ≥ T
(
Ψ
(
2j−1x, 2j−1x,

t

|4|

)
,Ψ
(
2jx, 2j−1x, t

))
. (4.12)

Since |8| ≤ 1,

μg(2jx)−8j+1g(x/2)(t) ≥ T
(
μg(2jx)−8g(2j−1x)(t), μ8g(2j−1x)−8j+1g(x/2)(t)

)

= T
(
μg(2jx)−8g(2j−1x)(t), μg(2j−1x)−8j g(x/2)

(
t

|8|

))

≥ T2
(
Ψ
(
2j−1x, 2j−1x,

t

|4|

)
,Ψ
(
2jx, 2j−1x, t

)
,Mj(x, t)

)

=Mj+1(x, t)

(4.13)

for all x ∈ X and t > 0. Thus, (4.11) holds for all j ≥ 2. In particular,

μg(2k−1x)−8kg(x/2)(t) ≥M(x, t) (x ∈ X, t > 0). (4.14)
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Replacing x by 2−(kn+k−1)x in (4.14) and using inequality (4.3), we obtain

μg(x/2kn)−8kg(x/2k(n+1))(t) ≥M
(

2x
2k(n+1)

, t

)
(x ∈ X, t > 0, n = 0, 1, 2, . . .). (4.15)

Then

μ8kng(x/2kn)−8k(n+1)g(x/2k(n+1))(t) ≥M
(

2x,
αn+1
∣
∣8k(n+1)

∣
∣ t

)

(x ∈ X, t > 0, n = 0, 1, 2, . . .). (4.16)

Hence

μ8kng(x/2kn)−8k(n+p)g(x/2k(n+p))(t) ≥ T
n+p
j=n

(
μ8kjg(x/2kj )−8k(j+p)g(x/2k(j+p))(t)

)

≥ Tn+pj=n M

⎛

⎝2x,
αj+1

∣∣∣
(
8k
)j+1∣∣∣

t

⎞

⎠

≥ Tn+pj=n M

⎛

⎝2x,
αj+1

∣∣∣
(
8k
)j+1∣∣∣

t

⎞

⎠ (x ∈ X, t > 0, n = 0, 1, 2, . . .).

(4.17)

Since

lim
n→∞

T∞
j=nM

⎛

⎝2x,
αj+1

∣∣∣
(
8k
)j+1∣∣∣

t

⎞

⎠ = 1 (x ∈ X, t > 0), (4.18)

then

{
8kng

(
x

2kn

)}

n∈N

(4.19)

is a Cauchy sequence in the non-Archimedean random Banach space (Y, μ, T). Hence we can
define a mapping C : X → Y such that

lim
n→∞

μ(88k)ng(x/2kn)−C(x)(t) = 1 (x ∈ X, t > 0). (4.20)

Next for each n ≥ 1, x ∈ X and t > 0,

μg(x)−(88k)ng(x/2kn)(t) = μ∑n−1
i=0 (88k)ig(x/2ki)−(88k)i+1g(x/2k(i+1))(t)

≥ Tn−1i=0

(
μ(88k)ig(x/2ki)−(88k)i+1g(x/2k(i+1))(t)

)

≥ Tn−1i=0 M

(

2x,
αi+1t
∣∣8k
∣∣i+1

)

.

(4.21)
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Therefore,

μg(x)−C(x)(t) ≥ T
(
μg(x)−(88k)ng(x/2kn)(t), μ(88k)ng(x/2kn)−C(x)(t)

)

≥ T
(

Tn−1i=0 M

(

2x,
αi+1t
∣
∣8k
∣
∣i+1

)

, μ(88k)ng(x/2kn)−C(x)(t)

)

.
(4.22)

By letting n → ∞, we obtain

μg(x)−C(x)(t) ≥ T∞
i=1M

(

2x,
αi+1t
∣
∣8k
∣
∣i+1

)

. (4.23)

So,

μf(x)−2f(x/2)−C(x/2)(t) ≥ T∞
i=1M

(

x,
αi+1t
∣∣8k
∣∣i+1

)

. (4.24)

This proves (4.5). From Dg(x, y) = Df(2x, 2y) − 2Df(x, y), by (4.2), we deduce that

μDf(2x,2y)(t) ≥ Ψ
(
2x, 2y, t

)
,

μ−2Df(x,y)(t) = μDf(x,y)
(
t

|2|

)
≥ μDf(x,y)(t) ≥ Ψ

(
x, y, t

)
,

(4.25)

and so, by (NA-RN3) and (4.2), we obtain

μDg(x,y)(t) ≥ T
(
μDf(2x,2y)(t), μ−2Df(x,y)(t)

)
≥ T
(
Ψ
(
2x, 2y, t

)
,Ψ
(
x, y, t

))
:=N

(
x, y, t

)
.
(4.26)

It follows that

μ8knDg(x/2kn,y/2kn)(t) = μDg(x/2kn,y/2kn)

(
t

|8|kn

)

≥N
(

x

2kn
,
y

2kn
,

t

|8|kn

)

≥ · · · ≥N
(

x, y,
αn−1t

|8|k(n−1)

) (4.27)

for all x, y ∈ X, t > 0, and n ∈ N. Since

lim
n→∞

N

(

x, y,
αn−1t

|8|k(n−1)

)

= 1 (4.28)
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for all x, y ∈ X and t > 0, by Theorem 2.4, we deduce that

μDC(x,y)(t) = 1 (4.29)

for all x, y ∈ X and t > 0. Thus, the mapping C : X → Y satisfies (1.4).
Now, we have

C(2x) − 8C(x) = lim
n→∞

[
8ng
(

x

2n−1

)
− 8n+1g

( x
2n
)]

= 8 lim
n→∞

[
8n−1g

(
x

2n−1

)
− 8ng

( x
2n
)]

= 0

(4.30)

for all x ∈ X. Since the mapping x → C(2x) − 2C(x) is cubic (see Lemma 2.2 of [14]), from
the equality C(2x) = 8C(x), we deduce that the mapping C : X → Y is cubic.

Corollary 4.3. LetK be a non-Archimedean field, letX be a vector space overK, and let (Y, μ, T) be a
non-Archimedean random Banach space overK under a t-norm T ∈ H. Let f : X → Y be an odd and
Ψ-approximately AQCQmapping. If, for some α ∈ R, α > 0, and some integer k, k > 3, with |2k| < α,

Ψ
(
2−kx, 2−ky, t

)
≥ Ψ
(
x, y, αt

)
(x ∈ X, t > 0), (4.31)

then there exists a unique cubic mapping C : X → Y such that

μf(x)−2f(x/2)−C(x/2)(t) ≥ T∞
i=1M

(

x,
αi+1t

|8|ki

)

(4.32)

for all x ∈ X and t > 0.

Proof. Since

lim
n→∞

M

(

x,
αjt

|8|kj

)

= 1 (x ∈ X, t > 0) (4.33)

and T is of Hadžić type, from Proposition 2.1, it follows that

lim
n→∞

T∞
j=nM

(

x,
αjt

|8|kj

)

= 1 (x ∈ X, t > 0). (4.34)

Now, we can apply Theorem 4.2 to obtain the result.

Example 4.4. Let (X, μ, TM) be non-Archimedean random normed space in which

μx(t) =
t

t + ‖x‖ (x ∈ X, t > 0). (4.35)
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And let (Y, μ, TM) be a complete non-Archimedean random normed space (see Example 3.2).
Define

Ψ
(
x, y, t

)
=

t

1 + t
. (4.36)

It is easy to see that (4.3) holds for α = 1. Also, since

M(x, t) =
t

1 + t
, (4.37)

we have

lim
n→∞

T∞
M,j=nM

(

x,
αjt

|8|kj

)

= lim
n→∞

(

lim
m→∞

TmM,j=nM

(

x,
t

|8|kj

))

= lim
n→∞

lim
m→∞

(
t

t +
∣∣8k
∣∣n

)

= 1 (x ∈ X, t > 0).

(4.38)

Let f : X → Y be an odd and Ψ-approximately AQCQ mapping. Thus, all the conditions of
Theorem 4.2 hold, and so there exists a unique cubic mapping C : X → Y such that

μf(x)−2f(x/2)−C(x/2)(t) ≥
t

t +
∣∣8k
∣∣ . (4.39)

Theorem 4.5. Let K be a non-Archimedean field, let X be a vector space over K, and let (Y, μ, T)
be a non-Archimedean random Banach space over K. Let f : X → Y be an odd mapping and Ψ-
approximately AQCQ mapping. If for some α ∈ R, α > 0, and some integer k, k > 1 with |2k| < α,

Ψ
(
2−kx, 2−ky, t

)
≥ Ψ
(
x, y, αt

)
(x ∈ X, t > 0),

lim
n→∞

T∞
j=nM

(

2x,
αjt

|2|kj

)

= 1 (x ∈ X, t > 0),
(4.40)

then there exists a unique additive mapping A : X → Y such that

μf(x)−8f(x/2)−A(x/2)(t) ≥ T∞
i=1M

(

x,
αi+1t

|2|ki

)

(4.41)
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for all x ∈ X and t > 0, where

M(x, t) := Tk−1
[

Ψ
(
x

2
,
x

2
,
t

|4|

)
,Ψ
(
x,
x

2
, t
)
, . . . ,Ψ

(
2k−1x
2

,
2k−1x
2

,
t

|4|

)

,Ψ

(

2k−1x,
2k−1x
2

, t

)]

(x ∈ X, t > 0)
(4.42)

Proof. Letting y := x/2 and g(x) := f(2x) − 8f(x) for all x ∈ X in (4.9), we get

μg(x)−2g(x/2)(t) ≥ T
(
Ψ
(
x

2
,
x

2
,
t

|4|

)
,Ψ
(
x,
x

2
, t
))

(4.43)

for all x ∈ X and t > 0.
The rest of the proof is similar to the proof of Theorem 4.2.

Corollary 4.6. LetK be a non-Archimedean field, let X be a vector space overK, and let (Y, μ, T) be
a non-Archimedean random Banach space over K under a t-norm T ∈ H. Let f : X → Y be an odd
and Ψ-approximately AQCQ mapping. If, for some α ∈ R, α > 0, and some integer k, k > 1, with
|2k| < α,

Ψ
(
2−kx, 2−ky, t

)
≥ Ψ
(
x, y, αt

)
(x ∈ X, t > 0), (4.44)

then there exists a unique additive mapping A : X → Y such that

μf(x)−8f(x/2)−A(x/2)(t) ≥ T∞
i=1M

(

x,
αi+1t

|2|ki

)

(4.45)

for all x ∈ X and t > 0.

Proof. Since

lim
n→∞

M

(

x,
αjt

|2|kj

)

= 1 (x ∈ X, t > 0) (4.46)

and T is of Hadžić type, from Proposition 2.1, it follows that

lim
n→∞

T∞
j=nM

(

x,
αjt

|2|kj

)

= 1 (x ∈ X, t > 0). (4.47)

Now, we can apply Theorem 4.5 to obtain the result.
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Example 4.7. Let (X, μ, TM) non-Archimedean random normed space in which

μx(t) =
t

t + ‖x‖ (x ∈ X, t > 0), (4.48)

and let (Y, μ, TM) be a complete non-Archimedean random normed space (see Example 3.2).
Define

Ψ
(
x, y, t

)
=

t

1 + t
. (4.49)

It is easy to see that (4.3) holds for α = 1. Also, since

M(x, t) =
t

1 + t
, (4.50)

we have

lim
n→∞

T∞
M,j=nM

(

x,
αjt

|2|kj

)

= lim
n→∞

(

lim
m→∞

TmM,j=nM

(

x,
t

|2|kj

))

= lim
n→∞

lim
m→∞

(
t

t +
∣∣2k
∣∣n

)

= 1 (x ∈ X, t > 0).

(4.51)

Let f : X → Y be an odd and Ψ-approximately AQCQ mapping. Thus, all the conditions of
Theorem 4.2 hold, and so there exists a unique additive mapping A : X → Y such that

μf(x)−8f(x/2)−A(x/2)(t) ≥
t

t +
∣∣2k
∣∣ . (4.52)

5. Generalized Hyers-Ulam Stability of the Functional Equation (1.4)
in Non-Archimedean Random Normed Spaces: An Even Case

Now, we prove the generalized Hyers-Ulam stability of the functional equation Df(x, y) = 0
in non-Archimedean Banach spaces, an even case.

Theorem 5.1. Let K be a non-Archimedean field, let X be a vector space over K, and let (Y, μ, T) be
a non-Archimedean random Banach space overK. Let f : X → Y be an even mapping, f(0) = 0, and
Ψ-approximately AQCQ mapping. If for some α ∈ R, α > 0, and some integer k, k > 4 with |2k| < α,

Ψ
(
2−kx, 2−ky, t

)
≥ Ψ
(
x, y, αt

)
(x ∈ X, t > 0),

lim
n→∞

T∞
j=nM

(

2x,
αjt

|16|kj

)

= 1 (x ∈ X, t > 0),
(5.1)
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then there exists a unique quartic mapping Q : X → Y such that

μf(x)−4f(x/2)−Q(x/2)(t) ≥ T∞
i=1M

(

x,
αi+1t

|16|ki

)

(5.2)

for all x ∈ X and t > 0, where

M(x, t) := Tk−1
[

Ψ
(
x

2
,
x

2
,
t

|4|

)
,Ψ
(
x,
x

2
, t
)
, . . . ,Ψ

(
2k−1x
2

,
2k−1x
2

,
t

|4|

)

,Ψ

(

2k−1x,
2k−1x
2

, t

)]

(x ∈ X, t > 0).
(5.3)

Proof. Letting x = y in (4.2), we get

μf(3y)−6f(2y)+15f(y)(t) ≥ Ψ
(
y, y, t

)
(5.4)

for all y ∈ X and t > 0. Replacing x by 2y in (4.2), we get

μf(4y)−4f(3y)+4f(2y)+4f(y)(t) ≥ Ψ
(
2y, y, t

)
(5.5)

for all y ∈ X and t > 0. By (5.4) and (5.5), we have

μf(4y)−20f(2y)+64f(y)(t) ≥ T
(
μ4(f(3y)−4f(2y)+5f(y))(t), μf(4y)−4f(3y)+6f(2y)−4f(y)(t)

)

= T
(
μf(3y)−4f(2y)+5f(y)

(
t

|4|

)
, μf(4y)−4f(3y)+6f(2y)−4f(y)(t)

)

≥ T
(
Ψ
(
y, y,

t

|4|

)
,Ψ
(
2y, y, t

)
)

(5.6)

for all y ∈ X and t > 0. Letting y := x/2 and g(x) := f(2x) − 4f(x) for all x ∈ X in (5.6), we
get

μg(x)−16g(x/2)(t) ≥ T
(
Ψ
(
x

2
,
x

2
,
t

|4|

)
,Ψ
(
x,
x

2
, t
))

(5.7)

for all x ∈ X and t > 0.
The rest of the proof is similar to the proof of Theorem 4.2.

Corollary 5.2. Let K be a non-Archimedean field, let X be a vector space over K, and let (Y, μ, T)
be a non-Archimedean random Banach space over K under a t-norm T ∈ H. Let f : X → Y be an
even, f(0) = 0, and Ψ-approximately AQCQ mapping. If, for some α ∈ R,α > 0, and some integer
k, k > 4, with |2k| < α,

Ψ
(
2−kx, 2−ky, t

)
≥ Ψ
(
x, y, αt

)
(x ∈ X, t > 0), (5.8)
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then there exists a unique quartic mapping Q : X → Y such that

μf(x)−4f(x/2)−Q(x/2)(t) ≥ T∞
i=1M

(

x,
αi+1t

|16|ki

)

(5.9)

for all x ∈ X and t > 0.

Proof. Since

lim
n→∞

M

(

x,
αjt

|16|kj

)

= 1 (x ∈ X, t > 0) (5.10)

and T is of Hadžić type, from Proposition 2.1, it follows that

lim
n→∞

T∞
j=nM

(

x,
αjt

|16|kj

)

= 1 (x ∈ X, t > 0). (5.11)

Now, we can apply Theorem 5.1 to obtain the result.

Example 5.3. Let (X, μ, TM) be non-Archimedean random normed space in which

μx(t) =
t

t + ‖x‖ (x ∈ X, t > 0). (5.12)

And let (Y, μ, TM) be a complete non-Archimedean random normed space (see Example 3.2).
Define

Ψ
(
x, y, t

)
=

t

1 + t
. (5.13)

It is easy to see that (4.3) holds for α = 1. Also, since

M(x, t) =
t

1 + t
, (5.14)

we have

lim
n→∞

T∞
M,j=nM

(

x,
αjt

|16|kj

)

= lim
n→∞

(

lim
m→∞

TmM,j=nM

(

x,
t

|16|kj

))

= lim
n→∞

lim
m→∞

(
t

t +
∣∣16k

∣∣n

)

= 1 (x ∈ X, t > 0).

(5.15)
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Let f : X → Y be an even, f(0) = 0, and Ψ-approximately AQCQ mapping. Thus all the
conditions of Theorem 5.1 hold, and so there exists a unique quartic mapping Q : X → Y
such that

μf(x)−4f(x/2)−Q(x/2)(t) ≥
t

t +
∣
∣16k

∣
∣ . (5.16)

Theorem 5.4. Let K be a non-Archimedean field, let X be a vector space over K and let (Y, μ, T) be
a non-Archimedean random Banach space overK. Let f : X → Y be an even mapping, f(0) = 0 and
Ψ-approximately AQCQ mapping. If for some α ∈ R, α > 0, and some integer k, k > 2 with |2k| < α,

Ψ
(
2−kx, 2−ky, t

)
≥ Ψ
(
x, y, αt

)
(x ∈ X, t > 0),

lim
n→∞

T∞
j=nM

(

2x,
αjt

|4|kj

)

= 1 (x ∈ X, t > 0),
(5.17)

then there exists a unique quadratic mapping Q : X → Y such that

μf(x)−16f(x/2)−Q(x/2)(t) ≥ T∞
i=1M

(

x,
αi+1t

|4|ki

)

(5.18)

for all x ∈ X and t > 0, where

M(x, t) := Tk−1
[

Ψ
(
x

2
,
x

2
,
t

|4|

)
,Ψ
(
x,
x

2
, t
)
, . . . ,Ψ

(
2k−1x
2

,
2k−1x
2

,
t

|4|

)

,Ψ

(

2k−1x,
2k−1x
2

, t

)]

(x ∈ X, t > 0).
(5.19)

Proof. Letting y := x/2 and g(x) := f(2x) − 16f(x) for all x ∈ X in (5.6), we get

μg(x)−4g(x/2)(t) ≥ T
(
Ψ
(
x

2
,
x

2
,
t

|4|

)
,Ψ
(
x,
x

2
, t
))

(5.20)

for all x ∈ X and t > 0.
The rest of the proof is similar to the proof of Theorem 5.1.

Corollary 5.5. Let K be a non-Archimedean field, let X be a vector space over K, and let (Y, μ, T)
be a non-Archimedean random Banach space over K under a t-norm T ∈ H. Let f : X → Y be an
even, f(0) = 0, and Ψ-approximately AQCQ mapping. If, for some α ∈ R, α > 0, and some integer
k, k > 2, with |2k| < α,

Ψ
(
2−kx, 2−ky, t

)
≥ Ψ
(
x, y, αt

)
(x ∈ X, t > 0), (5.21)
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then there exists a unique quadratic mapping Q : X → Y such that

μf(x)−16f(x/2)−Q(x/2)(t) ≥ T∞
i=1M

(

x,
αi+1t

|4|ki

)

(5.22)

for all x ∈ X and t > 0.

Proof. Since

lim
n→∞

M

(

x,
αjt

|4|kj

)

= 1 (x ∈ X, t > 0) (5.23)

and T is of Hadžić type, from Proposition 2.1, it follows that

lim
n→∞

T∞
j=nM

(

x,
αjt

|4|kj

)

= 1 (x ∈ X, t > 0). (5.24)

Now, we can apply Theorem 5.4 to obtain the result.

Example 5.6. Let (X, μ, TM) be a non-Archimedean random normed space in which

μx(t) =
t

t + ‖x‖ (x ∈ X, t > 0). (5.25)

And let (Y, μ, TM) be a complete non-Archimedean random normed space (see Example 3.2).
Define

Ψ
(
x, y, t

)
=

t

1 + t
. (5.26)

It is easy to see that (4.3) holds for α = 1. Also, since

M(x, t) =
t

1 + t
, (5.27)

we have

lim
n→∞

T∞
M,j=nM

(

x,
αjt

|4|kj

)

= lim
n→∞

(

lim
m→∞

TmM,j=nM

(

x,
t

|4|kj

))

= lim
n→∞

lim
m→∞

(
t

t +
∣∣4k
∣∣n

)

= 1 (x ∈ X, t > 0).

(5.28)
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Let f : X → Y be an even, f(0) = 0, and Ψ-approximately AQCQ mapping. Thus, all the
conditions of Theorem 5.4 hold, and so there exists a unique quadratic mapping Q : X → Y
such that

μf(x)−16f(x/2)−Q(x/2)(t) ≥
t

t +
∣
∣4k
∣
∣ . (5.29)

6. Latticetic Random Normed Space

Let L = (L,≥L) be a complete lattice, that is, a partially ordered set in which every nonempty
subset admits supremum and infimum, and 0L = infL, 1L = supL. The space of latticetic
random distribution functions, denoted by Δ+

L, is defined as the set of all mappings F : R ∪
{−∞,+∞} → L such that F is left continuous and nondecreasing on R, F(0) = 0L, F(+∞) =
1L.

D+
L ⊆ Δ+

L is defined as D+
L = {F ∈ Δ+

L : l−F(+∞) = 1L}, where l−f(x) denotes the left
limit of the function f at the point x. The spaceΔ+

L is partially ordered by the usual pointwise
ordering of functions, that is, F ≥ G if and only if F(t)≥L G(t) for all t in R. The maximal
element for Δ+

L in this order is the distribution function given by

ε0(t) =

{
0L, if t ≤ 0,
1L, if t > 0.

(6.1)

In Section 2, we defined t-norms on [0, 1], and now we extend t-norms on a complete
lattice.

Definition 6.1 (see [42]). A triangular norm (t-norm) on L is a mappingT : (L)2 → L satisfying
the following conditions:

(a) (for all x ∈ L)(T(x, 1L) = x) (boundary condition);

(b) (for all (x, y) ∈ (L)2)(T(x, y) = T(y, x)) (commutativity);

(c) (for all (x, y, z) ∈ (L)3)(T(x,T(y, z)) = T(T(x, y), z)) (associativity);

(d) (for all (x, x′, y, y′) ∈ (L)4)(x≤L x′and y≤L y′ ⇒ T(x, y)≤LT(x′, y′)) (monotonic-
ity).

Let {xn} be a sequence in L converges to x ∈ L (equipped order topology). The t-norm
T is said to be a continuous t-norm if

lim
n→∞

T
(
xn, y

)
= T
(
x, y
)

(6.2)

for all y ∈ L.
A t-normT can be extended (by associativity) in a unique way to an n-array operation

taking for (x1, . . . , xn) ∈ Ln the value T(x1, . . . , xn) defined by

T0
i=1xi = 1, Tn

i=1xi = T
(
Tn−1

i=1 xi, xn
)
= T(x1, . . . , xn). (6.3)
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T can also be extended to a countable operation taking for any sequence (xn)n∈N in L
the value

T∞
i=1xi = lim

n→∞
Tn
i=1xi. (6.4)

The limit on the right side of (6.4) exists since the sequence (Tn
i=1xi)n∈N

is nonincreasing and
bounded from below.

Note that we put T = T whenever L = [0, 1]. If T is a t-norm, then x(n)
T is defined for

every x ∈ [0, 1] and n ∈ N ∪ {0} by 1 if n = 0 and T(x(n−1)
T , x) if n ≥ 1. A t-norm T is said to

be of Hadžić type, (we denote by T ∈ H) if the family (x(n)
T )

n∈N is equicontinuous at x = 1 (cf.
[27]).

Definition 6.2 (see [42]). A continuous t-normT on L = [0, 1]2 is said to be continuous t–
representable if there exist a continuous t-norm ∗ and a continuous t-conorm � on [0, 1] such
that, for all x = (x1, x2), y = (y1, y2) ∈ L,

T
(
x, y
)
=
(
x1 ∗ y1, x2 � y2

)
. (6.5)

For example,

T(a, b) = (a1b1,min{a2 + b2, 1}),
M(a, b) = (min{a1, b1},max{a2, b2})

(6.6)

for all a = (a1, a2), b = (b1, b2) ∈ [0, 1]2 are continuous t-representable. Define the mapping
T∧ from L2 to L by

T∧
(
x, y
)
=

⎧
⎨

⎩

x, if y≥L x,

y, if x≥L y.
(6.7)

Recall (see [27, 28]) that if {xn} is a given sequence in L, (T∧)
n
i=1 xi is defined

recurrently by (T∧)
1
i=1 xi = x1 and (T∧)

n
i=1 xi = T∧((T∧)

n−1
i=1 xi, xn) for all n ≥ 2.

A negation on L is any decreasing mapping N : L → L satisfying N(0L) = 1L and
N(1L) = 0L. If N(N(x)) = x, for all x ∈ L, then N is called an involutive negation. In the
following, L is endowed with a (fixed) negation N.

Definition 6.3. A latticetic random normed space (in short LRN-space) is a triple (X, μ,T∧), where
X is a vector space and μ is a mapping from X into D+

L such that the following conditions
hold:

(LRN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0,

(LRN2) μαx(t) = μx(t/|α|) for all x in X, α/= 0 and t ≥ 0,

(LRN3) μx+y(t + s)≥L T∧(μx(t), μy(s)) for all x, y ∈ X and t, s ≥ 0.

We note that from (LPN2) it follows that μ−x(t) = μx(t) for all x ∈ X and t ≥ 0.
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Example 6.4. Let L = [0, 1] × [0, 1] and operation ≤L be defined by

L = {(a1, a2) : (a1, a2) ∈ [0, 1] × [0, 1], a1 + a2 ≤ 1},

(a1, a2) ≤L (b1, b2) ⇐⇒ a1 ≤ b1, a2 ≥ b2, ∀a = (a1, a2), b = (b1, b2) ∈ L.
(6.8)

then (L,≤L) is a complete lattice (see [42]). In this complete lattice, we denote its units by 0L =
(0, 1) and 1L = (1, 0). Let (X, ‖ · ‖) be a normed space. Let T(a, b) = (min{a1, b1},max{a2, b2})
for all a = (a1, a2), b = (b1, b2) ∈ [0, 1] × [0, 1] and μ be a mapping defined by

μx(t) =
(

t

t + ‖x‖ ,
‖x‖

t + ‖x‖

)
(t ∈ R

+), (6.9)

then (X, μ,T) is a latticetic random normed spaces.
If (X, μ,T∧) is a latticetic random normed space, then

V = {V (ε, λ) : ε >L 0L, λ ∈ L \ {0L, 1L}}, V (ε, λ) = {x ∈ X : Fx(ε) >L N(λ)}, (6.10)

is a complete system of neighborhoods of null vector for a linear topology on X generated by
the norm F.

Definition 6.5. Let (X, μ,T∧) be a latticetic random normed spaces.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every t > 0 and
ε ∈ L \ {0L}, there exists a positive integerN such that μxn−x(t) >L N(ε) whenever
n ≥N.

(2) A sequence {xn} in X is called a Cauchy sequence if, for every t > 0 and ε ∈ L \ {0L},
there exists a positive integerN such that μxn−xm(t) >L N(ε)whenever n ≥ m ≥N.

(3) A latticetic random normed spaces (X, μ,T∧) is said to be complete if and only if
every Cauchy sequence in X is convergent to a point in X.

Theorem 6.6. If (X, μ,T∧) is a latticetic random normed space and {xn} is a sequence such that
xn → x, then limn→∞ μxn(t) = μx(t).

Proof. The proof is the same as classical random normed spaces, see [25].

7. Generalized Hyers-Ulam Stability of the Functional Equation (1.4):
An Odd Case via Fixed-Point Method

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the
functional equation Df(x, y) = 0 in random Banach spaces: an odd case.

Theorem 7.1. LetX be a linear space, let (Y, μ,T∧) be a complete LRN-space, andΦ let be a mapping
from X2 to D+

L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 1/8,

Φ2x,2y(t) ≤LΦx,y(αt)
(
x, y ∈ X, t > 0

)
. (7.1)
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Let f : X → Y be an odd mapping satisfying

μDf(x,y)(t)≥LΦx,y(t) (7.2)

for all x, y ∈ X and t > 0. Then

C(x) := lim
n→∞

8n
(
f

(
x

2n−1

)
− 2f

( x
2n
))

(7.3)

exists for each x ∈ X and defines a cubic mapping C : X → Y such that

μf(2x)−2f(x)−C(x)(t) ≥L T∧

(
Φx,x

(
1 − 8α
5α

t

)
,Φ2x,x

(
1 − 8α
5α

t

))
(7.4)

for all x ∈ X and t > 0.

Proof. Letting x = y in (7.2), we get

μf(3y)−4f(2y)+5f(y)(t) ≥L Φy,y(t) (7.5)

for all y ∈ X and t > 0. Replacing x by 2y in (7.2), we get

μf(4y)−4f(3y)+6f(2y)−4f(y)(t) ≥LΦ2y,y(t) (7.6)

for all y ∈ X and t > 0. By (7.5) and (7.6),

μf(4y)−10f(2y)+16f(y)(5t)≥LT∧
(
μ4(f(3y)−4f(2y)+5f(y))(4t), μf(4y)−4f(3y)+6f(2y)−4f(y)(t)

)

= T∧
(
μf(3y)−4f(2y)+5f(y)(t), μf(4y)−4f(3y)+6f(2y)−4f(y)(t)

)

≥LT∧
(
Φy,y(t),Φ2y,y(t)

)
(7.7)

for all y ∈ X and t > 0. Letting y := x/2 and g(x) := f(2x) − 2f(x) for all x ∈ X, we get

μg(x)−8g(x/2)(5t)≥LT∧(Φx/2,x/2(t),Φx,x/2(t)) (7.8)

for all x ∈ X and t > 0.
Consider the set

S := {h : X −→ Y, h(0) = 0} (7.9)

and introduce the generalized metric on S:

d(h, k) = inf
{
u ∈ R

+ : μh(x)−k(x)(ut)≥LT∧(Φx,x(t),Φ2x,x(t)), ∀x ∈ X, ∀t > 0
}

(7.10)
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where, as usual, inf ∅ = +∞. It is easy to show that (S, d) is complete (see the proof of
Lemma 2.1 of [24]).

Now, we consider the linear mapping J : S → S such that

Jh(x) := 8h
(x
2

)
(7.11)

for all x ∈ X, and we prove that J is a strictly contractive mapping with the Lipschitz constant
8α.

Let h, k ∈ S be given such that d(h, k) < ε. Then

μh(x)−k(x)(εt)≥LT∧(Φx,x(t),Φ2x,x(t)) (7.12)

for all x ∈ X and t > 0. Hence

μJh(x)−Jk(x)(8αεt) = μ8h(x/2)−8k(x/2)(8αεt)

= μh(x/2)−k(x/2)(αεt)

≥ T∧(Φx/2,x/2(αt),Φx,x/2(αt))

≥LT∧(Φx,x(t),Φ2x,x(t))

(7.13)

for all x ∈ X and t > 0. So, d(h, k) < ε implies that

d(Jh, Jk) ≤ α

8
ε. (7.14)

This means that

d(Jh, Jk) ≤ α

8
d(h, k) (7.15)

for all h, k ∈ S. It follows from (7.8) that

μg(x)−8g(x/2)(5αt)≥LT∧(Φx,x(t),Φ2x,x(t)) (7.16)

for all x ∈ X and t > 0. So, d(g, Jg) ≤ 5α ≤ 5/8.
By Theorem 1.1, there exists a mapping C : X → Y satisfying the following:

(1) C is a fixed point of J , that is,

C
(x
2

)
=

1
8
C(x) (7.17)

for all x ∈ X. Since g : X → Y is odd, C : X → Y is an odd mapping. The mapping
C is a unique fixed point of J in the set

M =
{
h ∈ S : d

(
h, g
)
<∞

}
. (7.18)
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This implies that C is a unique mapping satisfying (7.17) such that there exists a
u ∈ (0,∞) satisfying

μg(x)−C(x)(ut)≥LT∧(Φx,x(t),Φ2x,x(t)) (7.19)

for all x ∈ X and t > 0.

(2) d(Jng, C) → 0 as n → ∞. This implies the equality

lim
n→∞

8ng
( x
2n
)
= C(x) (7.20)

for all x ∈ X.

(3) d(h,C) ≤ (1/(1 − 8α))d(h, Jh) with h ∈M, which implies the inequality

d
(
g,C
)
≤ 5α

1 − 8α
, (7.21)

from which it follows that

μg(x)−C(x)

(
5α

1 − 8α
t

)
≥LT∧(Φx,x(t),Φ2x,x(t)). (7.22)

This implies that the inequality (7.4) holds. From Dg(x, y) = Df(2x, 2y) −
2Df(x, y), by (7.2), we deduce that

μDf(2x,2y)(t)≥LΦ2x,2y(t),

μ−2Df(x,y)(t) = μDf(x,y)
(
t

2

)
≥LΦx,y

(
t

2

) (7.23)

and so, by (LRN3) and (7.1), we obtain

μDg(x,y)(3t)≥LT∧
(
μDf2x,2y(t), μ−2Df(x,y)(2t)

)

≥LT∧
(
Φ2x,2y(t),Φx,y(t)

)
≥LΦ2x,2y(t).

(7.24)

It follows that

μ8nDg(x/2n,y/2n)(3t) = μDg(x/2n,y/2n)
(
3
t

8n

)

≥ Φx/2n−1,y/2n−1

(
t

8n

)
≥L · · · ≥LΦx,y

(
1
8

t

(8α)n−1

) (7.25)

for all x, y ∈ X, t > 0 and n ∈ N.
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Since limn→∞ Φx,y((3/8)(t/(8α)
n−1)) = 1 for all x, y ∈ X and t > 0, by Theorem 2.4, we

deduce that

μDC(x,y)(3t) = 1L (7.26)

for all x, y ∈ X and t > 0. Thus the mapping C : X → Y satisfies (1.4).
Now, we have

C(2x) − 8C(x) = lim
n→∞

[
8ng
(

x

2n−1

)
− 8n+1g

( x
2n
)]

= 8 lim
n→∞

[
8n−1g

(
x

2n−1

)
− 8ng

( x
2n
)]

= 0

(7.27)

for all x ∈ X. Since the mapping x → C(2x) − 2C(x) is cubic (see Lemma 2.2 of [14]), from
the equality C(2x) = 8C(x), we deduce that the mapping C : X → Y is cubic.

Corollary 7.2. Let θ ≥ 0 and let p be a real number with p > 3. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

μDf(x,y)(t) ≥
t

t + θ
(
‖x‖p +

∥∥y
∥∥p) (7.28)

for all x, y ∈ X and t > 0. Note that (X, μ, TM) is a complete LRN-space, in which L = [0, 1], then

C(x) := lim
n→∞

8n
(
f

(
x

2n−1

)
− 2f

( x
2n
))

(7.29)

exists for each x ∈ X and defines a cubic mapping C : X → Y such that

μf(2x)−2f(x)−C(x)(t) ≥
(2p − 8)t

(2p − 8)t + 5(1 + 2p)θ‖x‖p
(7.30)

for all x ∈ X and t > 0.

Proof. The proof follows from Theorem 7.1 by taking

Φx,y(t) :=
t

t + θ
(
‖x‖p +

∥∥y
∥∥p) (7.31)
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for all x, y ∈ X and t > 0. Then we can choose α = 2−p, and we get

μf(2x)−2f(x)−C(x)(t) ≥ min

( (
1 − 23−p

)
t

(
1 − 23−p

)
t + 5 · 2−pθ

(
2‖x‖p

) ,

(
1 − 23−p

)
t

(
1 − 23−p

)
t + 5 · 2−pθ

(
‖2x‖p + ‖x‖p

)

)

≥
(
1 − 23−p

)
t

(
1 − 23−p

)
t + 5 · 2−pθ

(
‖2x‖p + ‖x‖p

)

=
(2p − 8)t

(2p − 8)t + 5 · (2p + 1)θ‖x‖p
,

(7.32)

which is the desired result.

Theorem 7.3. LetX be a linear space, let (Y, μ,T∧) be a complete LRN-space, and letΦ be a mapping
from X2 to D+

L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 8,

Φx/2,y/2(t)≤LΦx,y(αt)
(
x, y ∈ X, t > 0

)
. (7.33)

Let f : X → Y be an odd mapping satisfying (7.2), then

C(x) := lim
n→∞

1
8n
(
f
(
2n+1x

)
− 2f(2nx)

)
(7.34)

exists for each x ∈ X and defines a cubic mapping C : X → Y such that

μf(2x)−2f(x)−C(x)(t) ≥
L
T∧

(
Φx,x

(
8 − α
5

t

)
,Φ2x,x

(
8 − α
5

t

))
(7.35)

for all x ∈ X and t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 7.1.
Consider the linear mapping J : S → S such that

Jh(x) :=
1
8
h(2x) (7.36)

for all x ∈ X, and we prove that J is a strictly contractive mapping with the Lipschitz constant
α/8.

Let h, k ∈ S be given such that d(h, k) < ε, then

μh(x)−k(x)(εt)≥LT∧(Φx,x(t),Φ2x,x(t)) (7.37)
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for all x ∈ X and t > 0. Hence

μJh(x)−Jk(x)

(
α

8
εt

)
= μ(1/8)h(2x)−(1/8)k(2x)

(
α

8
εt

)

= μh(2x)−k(2x)(αεt)

≥LT∧(Φ2x,2x(αt),Φ4x,2x(αt))

≥ T∧(Φx,x(t),Φ2x,x(t))

(7.38)

for all x ∈ X and t > 0. So, d(h, k) < ε implies that

d(Jh, Jk) ≤ α

8
ε. (7.39)

This means that

d(Jh, Jk) ≤ α

8
d(h, k) (7.40)

for all g, h ∈ S. Letting g(x) := f(2x) − 2f(x) for all x ∈ X, from (7.8), we get that

μg(x)−(1/8)g(2x)

(
5
8
t

)
≥LT∧(Φx,x(t),Φ2x,x(t)) (7.41)

for all x ∈ X and t > 0. So, d(g, Jg) ≤ 5/8.
By Theorem 1.1, there exists a mapping C : X → Y satisfying the following:

(1) C is a fixed point of J , that is,

C(2x) = 8C(x) (7.42)

for all x ∈ X. Since g : X → Y is odd, C : X → Y is an odd mapping. The mapping
C is a unique fixed point of J in the set

M =
{
h ∈ S : d

(
h, g
)
<∞

}
. (7.43)

This implies that C is a unique mapping satisfying (7.42) such that there exists a
u ∈ (0,∞) satisfying

μg(x)−C(x)(ut) ≥
L
T∧(Φx,x(t),Φ2x,x(t)) (7.44)

for all x ∈ X and t > 0.

(2) d(Jng, C) → 0 as n → ∞. This implies the equalit

lim
n→∞

1
8n
g(2nx) = C(x) (7.45)

for all x ∈ X.
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(3) d(h,C) ≤ (1/(1 − α/8))d(h, Jh) for every h ∈M, which implies the inequality

d
(
g,C
)
≤ 5

8 − α,
(7.46)

from which it follows that

μg(x)−C(x)

(
5

8 − αt
)
≥LT∧(Φx,x(t),Φ2x,x(t)) (7.47)

for all x ∈ X and t > 0. This implies that the inequality (7.35) holds.

From

μDg(x,y)(3t)≥LT∧
(
Φ2x,2y(t),Φx,y(t)

)
≥LT∧

(
Φ2x,2y(t),Φx,y

(
t

8

))
, (7.48)

by (7.33), we deduce that

μ8−nDg(2nx,2ny)(3t) = μDg(2nx,2ny)(3 · 8nt)≥LΦ2nx,2ny

(
8n−1t

)
≥L · · · ≥ Φx,y

((
8
α

)n−1 t
α

)

(7.49)

for all x, y ∈ X, t > 0, and n ∈ N. As n → ∞, we deduce that

μDC(x,y)(3t) = 1L (7.50)

for all x, y ∈ X and t > 0. Thus the mapping C : X → Y satisfies (1.4).
Now, we have

C(2x) − 8C(x) = lim
n→∞

[
1
8n
g
(
2n+1x

)
− 1
8n−1

g(2nx)
]

= 8 lim
n→∞

[
1

8n+1
g
(
2n+1x

)
− 1
8n
g(2nx)

]
= 0

(7.51)

for all x ∈ X. Since the mapping x → C(2x) − 2C(x) is cubic (see Lemma 2.2 of [14]), from
the equality C(2x) = 8C(x), we deduce that the mapping C : X → Y is cubic.

Corollary 7.4. Let θ ≥ 0 and let p be a real number with 0 < p < 3. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (7.28), then

C(x) := lim
n→∞

1
8n
(
f
(
2n+1x

)
− 2f(2nx)

)
(7.52)
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exists for each x ∈ X and defines a cubic mapping C : X → Y such that

μf(2x)−2f(x)−C(x)(t) ≥ (8 − 2p)t
(8 − 2p)t + 5(1 + 2p)θ‖x‖p

(7.53)

for all x ∈ X and t > 0. Note that (X, μ, TM) is a complete LRN-space, in which L = [0, 1].

Proof. The proof follows from Theorem 7.3 by taking

μDf(x,y)(t) ≥ t

t + θ
(
‖x‖p +

∥
∥y
∥
∥p) (7.54)

for all x, y ∈ X and t > 0. Then we can choose α = 2p, and we get the desired result.

Theorem 7.5. LetX be a linear space, let (Y, μ,T∧) be a complete LRN-space, and letΦ be a mapping
from X2 to D+

L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 1/2,

Φ2x,2y(t)≤LΦx,y(αt)
(
x, y ∈ X, t > 0

)
. (7.55)

Let f : X → Y be an odd mapping satisfying (7.2), then

A(x) := lim
n→∞

2n
(
f

(
x

2n−1

)
− 8f

( x
2n
))

(7.56)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

μf(2x)−8f(x)−A(x)(t)≥LT∧

(
Φx,x

(
1 − 2α
5α

t

)
,Φ2x,x

(
1 − 2α
5α

t

))
(7.57)

for all x ∈ X and t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 7.1.
Letting y := x/2 and g(x) := f(2x) − 8f(x) for all x ∈ X in (7.7), we get

μg(x)−2g(x/2)(5t)≥LT∧(Φx/2,x/2(t),Φx,x/2(t)) (7.58)

for all x ∈ X and t > 0.
Now, we consider the linear mapping J : S → S such that

Jh(x) := 2h
(x
2

)
(7.59)

for all x ∈ X. It is easy to see that J is a strictly contractive self-mapping on S with the
Lipschitz constant 2α.
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It follows from (7.58) and (7.55) that

μg(x)−2g(x/2)(5αt) ≥ TM(Φx,x(t),Φ2x,x(t)) (7.60)

for all x ∈ X and t > 0. So, d(g, Jg) ≤ 5α <∞.
By Theorem 1.1, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

A
(x
2

)
=

1
2
A(x) (7.61)

for all x ∈ X. Since g : X → Y is odd, A : X → Y is an odd mapping. The
mapping A is a unique fixed point of J in the set

M =
{
h ∈ S : d

(
h, g
)
<∞

}
. (7.62)

This implies that A is a unique mapping satisfying (7.61) such that there exists a
u ∈ (0,∞) satisfying

μg(x)−A(x)(ut)≥LT∧(Φx,x(t),Φ2x,x(t)) (7.63)

for all x ∈ X and t > 0.

(2) d(Jng,A) → 0 as n → ∞. This implies the equality

lim
n→∞

2ng
( x
2n
)
= A(x) (7.64)

for all x ∈ X.

(3) d(h,A) ≤ (1/(1 − 2α))d(h, Jh) for each h ∈M, which implies the inequality

d
(
g,A

)
≤ 5α

1 − 2α
. (7.65)

This implies that the inequality (7.57) holds. Since μDg(x,y)(3t)≥LΦ2x,2y(t), it follows
that

μ2nDg(x/2n,y/2n)(3t) = μDg(x/2n,y/2n)
(
3
t

2n

)

≥ Φx/2n−1,y/2n−1

(
t

2n

)
≥L · · · ≥LΦx,y

(
1
2

t

(2α)n−1

) (7.66)



32 Journal of Applied Mathematics

for all x, y ∈ X, t > 0, and n ∈ N. As n → ∞, we deduce that

μDA(x,y) (3t) = 1L (7.67)

for all x, y ∈ X and t > 0. Thus, the mapping A : X → Y satisfies (1.4).

Now, we have

A(2x) − 2A(x) = lim
n→∞

[
2ng
(

x

2n−1

)
− 2n+1g

( x
2n
)]

= 2 lim
n→∞

[
2n−1g

(
x

2n−1

)
− 2ng

( x
2n
)]

= 0

(7.68)

for all x ∈ X. Since the mapping x → A(2x) − 8A(x) is additive (see Lemma 2.2 of [14]),
from the equality A(2x) = 2A(x), we deduce that the mapping A : X → Y is additive.

Corollary 7.6. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (7.28), then

A(x) := lim
n→∞

2n
(
f

(
x

2n−1

)
− 8f

( x
2n
))

(7.69)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

μf(2x)−8f(x)−A(x)(t) ≥ (2p − 2)t
(2p − 2)t + 5(1 + 2p)θ‖x‖p

(7.70)

for all x ∈ X and t > 0, where (X, μ, TM) is a complete LRN-space in which L = [0, 1].

Proof. The proof follows from Theorem 7.5 by taking

μDf(x,y)(t) ≥ t

t + θ
(
‖x‖p +

∥∥y
∥∥p) (7.71)

for all x, y ∈ X and t > 0. Then we can choose α = 2−p, and we get the desired result.

Theorem 7.7. LetX be a linear space, let (Y, μ,T∧) be a complete LRN-space, and letΦ be a mapping
from X2 to D+

L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 2,

Φx,y(αt)≥LΦx/2,y/2(t)
(
x, y ∈ X, t > 0

)
. (7.72)

Let f : X → Y be an odd mapping satisfying (7.2), then

A(x) := lim
n→∞

1
2n
(
f
(
2n+1x

)
− 8f(2nx)

)
(7.73)
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exists for each x ∈ X and defines an additive mapping A : X → Y such that

μf(2x)−8f(x)−A(x)(t) ≥
L
T∧

(
Φx,x

(
2 − α
5α

t

)
,Φ2x,x

(
2 − α
5α

t

))
(7.74)

for all x ∈ X and t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 7.1.
Consider the linear mapping J : S → S such that

Jh(x) :=
1
2
h(2x) (7.75)

for all x ∈ X. It is easy to see that J is a strictly contractive self-mapping on S with the
Lipschitz constant α/2. Let g(x) = f(2x) − 8f(x), from (7.58), it follows that

μg(x)−1/2g(2x)

(
5
2
t

)
≥LT∧(Φx,x(t),Φ2x,x(t)) (7.76)

for all x ∈ X and t > 0. So, d(g, Jg) ≤ 5/2. By Theorem 1.1, there exists a mappingA : X → Y
satisfying the following:

(1) A is a fixed point of J , that is,

A(2x) = 2A(x) (7.77)

for all x ∈ X. Since h : X → Y is odd,A : X → Y is an odd mapping. The mapping
A is a unique fixed point of J in the set

M =
{
h ∈ S : d

(
h, g
)
<∞

}
. (7.78)

This implies that A is a unique mapping satisfying (7.77) such that there exists a
u ∈ (0,∞) satisfying

μg(x)−A(x)(ut)≥LT∧(Φx,x(t),Φ2x,x(t)) (7.79)

for all x ∈ X and t > 0.

(2) d(Jng,A) → 0 as n → ∞. This implies the equality

lim
n→∞

1
2n
g(2nx) = A(x) (7.80)

for all x ∈ X.
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(3) d(h,A) ≤ (1/(1 − α/2))d(h, Jh), which implies the inequality

d
(
g,A

)
≤ 5

2 − α.
(7.81)

This implies that the inequality (7.74) holds.

Proceeding as in the proof of Theorem 7.5, we obtain that the mapping A : X → Y
satisfies (1.4). Now, we have

A(2x) − 2A(x) = lim
n→∞

[
1
2n
g
(
2n+1x

)
− 1
2n−1

g(2nx)
]

= 2 lim
n→∞

[
1

2n+1
g
(
2n+1x

)
− 1
2n
g(2nx)

]
= 0

(7.82)

for all x ∈ X. Since the mapping x → A(2x) − 8A(x) is additive (see Lemma 2.2 of [14]),
from the equality A(2x) = 2A(x), we deduce that the mapping A : X → Y is additive.

Corollary 7.8. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (7.28), then

A(x) := lim
n→∞

1
2n
(
f
(
2n+1x

)
− 8f(2nx)

)
(7.83)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

μf(2x)−8f(x)−A(x)(t) ≥ (2 − 2p)t
(2 − 2p)t + 5(1 + 2p)θ‖x‖p

(7.84)

for all x ∈ X and t > 0, where (X, μ, TM) is a complete LRN-space in which L = [0, 1].

Proof. The proof follows from Theorem 7.7 by taking

μDf(x,y)(t) ≥ t

t + θ
(
‖x‖p +

∥∥y
∥∥p) (7.85)

for all x, y ∈ X and t > 0. Then we can choose α = 2p, and we get the desired result.

8. Generalized Hyers-Ulam Stability of the Functional Equation (1.4):
An Even Case via Fixed-Point Method

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the
functional equation Df(x, y) = 0 in random Banach spaces, an even case.
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Theorem 8.1. LetX be a linear space, let (Y, μ,T∧) be a complete LRN-space, and letΦ be a mapping
from X2 to D+

L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 1/16,

Φx,y(αt) ≥LΦ2x,2y(t)
(
x, y ∈ X, t > 0

)
. (8.1)

Let f : X → Y be an even mapping satisfying f(0) = 0 and (7.2), then

Q(x) := lim
n→∞

16n
(
f

(
x

2n−1

)
− 4f

( x
2n
))

(8.2)

exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

μf(2x)−4f(x)−Q(x)(t)≥LT∧

(
Φx,x

(
1 − 16α

5α
t

)
,Φ2x,x

(
1 − 16α

5α
t

))
(8.3)

for all x ∈ X and t > 0.

Proof. Letting x = y in (7.2), we get

μf(3y)−6f(2y)+15f(y)(t)≥LΦy,y(t) (8.4)

for all y ∈ X and t > 0. Replacing x by 2y in (7.2), we get

μf(4y)−4f(3y)+4f(2y)+4f(y)(t)≥LΦ2y,y(t) (8.5)

for all y ∈ X and t > 0. By (8.4) and (8.5),

μf(4x)−20f(2x)+64f(x)(5t)≥LT∧
(
μ4(f(3x)−6f(2x)+15f(x))(4t), μf(4x)−4f(3x)+4f(2x)+4f(x)(t)

)

≥LT∧(Φx,x(t),Φ2x,x(t))
(8.6)

for all x ∈ X and t > 0. Letting g(x) := f(2x) − 4f(x) for all x ∈ X, we get

μg(x)−16g(x/2)(5t)≥LT∧(Φx/2,x/2(t),Φx,x/2(t)) (8.7)

for all x ∈ X and t > 0. Let (S, d) be the generalized metric space defined in the proof of
Theorem 7.1.

Now we consider the linear mapping J : S → S such that Jh(x) := 16h(x/2) for all
x ∈ X. It is easy to see that J is a strictly contractive self-mapping on S with the Lipschitz
constant 16α. It follows from (8.7) that

μg(x)−16g(x/2)(5αt)≥LT∧(Φx,x(t),Φ2x,x(t)) (8.8)

for all x ∈ X and t > 0. So,

d
(
g, Jg

)
≤ 5α ≤ 5

16
<∞. (8.9)
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By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J , that is,

Q
(x
2

)
=

1
16
Q(x) (8.10)

for all x ∈ X. Since g : X → Y is even with g(0) = 0, Q : X → Y is an even
mapping with Q(0) = 0. The mapping Q is a unique fixed point of J in the set

M =
{
h ∈ S : d

(
h, g
)
<∞

}
. (8.11)

This implies that Q is a unique mapping satisfying (8.10) such that there exists a
u ∈ (0,∞) satisfying

μg(x)−Q(x)(ut)≥LT∧(Φx,x(t),Φ2x,x(t)) (8.12)

for all x ∈ X and t > 0.

(2) d(Jng,Q) → 0 as n → ∞. This implies the equality

lim
n→∞

16ng
( x
2n
)
= Q(x) (8.13)

for all x ∈ X.

(3) d(h,Q) ≤ (1/(1 − 16α))d(h, Jh) for every h ∈M, which implies the inequality

d
(
g,Q

)
≤ 5α

1 − 16α
. (8.14)

This implies that the inequality (8.3) holds.

Proceeding as in the proof of Theorem 7.1, we obtain that the mapping Q : X → Y
satisfies (1.4). Now, we have

Q(2x) − 16Q(x) = lim
n→∞

[
16ng

(
x

2n−1

)
− 16n+1g

( x
2n
)]

= 16 lim
n→∞

[
16n−1g

(
x

2n−1

)
− 16ng

( x
2n
)]

= 0

(8.15)

for all x ∈ X. Since the mapping x → Q(2x) − 4Q(x) is quartic, we get that the mapping
Q : X → Y is quartic.

Corollary 8.2. Let θ ≥ 0 and let p be a real number with p > 4. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (7.28), then

Q(x) := lim
n→∞

16n
(
f

(
x

2n−1

)
− 4f

( x
2n
))

(8.16)
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exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

μf(2x)−4f(x)−Q(x)(t) ≥ (2p − 16)t
(2p − 16)t + 5(1 + 2p)θ‖x‖p

(8.17)

for all x ∈ X and t > 0, where (X, μ, TM) is a complete LRN-space in which L = [0, 1].

Proof. The proof follows from Theorem 8.1 by taking

μDf(x,y)(t) ≥
t

t + θ
(
‖x‖p +

∥
∥y
∥
∥p) (8.18)

for all x, y ∈ X and t > 0. Then we can choose α = 2−p, and we get the desired result.

Theorem 8.3. LetX be a linear space, let (Y, μ,T∧) be a complete LRN-space, and letΦ be a mapping
from X2 to D+

L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 16,

Φx,y(αt) ≥ Φx/2,y/2(t)
(
x, y ∈ X, t > 0

)
. (8.19)

Let f : X → Y be an even mapping satisfying f(0) = 0 and (7.2), then

Q(x) := lim
n→∞

1
16n
(
f
(
2n+1x

)
− 4f(2nx)

)
(8.20)

exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

μf(2x)−4f(x)−Q(x)(t) ≥
L
T∧

(
Φx,x

(
16 − α

5
t

)
,Φ2x,x

(
16 − α

5
t

))
(8.21)

for all x ∈ X and t > 0.

Proof. In the generalized metric space (S, d) defined in the proof of Theorem 7.1, we consider
the linear mapping J : S → S such that

Jh(x) :=
1
16
h(2x) (8.22)

for all x ∈ X. It is easy to see that J is a strictly contractive self-mapping on S with the
Lipschitz constant α/16.

Letting g(x) := f(2x) − 4f(x) for all x ∈ X, by (8.7), we get

μg(x)−(1/16)g(2x)

(
5
16
t

)
≥LT∧(Φx,x(t),Φ2x,x(t)) (8.23)

for all x ∈ X and t > 0. So, d(g, Jg) ≤ 5/16.
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By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J , that is,

Q(2x) = 16Q(x) (8.24)

for all x ∈ X. Since g : X → Y is even with g(0) = 0, Q : X → Y is an even
mapping with Q(0) = 0. The mapping Q is a unique fixed point of J in the set

M =
{
h ∈ S : d

(
h, g
)
<∞

}
. (8.25)

This implies that Q is a unique mapping satisfying (8.24) such that there exists a
u ∈ (0,∞) satisfying

μg(x)−Q(x)(ut)≥LT∧(Φx,x(t),Φ2x,x(t)) (8.26)

for all x ∈ X and t > 0.

(2) d(Jng,Q) → 0 as n → ∞. This implies the equality

lim
n→∞

1
16n

g(2nx) = Q(x) (8.27)

for all x ∈ X.

(3) d(g,Q) ≤ (16/(16 − α))d(g, Jg) for each h ∈M, which implies the inequality

d
(
g,Q

)
≤ 5/(16 − α). (8.28)

This implies that the inequality (8.21) holds.

Proceeding as in the proof of Theorem 7.3, we obtain that the mapping Q : X → Y
satisfies (1.4). Now, we have

Q(2x) − 16Q(x) = lim
n→∞

[
1
16n

g
(
2n+1x

)
− 1
16n−1

g(2nx)
]

= 16 lim
n→∞

[
1

16n+1
g
(
2n+1x

)
− 1
16n

g(2nx)
]
= 0

(8.29)

for all x ∈ X. Since the mapping x → Q(2x) − 4Q(x) is quartic, we get that the mapping
Q : X → Y is quartic.

Corollary 8.4. Let θ ≥ 0 and let p be a real number with 0 < p < 4. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (7.28), then

Q(x) := lim
n→∞

1
16n
(
f
(
2n+1x

)
− 4f(2nx)

)
(8.30)
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exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

μf(2x)−4f(x)−Q(x)(t) ≥
(16 − 2p)t

(16 − 2p)t + 5(1 + 2p)θ‖x‖p
(8.31)

for all x ∈ X and t > 0, where (X, μ, TM) is a complete LRN-space in which L = [0, 1].

Proof. The proof follows from Theorem 8.3 by taking

μDf(x,y)(t) ≥ t

t + θ
(
‖x‖p +

∥
∥y
∥
∥p) (8.32)

for all x, y ∈ X and t > 0. Then we can choose α = 2p, and we get the desired result.

Theorem 8.5. LetX be a linear space, let (Y, μ,T∧) be a complete LRN-space, and letΦ be a mapping
from X2 to D+

L (Φ(x, y) is by denoted Φx,y) such that, for some 0 < α < 1/4,

Φx,y(αt)≥L Φ2x,2y(t)
(
x, y ∈ X, t > 0

)
. (8.33)

Let f : X → Y be an even mapping satisfying f(0) = 0 and (7.2), then

T(x) := lim
n→∞

4n
(
f

(
x

2n−1

)
− 16f

( x
2n
))

(8.34)

exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

μf(2x)−16f(x)−T(x)(t)≥LT∧

(
Φx,x

(
1 − 4α
5α

t

)
,Φ2x,x

(
1 − 4α
5α

t

))
(8.35)

for all x ∈ X and t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 7.1.
Letting g(x) := f(2x) − 16f(x) for all x ∈ X in (8.6), we get

μg(x)−4g(x/2)(5t)≥LT∧(Φx/2,x/2(t),Φx,x/2(t)) (8.36)

for all x ∈ X and t > 0. It is easy to see that the linear mapping J : S → S such that

Jh(x) := 4h
(x
2

)
(8.37)

for all x ∈ X, is a strictly contractive self-mapping with the Lipschitz constant 4α.
It follows from (8.36) that

μg(x)−4g(x/2)(5αt)≥LT∧(Φx,x(t),Φ2x,x(t)) (8.38)

for all x ∈ X and t > 0. So, d(g, Jg) ≤ 5α <∞.
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By Theorem 1.1, there exists a mapping T : X → Y satisfying the following:

(1) T is a fixed point of J , that is,

T
(x
2

)
=

1
4
T(x) (8.39)

for all x ∈ X. Since g : X → Y is even with g(0) = 0, T : X → Y is an even
mapping with T(0) = 0. The mapping T is a unique fixed point of J in the set
M = {h ∈ S : d(h, g) < ∞}. This implies that T is a unique mapping satisfying
(8.39) such that there exists a u ∈ (0,∞) satisfying

μg(x)−T(x)(ut)≥LT∧(Φx,x(t),Φ2x,x(t)) (8.40)

for all x ∈ X and t > 0.

(2) d(Jng, T) → 0 as n → ∞. This implies the equality

lim
n→∞

4ng
( x
2n
)
= T(x) (8.41)

for all x ∈ X.

(3) d(h, T) ≤ (1/(1 − 4α))d(h, Jh) for each h ∈M, which implies the inequality

d
(
g, T
)
≤ 5α

1 − 4α
. (8.42)

This implies that the inequality (8.35) holds.

Proceeding as in the proof of Theorem 7.1, we obtain that the mapping T : X → Y
satisfies (1.4). Now, we have

T(2x) − 4T(x) = lim
n→∞

[
4ng
(

x

2n−1

)
− 4n+1g

( x
2n
)]

= 4 lim
n→∞

[
4n−1g

(
x

2n−1

)
− 4ng

( x
2n
)]

= 0

(8.43)

for all x ∈ X. Since the mapping x → T(2x) − 16T(x) is quadratic, we get that the mapping
T : X → Y is quadratic.

Corollary 8.6. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (7.28), then

T(x) := lim
n→∞

4n
(
f

(
x

2n−1

)
− 16f

( x
2n
))

(8.44)
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exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

μf(2x)−16f(x)−T(x)(t) ≥ (2p − 4)t
(2p − 4)t + 5(1 + 2p)θ‖x‖p

(8.45)

for all x ∈ X and t > 0.

Proof. The proof follows from Theorem 8.5 by taking

Φx,y(t) :=
t

t + θ
(
‖x‖p +

∥
∥y
∥
∥p) (8.46)

for all x, y ∈ X. Then we can choose α = 2−p, and we get the desired result.

Theorem 8.7. Let X be a linear space, let (Y, μ, TM) be a complete RN-space, and let Φ be a mapping
from X2 to D+ (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 4,

Φx,y(αt) ≥ Φx/2,y/2(t)
(
x, y ∈ X, t > 0

)
. (8.47)

Let f : X → Y be an even mapping satisfying f(0) = 0 and (7.2), then

T(x) := lim
n→∞

1
4n
(
f
(
2n+1x

)
− 16f(2nx)

)
(8.48)

exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

μf(2x)−16f(x)−T(x)(t) ≥ TM
(
Φx,x

(
4 − α
5

t

)
,Φ2x,x

(
4 − α
5

t

))
(8.49)

for all x ∈ X and t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 7.1.
It is easy to see that the linear mapping J : S → S such that

Jh(x) :=
1
4
h(2x) (8.50)

for all x ∈ X is a strictly contractive self-mapping with the Lipschitz constant α/4.
Letting g(x) := f(2x) − 16f(x) for all x ∈ X, from (8.36), we get

μg(x)−1/4g(2x)

(
5
4
t

)
≥ TM(Φx,x(t),Φ2x,x(t)) (8.51)

for all x ∈ X and t > 0. So, d(g, Jg) ≤ 5/4.
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By Theorem 1.1, there exists a mapping T : X → Y satisfying the following:

(1) T is a fixed point of J , that is,

T(2x) = 4T(x) (8.52)

for all x ∈ X. Since g : X → Y is even with g(0) = 0, T : X → Y is an even mapping
with T(0) = 0. The mapping T is a unique fixed point of J in the set

M =
{
h ∈ S : d

(
h, g
)
<∞

}
. (8.53)

This implies that T is a unique mapping satisfying (8.52) such that there exists a
u ∈ (0,∞) satisfying

μg(x)−T(x)(ut) ≥ TM(Φx,x(t),Φ2x,x(t)) (8.54)

for all x ∈ X and t > 0.

(2) d(Jng, T) → 0 as n → ∞. This implies the equality

lim
n→∞

1
4n
g(2nx) = T(x) (8.55)

for all x ∈ X.

(3) d(h, T) ≤ (1/(1 − α/4))d(h, Jh) for each h ∈M, which implies the inequality

d
(
g, T
)
≤ 5/(4 − α). (8.56)

This implies that the inequality (8.49) holds.

Proceeding as in the proof of Theorem 2.3, we obtain that the mapping Q : X → Y
satisfies (1.4). Now, we have

T(2x) − 4T(x) = lim
n→∞

[
1
4n
g
(
2n+1x

)
− 1
4n−1

g(2nx)
]

= 4 lim
n→∞

[
1

4n+1
g
(
2n+1x

)
− 1
4n
g(2nx)

]
= 0

(8.57)

for all x ∈ X. Since the mapping x → T(2x) − 16T(x) is quadratic, we get that the mapping
T : X → Y is quadratic.

Corollary 8.8. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (7.28). Then

T(x) := lim
n→∞

1
4n
(
f
(
2n+1x

)
− 16f(2nx)

)
(8.58)
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exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

μf(2x)−16f(x)−T(x)(t) ≥ (4 − 2p)t
(4 − 2p)t + 5(1 + 2p)θ‖x‖p

(8.59)

for all x ∈ X and t > 0, where (X, μ, TM) is a complete LRN-space in which L = [0, 1].

Proof. The proof follows from Theorem 8.5 by taking

Φx,y(t) :=
t

t + θ
(
‖x‖p +

∥
∥y
∥
∥p) (8.60)

for all x, y ∈ X and t > 0. Then we can choose α = 2p, and we get the desired result.
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